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Suppression of apoptosis is one of the hallmarks of carcino-
genesis. Tumor cells endure apoptotic pressure by overex-
pressing several antiapoptotic proteins, and FLICE inhibitory
protein (FLIP) is one of the important antiapoptotic proteins
that have been shown to be overexpressed in various primary
tumor cells. FLIP has two death-effector domains in tandem,
mimicking the prodomain of procaspase-8. It is recruited to
Fadd in death-inducing signaling complex, thereby preventing
the activation of procaspase-8. To date, three isoforms of
human cytosolic FLIP (c-FLIP) and six viral homologs
(v-FLIP) have been identified. Recently, the crystal structure
of v-FLIP MC159 was determined for the first time as an
atomic-detail FLIP structure, which revealed that two death
effector domains are packed tightly against each other mainly
through conserved hydrophobic interactions. The overexpres-
sion of c-FLIP in tumor cells has been shown to be the
determinant of the tumor’s resistance to death ligands such as
FasL and TRAIL. It has also been shown that the down-
regulation of c-FLIP results in sensitizing resistant tumor cells.
Therefore, the agents directly targeting c-FLIP at mRNA and
protein levels are expected to be developed in near future and
tested for the potential as a new class of anti-cancer drugs.
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complex, Fas, apoptosis, cancer

APOPTOSIS AND CANCER

Apoptosis is a programmed way of cell death

which has been characterized by shrinking of

cells, condensation of nuclei, and internucleosomal

degradation of DNA.1,2 Within 24 hours after this

program is switched on, the apoptotic cell divides

into small blobs and is finally engulfed by

neighboring cells.3 Since Dr. Stanley Korsmeyer

had shown that apoptosis program is suppressed

in B-cell lymphoma and its suppression enhances

the development of B-cell lymphoma, thousands

of studies have been accumulated to support the

idea that the acquired resistance to apoptosis is a

hallmark of most or perhaps all types of cancer.4

Moreover, a significant part of the benefits

achieved by chemotheraphy relies on the induc-

tion of apoptosis in tumor cells,5 and cancers with

alterations in proteins involved in apoptosis

signaling are often resistant to chemotheraphy.6

Therefore, drugs designed to restore the apoptosis

program might be effective against tumor cells.

For selectivity, such drugs might induce cell death

of only tumor cells because, unlike normal cells,

they are under apoptotic stress and highly depen-

dent on aberrations of the apoptosis signaling

pathways to stay alive.6 For these reasons,

apoptosis has been a very attractive phenomenon

for the researchers who seek new strategies to

fight against cancer.

Antiapoptotic proteins overexpressed in tumor

cells have been recognized as targeting points

for anti-cancer therapeutic interventions, and

their inhibitors at the levels of mRNA and

protein have been developed, which are mostly

antisense oligonucleotides and small molecule

inhibitors.6-8 Those drug candidate compounds

are now mostly in the preclinical and early clinical

stages. FLIP is an another important antiapoptotic

protein overexpressed in various types of tumor

cells,9 but the agents directly targeting it have

not yet been reportedly developed.8 In this

review, recent progress on FLIP research and its

potential as an anti-cancer therapeutic target will

be discussed.
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INITIATOR CASPASE ACTIVATION IN
INTRINSIC AND EXTRINSIC PATHWAYS

The central executioner of apoptosis is a set of

cysteine proteases called caspases that are initially

synthesized as inactive zymogens called pro-

caspases. Upon the induction of apoptosis,

procaspase is cleaved into p18 and p10 to form

the active enzyme, which is a heterotetramer

containing two p18/p10 heterodimers and two

active sites.10 Based on their order of activation,

caspases are classified into two families: initiator

caspases and effector caspases.11 Initiator caspases

(also known as apical caspases; caspase-8 & -9) are

activated through autocatalytic cleavage on their

own activation platform formed in response to

upstream death signals. For example, caspase-8 is

activated in death-inducing signaling complex

(DISC) whose major components are Fas and

Fadd.12-14 In caspase-9, the proteolytic activation is

accomplished in apoptosome composed of Apaf-1

and cytochrom c (Fig. 1).11 Effector caspases (also

known as executioner caspases) are proteolytically

activated by initiator caspases. Once activated,

effecter caspases (caspase-3 & -7) degrade more

than 280 cellular proteins identified so far and

consequently execute the cell death process.15

Death signals to activate the initiator caspases

can occur internally from cytotoxic insults such as

DNA damage or can be given externally in a form

of cytokine collectively called as death ligands

including Fas ligand (FasL) and TRAIL.7 In

intrinsic pathway, DNA damage leads to the

phosphorylation of p53, which then induces

transcriptional activation of proapoptotic proteins

such as Bax, Puma and Noxa.16 These proteins

change the permeability of mytochondiral mem-

brane, which results in the release of several

proteins including cytochrome c. Cytochrome c in

cytosol interacts with Apaf-1 and they form a

heptameric complex called apoptosome where

procaspase-9 is activated (Fig. 1).11 In extrinsic

pathway, binding of the trimeric death ligand to

the death receptor induces the oligomerization of

the death receptor which leads to the formation of

DISC where procaspase-8 is recruited and

activated.12-14 Death receptors are a subfamily of

the TNF receptor superfamily, and eight human

death receptors have been identified; Fas (also

known as Apo-1 and CD95), TNF-R1, DR-3 (Apo-

3, TRAMP, WSL-1, LARD), TRAIL-R1 (DR-4),

TRAIL-R2 (DR-5), DR-6, EDA-R and NGF-R.17 All

death receptors have a death domain in their

cytosolic part where the downstream signaling

protein binds. Fas has been the most studied

death receptor to date. Binding of FasL induces

the oligomerization of Fas, and Fas recruits its

downstream cytosolic adaptor protein Fadd,

which in turn recruits procaspase-8.12-14 In addi-

tion to Fas, TRAIL-R1 and -R2 should be men-

tioned as members of special interests because

their common ligand TRAIL was shown to induce

apoptosis selectively in tumor cells but not in

normal cells, highlighting its potential therapeutic

Fig. 1. Apoptosis signaling and
the caspase activation.
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application in cancer treatment.18,19

Protein-protein interactions in the activation of

initiator caspases are mediated by three similar

domains, which are death domain (DD), death-

effecter domain (DED), and caspase-recruiting

domain (CARD). In DISC for caspase-8 activation,

DD in the cytosolic part of Fas interacts with DD

of Fadd, and DED of Fadd in turn with DED of

procaspase-8. In case of caspase-9 activation,

Apaf-1 recruits procaspase-9 through CARD-

CARD interaction. These three domains comprise

the death domain superfamily, and they com-

monly adopt a simple globular fold of the charac-

teristic hexahelical bundle in a Greek key topology.

Even though these three domains are very similar

in structure, their interactions are highly specific

so that they interact only in a homotypic way (i.e.

DD-DD, DED-DED, and CARD-CARD) and there

is no established interaction across members at

least to date.20 These homotypic interactions of

DD, DED and CARD play an essential role in

forming heteromultimeric platforms for the initia-

tor caspase activation, i.e. DISC and apoptosome,

as well as in recruiting the proenzyme of the

initiator caspases to those platforms.

FLIP AS AN INHIBITOR OF RECEPTOR-
MEDIATED APOPTOSIS

Procaspase-8 has two DEDs in the N-terminus

of the catalytic domain, and Fadd has one DED

in the N-terminus. In 1997, other DED-containing

proteins have been identified in several -γ

herpesviruses and the poxvirus MCV.21-23 They

have been collectively called viral FLICE inhibi-

tory proteins (v-FLIP) because they show inhibitory

effects on apoptosis signaling of caspase-8 which

is also called FLICE. Soon after the identification

of v-FLIP, their human cellular homologs

(cellular-FLIP, c-FLIP) were also identified (Fig.

2).24,25 Although 13 distinct splice variants of

c-FLIP mRNA have been described,26 only three

have been detected at the protein level; c-FLIPL,

c-FLIPS, and c-FLIPR.
24-27 The long isoform c-FLIPL

has a domain structure similar to procaspase-8:

two DED’s in N-terminus and caspase-like

domain in C-terminus. However, its caspase-like

domain lacks the catalytic cysteine residue con-

served in caspases and consequently it is catalyti-

cally inactive. All three isoforms of c-FLIP as well

as v-FLIP have been reported to be recruited to

DISC through its tandem DEDs interacting with

DED of Fadd, and FLIP thereby excludes pro-

caspase-8 from DISC. This may be the common

mechanism of various FLIP’s to inhibit the caspase-

8 activation, although MC159 (v-FLIP from MCV)

seems to act in a slightly different way.28

Although c-FLIPL has been described in most

reports as an inhibitor of caspase-8 activation in

DISC, some other studies show that c-FLIPL can

activate the caspase-8.29-33 Recently, it has been

proposed that c-FLIPL can be either antiapoptotic

or proapoptotic depending on its expression

Fig. 2. Various FLIPs and procaspase-8.
Arrows denote the sites cleaved by
caspase-8 or procaspase-8. Shadow
region in the C-terminus of c-FLIPR is
its own unique 11-residue-long sequence
which is not observed in other two
isoforms, c-FLIPL and cFLIPS.
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level,34 although all other FLIP’s have been reported

to be solely anti-apoptotic. At low expression

levels, which are probably found in most cells,

c-FLIPL enhances the caspase-8 activation. At

intermediate expression levels, found in some cell

types such as monocytes/macrophages and certain

tumors, c-FLIPL acts as an inhibitor of caspase-8

activation. At very high non-physiological concen-

trations achieved by transient overexpression,

c-FLIPL is cytotoxic by itself without the need for

stimulation of Fas.34 Despite the dual role of c-FLIPL
in caspase-8 activation, it should be emphasized

that c-FLIPL acts as an antiapoptotic protein to

inhibit caspase-8 activation at least in the range of

physiological expression level in tumor cells.

NONAPOPTOTIC FUNCTIONS OF FLIP

In addition to its activity in apoptosis signaling

pathway, c-FLIPL has been reported to activate

NF- B pathway, especially in lymphocytes.κ 35-39

NF- B activation by c-FLIPκ L requires the cleav-

ages of c-FLIPL at Asp-376 by fully processed

mature caspase-8, i.e. p102-p182 heterotetramer,

and/or at Asp-196 by procaspase-8.37,38 Intere-

stingly, mature caspase-8 and procaspase-8 showed

mutually exclusive proteolytic specificity on two

cleavage sites in c-FLIPL.
38 These cleavages generate

tandem-DED-containing N-terminal fragments of

the molecular weight around 43 kDa and 22 kDa

which are called p43-FLIP and p22-FLIP respec-

tively. It has been shown that p22-FLIP can also

be generated also from c-FLIPS.
38
Both the FLIP

N-terminal fragments activate NF- B signaling viaκ

binding to the components of NF- B signalingκ

pathway; p43-FLIP binds to TRAF237 and p22-

FLIP directly binds to IKK complex.
38

Notably,

caspase-8 has also been reported to be essential

for NF- B activation in T, B and NK cells.κ 40,41

Involvement of c-FLIPL and caspase-8 in NF- Bκ

activation may explain the dual role of c-FLIPL in

caspase-8 activation discussed in the previous

section.42 NF- B activation by c-FLIPκ L and

caspase-8 has been shown to play an important

role in lymphocyte proliferation.
37,38

In addition to

NF- B signaling, c-FLIPκ L has also been shown to

activate Erk signaling pathway by binding to

Raf-1.35,43

FLIP STRUCTURE IN ATOMIC DETAIL

The structure of a viral FLIP, MC159, has

recently been revealed by X-ray crystallography

for the first time as a FLIP structure (Fig. 3A).28,44

It shows that DED1 significantly deviates from the

canonical death fold observed in Fadd DED45 and

Fas DD.46 MC159 DED1 lacks the helix 3, and

there is instead a short loop structure. The crystal

structure also revealed that two DEDs pack tightly

against each other through hydrophobic interac-

tion. The atomic-detail DED-DED interaction

mode observed in MC159, although intramole-

cular, vividly contrasts to the previously reported

intermolecular CARD-CARD interaction between

procaspase-9 and Apaf-1 (Fig. 3A and 3B).47

Firstly, the CARD-CARD interface involves the

helix 2/3 face (Apaf-1) and the helix 1/4 face

(procaspase-9). In MC159 structure, however, the

helix 2/5 face of DED1 meets the helix 1/4 face

of DED2. Secondly, the interactions between two

CARDs are mainly electrostatic. In contrast, the

DED-DED interactions in MC159 are mainly

hydrophobic. Interestingly with regards to the

hydrophobic interface, the conserved hydrophobic

patch in DED1 is buried in the interface, and the

one in only DED2 is exposed. The hydrophobic

patch is conserved in all known DEDs and has

already been shown to be critical for the interac-

tion of Fadd with other DED proteins such as

procaspase-8.45 Other important observation is

that the hydrophobic residues comprising this

intramolecular DED-DED interface are conserved

in other tandem-DED-containing proteins such as

procaspase-8, -10, c-FLIP, and other v-FLIP’s (Fig.

3C). It implies that two DEDs in those proteins

might also pack against each other in the same

way as in MC159. However, it cannot rule out the

possibility that two DEDs, in some circumstances,

might get apart and the hydrophobic patch in

DED1 could be exposed to play a role in the

interaction with their binding partners.

RxDL sequence motif in the beginning of helix

6 is highly conserved among proteins containing

a DED or tandem DEDs.
48
Mutation on the motif

in Fadd DED abolished its self-association which

is essential for its apoptosis signaling activity,49

and this motif is essential also for the antia-

poptotic activity of v-FLIP MC159.50 The crystal
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structure of v-FLIP MC159 revealed that the

arginine residue in the RxDL motif interacts with

two acidic residues; an aspartate in the motif and

a glutamate in helix 2 (Fig. 4). The three charged

residues from helix 2 and 6 are highly conserved

among DED proteins, and the sequence motif

characteristic of DED was rephrased into E/D-

RxDL motif. The triad of these three charged

residues seems to play a structural role to hold the

helix 2 and 6 together in correct positions, and

consequently to help stabilize the entire DED fold.

The functional defect of the mutants on this motif

reported previously is more likely a secondary

effect caused by the structural disturbance. This

idea is supported by recent study on Fadd DED.

Even though Fadd R72A mutant (corresponding

to R in E/D-RxDL motif) shows the same circular

dichroism spectra as the wild type, its NMR peaks

exchange broaden and none of the DED

resonances are visible.
51
It implies that the Fadd

R72A mutant has the same helical content as the

wild type but its structural integrity of DED fold

is disturbed to some extent. Therefore, E/D-RxDL

motif conserved in DEDs must play a structural

role to help maintain the stability of DED fold.

TARGETING FLIP FOR CANCER THERAPY

Elevated expression of c-FLIP has been found in

various types of tumor cells which are often

resistant to death-receptor-mediated apoptosis.

Those tumors include colorectal carcinoma,52-55

gastric carcinoma,56-58 pancreatic carcinoma,59,60

Hodgkin’s lymphoma,61-63 B cell chronic lymphocytic

leukemia,64,65 melanoma,24,66,67 ovarian carcinoma,68-70

cervical carcinoma,71 bladder urothelial carcinoma,72

and prostate carcinoma.
73

The expression of

c-FLIP has been proven to be one of the major

determinants of the resistance to death ligands

such as FasL and TRAIL, and numerous reports

have shown that down-regulation of c-FLIP

results in sensitizing a various types of resistant

tumor cells.52,57,60,62,63,66,69,70,74-76 Conversely, forced

expression of c-FLIP renders cells resistant to Fas

and/or TRAIL. These observations collectively

imply that c-FLIP may be an attractive therapeutic

target against at least the above mentioned kinds

of tumors of which malignancy and resistance

Fig. 4. Conserved E/D-RxDL motif in DED fold.Fig. 3. Structure of v-FLIP and comparison of DED-DED
interface with CARD-CARD interface. (A) Structure of
v-FLIP MC159 and the intramolecular DED-DED
interaction. (B) CARD-CARD interaction observed between
Apaf-1 and procaspase-9. (C) Hydrophobic residues in
DED-DED interface are conserved among the proteins
containing tandem DEDs.

A B

C
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have been shown to be strongly dependent upon

c-FLIP overexpression. In addition, v-FLIP K13 of

human herpesvirus 8 (HHV8, also called Kaposi’s

sarcoma-associated herpesvirus, KSHV) has also

been shown to act as a tumor progression factor

by inhibiting receptor-mediated apoptosis.77

To date, several kinds of small molecules have

been known to lower c-FLIP expression and to

sensitize the resistant tumor cell to death-receptor-

mediated apoptosis.9 They include DNA-damaging

agents (cisplatin and doxorubicin), RNA synthesis

inhibitor (actinomycin D), protein synthesis inhi-

bitor (cycloheximide), topoisomerase I inhibitors

(camptothecin, 9-NC, topotecan), and histone

deacetylase inhibitors (Trichostatin A).9 In addi-

tion, the inhibitors of several kinases (MEK1/ 2,

PKC and PI3K) also lower FLIP expression

through blocking the corresponding signaling

pathways for the transcriptional activation of

FLIP. If it is considered that the above-mentioned

tumors depend upon FLIP overexpression for the

resistance to TRAIL,18,78,79 then the combination of

TRAIL with these agents might be an attractive

therapeutic strategy to kill those tumor cells.

However, it should be noted that the agents

directly targeting FLIP at mRNA or protein levels

has not yet been developed.8

Antiapoptotic proteins overexpressed in tumor

cells have been recognized as attractive targets for

anti-cancer therapeutic intervention. Compounds

targeted to Bcl-2, IAP, and MDM2 at either

mRNA or protein levels have been developed and

are now in the stages of preclinical and early clinical

trials.
6,8,80

Various antisense oligonucleotides are

targeted to their mRNA’s and small molecule

inhibitors are designed to bind those proteins. The

small molecule inhibitors are designed primarily

based on their crystal structure in complex with

their corresponding proapoptotic proteins; Bcl-XL

complexed with Bad,
81

XIAP complexed with

Smac,82,83 and MDM2 complexed with p53.84 In

development of the inhibitors of antiapoptotic

proteins, FLIP seems to be left behind in com-

parison to Bcl-2, IAP and MDM2. It is probably

because FLIP was recognized more recently and

the detailed information on its structure, especially

in complex with Fadd, has not been available.

With regard to FLIP structure, it is notable that

the crystal structure of v-FLIP MC159 has recently

been reported for the first time as an atomic-detail

three-dimensional structure of FLIP.28,44 The

antisense oligonucleotides and small molecule

inhibitors directly targeting FLIP at the levels of

mRNA and protein are expected to be developed

in near future and tested for the potential as a

new class of anti-cancer drugs.
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