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Transcription factors regulate their target genes by binding to regulatory regions in the genome. Although the binding

preferences of TP53 are known, it remains unclear what distinguishes functional enhancers from nonfunctional binding.

In addition, the genome is scattered with recognition sequences that remain unoccupied. Using two complementary tech-

niques of multiplex enhancer-reporter assays, we discovered that functional enhancers could be discriminated from non-

functional binding events by the occurrence of a single TP53 canonical motif. By combining machine learning with a

meta-analysis of TP53 ChIP-seq data sets, we identified a core set of more than 1000 responsive enhancers in the human

genome. This TP53 cistrome is invariably used between cell types and experimental conditions, whereas differences among

experiments can be attributed to indirect nonfunctional binding events. Our data suggest that TP53 enhancers represent a

class of unsophisticated cell-autonomous enhancers containing a single TP53 binding site, distinct from complex develop-

mental enhancers that integrate signals from multiple transcription factors.

[Supplemental material is available for this article.]

Enhancers are essential regulatory elements that are bound by
transcription factors (TFs) to shape the gene expression network
underlying a cellular phenotype. Understanding the enhancer
code is crucial to achieve a functional regulatory annotation of
the human genome, which is ultimately required to understand
developmental processes and disease-related variation in the non-
coding part of the genome. However, the complexity of the en-
hancer logic, their sparse distribution, context-specificity, and
distal location from genes in the genome make it challenging
to identify and validate enhancers. During recent years, high-
throughput sequencing efforts like ENCODE and the Epigeno-
mics Roadmap have yielded an enormous wealth of regulatory
data (Gerstein et al. 2012; Roadmap Epigenomics Consortium
et al. 2015). Some of the most commonly used approaches are
chromatin immunoprecipitation (ChIP-seq) to localize regions
bound by a certain TF or a modified histone, and various assays
aimed at localizing accessible and free regions within the genome
(e.g., DNase I hypersensitive sites sequencing [DNase-seq] or Assay
for Transposase-Accessible Chromatin using sequencing [ATAC-
seq]). Although these methods generate genome-wide regulatory
profiles and chromatin states (Ernst et al. 2011), they have not
led to sequence-based enhancer models and usually contain
high levels of nonfunctional noise.

A key feature of TF binding is the presence of the TF’s DNA
recognition sequence. Interestingly, sequence analysis on ChIP-
seq data in yeast showed that not all identified peaks are directly
bound by their TFs (Gordân et al. 2009). Similarly, among the
hundreds of TF ChIP-seq data of ENCODE, only a fraction of peaks
were found to contain the canonical recognition sequence of their

respective TF (Wang et al. 2012). Although a considerable amount
of ChIP-seq peaks seem to be independent of the TF motif, it is
not clear whether this indirect binding plays a functional role,
i.e., whether it is involved in the regulation of a target gene. In
Drosophila, it has been suggested that indirect binding could be
functional and contribute to gene regulation via transcription fac-
tor cooperative activity, i.e., the tethering of a TF to an enhancer
by other, directly bound factors (Junion et al. 2012). On the other
hand, indirect binding could also reflect a technical aspect of ChIP
and represent for instance fixation artifacts (Waldminghaus and
Skarstad 2010; Keren and Segal 2013; Baranello et al. 2015).

Using the motif of the bound factor may be a good guide to
identify functional binding, but for most (if not all) TFs, tens of
thousands of recognition sequences, present throughout the ge-
nome, remain unoccupied or unbound. The current paradigm of
how transcription factors discriminate between functional and
nonfunctional locations is based on the combinatorial action of
transcription factors. Here, binding specificity is achieved through
clusters of bindingmotifs co-occurringwithin an enhancer (Panne
2008; Maston et al. 2012; Lee and Young 2013; Shlyueva et al.
2014; Stampfel et al. 2015) or by generating new recognition
sequences for pairs of TFs (Jolma et al. 2015). Such enhancers are
generally classified under the enhanceosome or billboard models,
depending on whether or not the order and spacing of motifs is
important (Arnosti and Kulkarni 2005). Other local features in
the DNA sequence of an enhancer have also been shown to con-
tribute to the discrimination of bound versus unbound sites,
such as GC content (White et al. 2013), preferential sequences
for nucleosome positioning (Lidor Nili et al. 2010), DNA shape fea-
tures (Chiu et al. 2015), and dinucleotide repeat motifs (Yáñez-
Cuna et al. 2014). However, to gain further insight into the cis-
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regulatory enhancer code and identify those sites that are truly
bound and functional, validation assays are needed.

The recent development of multiplex enhancer-reporter as-
says has been invaluable in procuring such information on a large
scale. Whereas classically enhancer-reporter assays consist of clon-
ing each enhancer one by one, first in vitro, later in vivo (Banerji
et al. 1981; O’Kane and Gehring 1987; Chiocchetti et al. 1997;
Dailey 2015), now hundreds to thousands of enhancers can
be tested in parallel (Patwardhan et al. 2009, 2012; Kwasnieski
et al. 2012; Melnikov et al. 2012; Arnold et al. 2013; Kheradpour
et al. 2013; Smith et al. 2013; White et al. 2013; Vanhille et al.
2015). These methods can be broadly categorized in two groups,
namely, massively parallel reporter assays (MPRA) utilizing bar-
codes as a measure of activity of synthesized enhancer fragments
(Patwardhan et al. 2009, 2012; Kwasnieski et al. 2012; Melnikov
et al. 2012; Kheradpour et al. 2013; Smith et al. 2013; White
et al. 2013) and self-transcribing active regulatory region sequenc-
ing (STARR-seq) (Arnold et al. 2013; Vanhille et al. 2015).

In this work, we unravel the genome-wide binding profile
of TP53 (protein product of TP53, also known as p53), addressing
these two questions simultaneously by investigating (1) the differ-
ences between direct and indirect binding; and (2) the differences
between bound and unbound recognition sequences in the ge-
nome. TP53 is a tumor-suppressor that regulates its target genes
in response to different stimuli like DNA damage or cellular stress,
eliciting functions like growth arrest or apoptosis (Vousden and
Prives 2009). Its importance is moreover reflected by the fact
that TP53 is the most commonly mutated gene found in cancer
(Muller and Vousden 2014). Although much research has gone
in understanding how and where TP53 interacts with DNA,
many questions and contradictions remain. For instance, it is
unclear what the functional role is of indirect binding of TP53 to
the DNA (Kirschner et al. 2015), whether TP53 also directly re-
presses genes (Johnson et al. 2001; Ho and Benchimol 2003;
Rinn and Huarte 2011), and how TP53 elicits different responses
like apoptosis and growth arrest, activating different genes for
each process (Smeenk et al. 2008; Menendez et al. 2013). Several
elements of the TP53 binding site architecture have been proposed
to contribute to the functional properties of the enhancer. These
include variations of the spacer between two TP53 half-sites
(Hoffman et al. 2002; Godar et al. 2008), or variations in binding
sites for coregulatory factors (Koutsodontis et al. 2001; Thornbor-
row andManfredi 2001). However, these properties have not been
evaluated on a global scale. To resolve these uncertainties and to
generate a global TP53 enhancer model, we have combined two
types of multiplex enhancer-reporter assays followed by machine
learning. Our results yield a new unsophisticated model for
TP53-mediated transcriptional regulation and allow us to create a
ranked list of all potentially functional TP53 binding sites in the
human genome.

Results

Quantitative enhancer-reporter activity for hundreds

of enhancers in parallel

We developed a new method, called Captured High-throughput
Enhancer testing by Quantitative sequencing (CHEQ-seq), to test
enhancer-reporter activities for hundreds of enhancers simultane-
ously (Fig. 1A). Although conceptually CHEQ-seq is similar to the
recently published capture-and-clone variant of CRE-seq (Kwas-
nieski et al. 2012; Shen et al. 2015), CHEQ-seq uses a different

cloning and sequencing strategy (Supplemental Protocol). First,
candidate enhancers from sheared genomic DNA are captured us-
ing custom designed baits (Fig. 1A; Supplemental Fig. S1A). These
enriched DNA fragments, averaging 500 base pairs, are then
cloned upstream of a fluorescent protein reporter preceded
by a minimal promoter and a synthetic intron (Arnold et al.
2013) and followed by a 17 base pair random barcode allowing
for 17 × 109 possible barcodes (Methods). Using CHEQ-seq, we
tested the enhancer activity of 1526 TP53ChIP-seq peaks obtained
in MCF7 breast cancer cells treated with Nutlin-3a (Janky et al.
2014). Additionally, 94 promoters of housekeeping genes (HKG)
were selected as control regions, assuming that they drive stable
reporter gene expression independent of any perturbation (Eisen-
berg and Levanon 2013). Also, 66 negative control regions in
the genome were selected (Methods; Yip et al. 2012). Unique to
CHEQ-seq is long-read sequencing of the entire library to resolve
the randomly formed enhancer-barcode pairs, which after pro-
cessing and removing redundancy, yielded 20,751 distinct geno-
mic fragments linked to 24,906 different barcodes (Methods;
Supplemental Figs. S1B, S2).

To test which candidate enhancers are TP53-responsive, we
transfected the enhancer-reporter library into MCF7 cells treated
with Nutlin-3a, activating TP53 (p53-high) or containing a stable
shRNA knockdown for TP53 (p53-off) (Supplemental Fig. S1A;
Phillips et al. 2010). Reporter activity levels were determined by
counting sequencing reads of barcoded cDNAs and were normal-
ized both by the input library and by the re-extracted plasmid
DNA (Methods; Supplemental Fig. S3). Of all the barcodes linked
to a genomic fragment, we couldmeasure 21,182 distinct barcodes
representing 18,399 unique genomic fragments, of which 22.8%
overlapped with the designed regions (81,428-fold enrichment)
(Supplemental Table S1; Supplemental Fig. S1C).

We performed several quality control steps to assess whether
the barcode expression represents accurate enhancer-reporter lev-
els. First, independent biological replicates show a very high corre-
lation among barcodes within the p53-high condition (r2 = 0.99).
The correlation of the p53-off condition is much lower, as expect-
ed, since the majority of enhancers are inactive in the p53-off
condition (r2 = 0.56). The induced activity, measured as the fold-
change between p53-high and p53-off, also correlates between
the two biological replicates (r2 = 0.72) (Supplemental Fig. S4).
Second, the expression levels of two different barcodes linked to
the same enhancer region showed strong correlation of the fold-
changes between p53-high and p53-off (r2 = 0.73). Third, different
regions that overlap with the same designed region also show
strong correlation (r2 = 0.72) (Supplemental Fig. S5). Finally, the
CHEQ-seq enhancer-reporter differential expression values are re-
capitulated when performing classical enhancer-luciferase assays
(Supplemental Fig. S1B–F). These validation experiments confirm
that the expressionsmeasured by CHEQ-seq are reliable and repro-
ducible. Overall, CHEQ-seq allows cloning of hundreds of pre-
defined enhancers into a complex barcoded library and generates
reliable and reproducible reporter expression representing the
functionality of a subset of these enhancers.

Only 40% of TP53 ChIP-seq peaks are functional enhancers

Having established CHEQ-seq as an accurate multiplex enhancer-
reporter assay, we turned to all the tested regions covering TP53
ChIP-seq peaks. Of the 1526 targeted peaks, 1010 (66%) were
represented by at least one captured sequence and nonambiguous
barcode. An additional 49 peaks were covered by randomly
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captured sequences. Of the 859 peaks that were covered sufficient-
ly (Supplemental Fig. S2A; Supplemental Figs. S6, S7, 60% over-
lap), only 350 (40.7%) are significantly higher in p53-high
compared to p53-off conditions (called “positives,” adj. P-value
<0.05 and log2FC≥ 1.5) (Methods). Interestingly, TP53 does
not seem to directly repress enhancers since only 10 peaks show
significant down-regulation upon TP53 activation (down, adj.
P-value <0.05 and log2FC≤−1.5). Of the remaining ChIP-seq
peaks, 337 are TP53-unresponsive (negatives), whereas another
162 show borderline expression patterns (grayzone) (Fig. 2A;
Supplemental Table S2). Note that within the promoters of
HKG, negative regions, or nonspecifically captured regions, almost
no TP53 inducible enhancers are found (0.95%, of HKG and neg-
ative controls and 1.6% of nonspecific regions) (Supplemental
Figs. S6, S8).

Next, we compared the barcode reporter activity levels mea-
sured by CHEQ-seq to the existing multiplex enhancer-reporter
method STARR-seq (Arnold et al. 2013), using the same captured
fragments and the same transfection conditions (Supplemental
Figs. S9, S10; Supplemental Table S3). The main difference in
STARR-seq is that the tested regions are inserted at the 3′ of the
transcription start site, causing the enhancers to transcribe them-
selves rather than relying on barcodes. STARR-seq yields repro-
ducible expression values for 975 peaks, of which 242 peaks are
TP53 responsive, 463 peaks are nonresponsive, and 216 peaks
are grayzone (Supplemental Fig. S11; Supplemental Table S4).
The slightly smaller number of TP53 responsive elements com-

pared to CHEQ-seq may possibly be due to differences in location
of the enhancer regions within the reporter construct. STARR-seq
also confirms that only very few ChIP-peaks (45 peaks) are re-
pressed, and that the control groups do not show TP53-dependent
changes (Supplemental Fig. S12). In total, 600ChIP-seq peaks have
reporter activity data from both the CHEQ-seq and STARR-seq
method. When looking at the subsets created independently for
each method, we see a highly significant overlap, with 190 of
231 CHEQ-seq positives being labeled as positives or grayzone in
STARR-seq (82.3%, χ2 P-value = 1.24 × 10−26) (Fig. 2B,C).
Interestingly, the small number of down-regulated ChIP-seq peaks
identified by either method was not validated by the other meth-
od, suggesting that these weremainly false positives and that TP53
exclusively activates gene expression. In conclusion,multiplex en-
hancer-reporter assays provide reproducible sets of direct TP53 en-
hancers and reveal that a relatively small subset of ChIP-seq peaks
act as enhancers.

Unsophisticated TP53 enhancer logic

Using CHEQ-seq, we discriminated true positive TP53 target en-
hancers from unresponsive yet TP53-bound regions. As these re-
gions are all tested in the same episomal reporter environment,
the enhancer-determining information should be containedwith-
in the DNA sequence. To compare the sequences between both
sets, we used three motif discovery tools, namely i-cisTarget
(Imrichová et al. 2015), RSAT peak motifs (Thomas-Chollier et al.

Figure 1. Overview of the CHEQ-seq reporter assay. (A) (I) Genomic DNA is sheared and custombaits are used to capture the regions of interest (ROI). (II)
Captured ROIs are cloned into a reporter library consisting of a GFP-based reporter linked to a pool of 17 × 109 barcodes. (III) The reporter library is trans-
fected under various conditions, after which the RNA of transcribed barcodes is extracted. (IV) Randomly coupled ROI-barcode couples are identified using
PacBio sequencing, and barcode expression is measured using Illumina short-read sequencing. (B–E) Four TP53 ChIP-seq peaks comparing the CHEQ-seq
barcode level with luciferase activity of a manually cloned fragment. (F) CHEQ-seq and luciferase induction only agree when they both overlap with the
ChIP-seq peak summit.
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2011), and HOMER (Heinz et al. 2010), allowing for de novomotif
discovery as well as enrichment of knownmotifs, using libraries of
position weight matrices (PWM). All tools identified the TP53mo-
tif asmost overrepresented in the TP53-responsive sequences, with
highly significant P-values (HOMER P-values ≤10−322, RSAT signi-
ficance value = 72.30, i-cisTarget NES > 28). Note that although
some other motifs were found marginally overrepresented, these
findings were not consistent across tools, were enriched at much
lower P-values, and occurred in a limited number of the positive re-
gions (maximally 25%) (Supplemental Fig. S13–S15). This suggests
that TP53mainly functions alone, without other regulatory factors
cobinding at the DNA level. This is surprising as one of the
proposed mechanisms for TP53 target specificity is through the

recruitment of coregulatory transcription factors (Koutsodontis
et al. 2001; Thornborrow and Manfredi 2001).

Previous reports indicate that small differences in the motif
composition can influence binding affinity and determine target
specificity (Inga et al. 2002; Wei et al. 2006; Godar et al. 2008;
Smeenk et al. 2008). We therefore tested whether individual
motifs, differing slightly from one another, perform differently
in identifying true targets. We selected the 10 best TP53 motifs
based on their significance and low occurrence in the negative
set. These 10motifs differ in length and composition, but all retain
the essential double C/G core of the TP53 binding site (Fig. 3A).
When plotting themaximum score of eachmotif for both the pos-
itive and negative sets, the TP53 motif strongly distinguishes the

Figure 2. CHEQ-seq identifies TP53 responsive enhancers. (A) MAplot showing the distribution of CHEQ-seq barcode expression levels versus the
fold induction, showing a large number of activation (green), and almost no repression (red). Negatives and grayzone are defined by thresholds on
fold-change and significance (Methods). (B) CHEQ-seq positives are mostly positive or grayzone in STARR-seq (first bar), whereas down-regulated regions
could not be confirmed by STARR-seq (second bar): (∗) P-value <0.001 as determined by χ2. (C ) Positives fromCHEQ-seq are also mostly (91%) positives in
STARR-seq.
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sets with amarked absence of motifs among the nonresponsive re-
gions (Fig. 3B). Only 45 of 687 peaks were misclassified by CHEQ-
seq, likely representing technical limitations of the experimental
method itself. Indeed, the CHEQ-seq negatives that do have a
TP53 motif are often identified as positive in STARR-seq (four
of the six). Vice versa, CHEQ-seq positives without TP53 bind-
ing site are often not identified as positive by STARR-seq (only
six of the 17). Note that almost no down-regulated enhancers
identified by CHEQ-seq score for a TP53 motif (Supplemental
Fig. S16).

The classification performance of these motifs, and com-
binations thereof, can be assessed using a Receiver Operating

Characteristic (ROC) (Fig. 3C–E). Overall the performance for the
different motifs is very comparable, with multiple motifs yielding
an area under the ROC curve (AUC) above 0.95. A twofold cross
validation at the level of feature selection (i.e., de novo motifs)
ensured that these models are not overfitted (Methods; Supple-
mental Fig. S17). Interestingly, accurate TP53 binding site predic-
tion requires the full PWM of the TP53 tetramer, as one half-site
alone has a poor predictive performance (AUC = 0.81). In addition,
and contrary to previous reports (Tokino et al. 1994; Cook et al.
1995; Riley et al. 2008), all TP53 motifs, both de novo and
known, have no gap between the two half sites. As each of the in-
dividual motifs has a slightly different nucleotide composition

Figure 3. TP53 enhancermodel. (A) Tenmotifs were selected frommotif discovery tools i-cisTarget, HOMER, and RSAT peakmotif. (B) Heatmap showing
the best Cluster-Buster score for each peak of the nonresponsive (negatives) and TP53-responsive (positives) subset. Discordance between PWM scores and
CHEQ-seq are indicated with a yellow box. (C–E) Classification accuracy for each PWM shown as ROC curves. (F) Comparison of a single maximum score
(red) versus a homotypic cluster of motifs (black dashed). (G) All positive regions with 1-kb flanking sequence centered on the best scoringmotif illustrating
the absence of binding site clusters. (H,I) TP53 enhancers are binary on/off enhancers as shown by the lack of correlation between the motif score and
barcode expression (H), as well as the lack of correlation between the peak score and the barcode expression (I).
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flanking the C/G quadruple, we wondered whether scoring with a
combination of all motifs would improve the predictive power
(Fig. 3F). Surprisingly this was not the case as the combination of
all motifs had the same predictive power as the best-scoring motif
(AUC = 0.98). This suggests that the nucleotide composition of the
TP53motif can be largely captured by a single optimal PWM.Next,
we tested whether homotypic clusters of TP53 sites were charac-
teristic for TP53 responsiveness. Although previously suggested
(Bourdon et al. 1997), our data suggest that a single TP53 site is suf-
ficient to distinguish TP53-responsive from nonresponsive en-
hancers (Fig. 3F,G). Although the presence of a TP53 binding site
is predictive of enhancer activity, the strength of the binding site
is not indicative of the quantitative levels of reporter, suggesting
a binary on/off state of a TP53 enhancer (Fig. 3H). This is further
confirmed by comparing the quantitative enhancer-reporter levels
with the height of the ChIP-seq peak score, which also does not
correlate beyond the on/off categories (Fig. 3I; Supplemental
Figs. S16, S18). In conclusion, TP53 enhancers are unsophisticated
in their architecturewith the presence of a single TP53 binding site
containing a double C/G core that is both necessary and sufficient
to actively drive expression in a binary fashion.

Indirect ChIP-seq peaks have no regulatory function

The ChIP-seq peaks that were not directly bound by TP53 through
a TP53 binding site showed no increased enhancer-reporter activ-
ity or any basal level of enhancer activity in the reporter assay
(Fig. 4A). To test whether indirect peaks may have another regu-
latory function, we first predicted which ChIP-seq peaks within
the full set of 3634 TP53 ChIP-seq peaks (Janky et al. 2014) are
likely directly bound based on the presence of a TP53 motif. To
this end, we used a random forest model trained on the CHEQ-
seq positive set, with the nine TP53 PWMs identified above
(Supplemental Fig. S19). This classifier predicted 671 direct and
2963 indirect peaks. To investigate whether the indirect peaks
could work as enhancers in their endogenous genomic context,
we performed ChIP-seq against H3K27ac under the same condi-
tions. These data confirm that only the directly bound peaks are
enhancers with H3K27ac marks (Fig. 4B). This figure also shows
that the direct peaks are overall higher and wider than the
indirect peaks, although the distributions overlap with each other
(Fig. 4B; Supplemental Fig. S20). Additionally, although the
directly bound regions show increased chromatin accessibility
upon TP53 activation, this is not the case for indirectly bound re-
gions (DNase-seq data under similar conditions) (Supplemental
Fig. S21; The ENCODE Project Consortium 2012; Thurman et al.
2012). Furthermore, whereas the direct peaks are located near
TP53 target genes, as determined by gene annotation or by up-reg-
ulated gene expression, the indirect peaks are not enriched near
putative target genes and are often found to overlap coding exons
(Fig. 4C; Supplemental Figs. S22, S23; Supplemental Tables S5, S6).
Finally, direct peaks significantly overlap with long terminal
repeats (LTRs); indirect peaks do not (Supplemental Fig. S24).

None of the above tested features suggest that the negative
indirect peaks have a regulatory function. We therefore consid-
ered the possibility that they could represent crosslinking artifacts
(Waldminghaus and Skarstad 2010; Keren and Segal 2013;
Baranello et al. 2015). If so, then these artifacts should not be re-
producible across different experimental conditions. To test this,
we turned to other publicly available data sets and collected 15
different TP53 ChIP-seq experiments performed in seven different
cell lines under different TP53-stimulating conditions (Supple-

mental Table S7; Smeenk et al. 2011; Nikulenkov et al. 2012;
Zeron-Medina et al. 2013; Botcheva and McCorkle 2014; McDade
et al. 2014; Sánchez et al. 2014; Desantis et al. 2015; Hünten et al.
2015; Sammons et al. 2015). After calling peaks for each experi-
ment, we categorized all peaks in each data set as direct or indirect
using the random forest model. Whereas the total number of
peaks differs greatly between data sets, this difference can bemain-
ly attributed to differences in the number of indirect peaks (Fig.
4D). Remarkably, in contrast to the direct peaks that are strongly
conserved between experiments, the indirect peaks are largely
unique to each data set (Supplemental Figs. S4E, S25), strongly
suggesting a nonfunctional role. In conclusion, the presence of
an unsophisticated TP53 bindingmodel is predictive of functional
enhancers among ChIP peaks, whereas remaining peaks have
no obvious regulatory function and may represent crosslinking
artifacts.

Genome-wide TP53 responsive enhancers are invariably

used across cell types

Unsophisticated enhancer logic, with only a single high-scoring
TP53 binding site being necessary and sufficient for a TP53 respon-
sive enhancer, would predict invariable genomic binding across
different cell types and experimental conditions. This simple
model would thus contradict previous reports that proposed a
direct role for TP53 binding sites and enhancers in differentially
regulating cell-type–dependent activation of its targets. To address
this, we decided to test our simple model on a genomic scale and
across cell types and treatment conditions. We first applied our
previously trained random forest model on the entire human ge-
nome and predicted 21,659 potential TP53 responsive enhancers.
We then plotted the ChIP-seq signal across all publicly available
data sets for all these binding sites. After testing several different
clustering parameters, we found that the average coverage across
binding sites within each generated cluster always converged
onto three robust clusters (Methods; Supplemental Fig. S26).
A first cluster (strongly bound) with 1148 sites is preferentially
bound by TP53 across all data sets. A second cluster (weakly
bound), with 3147 sites is also shared across data sets, but with sig-
nificantly lower binding signal. Finally, a third cluster with the re-
maining 17,364 sites shows no binding across the data sets (Fig. 5).
This finding suggests that TP53 binds only a limited number of
sites throughout the genome; importantly, in contrast to earlier re-
ports, these sites are highly conserved across different experimen-
tal conditions and cell types (Supplemental Fig. S27).

Sequence context and DNA shape of TP53 responsive

enhancers are different but not predictive

To explain why TP53 preferentially binds to only a small subset
(19.8%) of all the genome-wide predicted binding sites and to im-
prove our predictivemodel, we investigated several local character-
istics of the enhancer itself, including the sequence constraint
across species, the strength of the TP53 motif, dinucleotide com-
position, and the DNA shape flanking the motif. Additionally,
we investigated several characteristics of the genomic locus outside
the enhancers, such as the presence of a nearby TATA or CpG pro-
moter. Including these properties outside the enhancer is inspired
by the possibility that binding of TP53 could perhaps be stabilized
when it results in an effective target gene regulation, resulting in
longer and thus higher frequency binding across cells in culture.
In support of the three clusters (strong, weak, and unbound), we
found that sequence constraint across vertebrate genomes is much
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higher for the strongly bound sites than for the weakly and un-
bound sites, corroborating their functional role (Fig. 6A). Note
that we decided not to incorporate this feature into our predictive
model because it is not a primary feature of the genome. We com-
pared all other features, both local and global, by including them
one by one and in combinations, as features into our random
forest classifier. Surprisingly, only the TP53 PWMs contributed sig-
nificantly to the performance. In other words, the TP53 motif

not only allows distinguishing direct from indirect ChIP-seq
peaks (see above), but it also further discriminates strongly bound
sites from unbound sites in the genome (AUC = 0.87) (Fig. 6B, blue
curve). When investigating the feature importance in the random
forest model, we found the TRANSFAC motifs M01655 and
M01656 to have the highest weights (Supplemental Fig. S28).
The poor predictive performance of the other sequence features
is surprising because on average many of these features show

Figure 4. Only directly bound peaks behave as enhancers. (A) The average base mean expression values indicate that the direct and indirect peaks show
significantly different reporter activity levels (P-value = 3.28 × 10−51). (B) Comparison of TP53 ChIP-seq signal and H3K27ac ChIP-seq signal between pos-
itives and negatives. Peaks are extended to 2000 bp each side. Heatmaps show the raw tag count coverage per peak. (C) The average differential expression
of genes near (<20 kb) peaks: (∗) P-value 4.73 × 10−8. (D) Comparison of the proportion of direct versus indirect ChIP-seq peaks across 15 publicly available
TP53 ChIP-seq data sets. Experiments are ordered along the x-axis based on total number of peaks called. (E) Directly bound peaks agree, but indirectly
bound do not, between in-house ChIP-seq peaks and other data sets. The percentage overlap is compared to the in-house peaks.
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distinct patterns between the strongly bound and unbound sites.
For example, functional TP53 sites show a drop in the occurrence
of A/T dinucleotide sequences (TT, AA, TA, and AT), ∼100 bp on
each side of the binding site (Fig. 6C,D). Second, the strongly
bound sites differ from unbound sites in DNA shape properties
such as propeller twist, helical twist, and GC content, again
∼100 bp each side of the binding site (Fig. 6E–G). Note that the
weakly bound sites have an intermediate profile, having values
for these features halfway between the strong and unbound site.
This suggests that this cluster should indeed be considered as a
separate group within the TP53 binding sites. To test whether ad-
ditional unknown sequence features could play a role in determin-
ing strongly bound TP53 enhancers, we also trained a deep
learning model directly on the bound versus unbound sequences,
which automatically learns discriminative features (Methods). The
classification performance is comparable to the random forest
model using TP53 PWMs, which suggests that no additional fea-
tures could be identified (Fig. 6B, yellow curve). In conclusion, a
key role is played by the TP53 motif in defining functional bind-
ing, whereas other features contribute onlymarginally to the bind-
ing specificity.

Strength of binding site predicts quantitative TP53 binding

Although the strongly bound and unbound clusters are clearly
separated in their ability to bind TP53, the weakly bound sites
exhibit intermediary characteristics. To avoid the arbitrary cutoffs
of the clustering, we instead ranked all the 21,659 sites using the
ChIP-seq coverage across each experiment, followed by a rank
aggregation step yielding a final meta-ranking (Methods). This
meta-ranking strongly recapitulates the three clusters from above
(Fig. 7). Interestingly, the ChIP-seq signals are quantitatively com-
parable between different experiments. Furthermore, decreasing
ChIP-seq signals are strongly correlated with decreasing probabili-
ty of TP53 binding both by the random forest and the deep

learning models (Fig. 7A, black and purple curves). The ranked
list is also correlated with the functionality, as shown by corre-
lating H3K27ac signal, DNase-seq, and GRO-seq data. This
observation provides additional confirmation that the regions
are ranked in decreasing functionality (Fig. 7A). Note that many
of the weakly bound sites also show increased chromatin accessi-
bility, which is expected when TP53 binds and displaces nucleo-
somes, but they have significantly less H3K27ac and GRO-seq
marks (Sammons et al. 2015; Su et al. 2015). This functional dif-
ference is furthermore corroborated by the fact that genes located
near highly ranked sites are located near TP53-related genes,
whereas lower ranked sites shownoGeneOntologyor pathway en-
richment for TP53-related processes (Supplemental Tables S8, S9).
Nevertheless, weakly bound sites can function as enhancers,
since 49% of weakly bound sites are positive in the CHEQ-seq or
STARR-seq assay, compared to nearly 80% of the strong sites driv-
ing gene expression in the context of a reporter assay (Fig. 7C;
Supplemental Figs. S29, S30). Taken together, these results suggest
that functionality is predictable by the sequence and decreases
gradually by the strength of the TP53 binding site.

Discussion

The functional annotation of all regulatory elements in the non-
coding part of the human genome is a key challenge in genome
biology. Although biochemical events such as protein binding
to the DNA occur very frequently, and such events cover >80%
of the genome (The ENCODE Project Consortium 2012), only a
fraction of these binding events is expected to be functional
(Carvunis et al. 2015). In the context of the presented work, we
consider a genomic region to be functional if it contributes in a
deterministic and observable fashion to the regulation of gene ex-
pression. In our study, we found that among the 95,077 observed
binding events for TP53, across sixteen data sets covering diverse
cell types and conditions, and among the more than 20,000

Figure 5. TP53 binding is conserved across data sets. Fifteen public data sets containing ChIP-seq against TP53 under various conditions were collected
and remapped (Supplemental Table S7). Throughout the genome, 21,649 predicted TP53 binding sites are clustered based on their coverage across all
data sets and can be subdivided into shared strong (green), shared weak (yellow), and shared unbound (red) regions. On the bottom, individual aggre-
gation plots show the coverage for each cluster per sample.
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possible TP53 recognition sites in the genome, only a small frac-
tion are bona fide TP53 responsive enhancers. Rather than decid-
ing on a cutoff, we generated a ranking of all candidate sites based
on the combination of the aggregated binding data and found
that this meta-ranking correlates strongly with the strength of
the TP53 binding site. This correlation can already be observed
with a high-quality position weight matrix (PWM), but is even
stronger for a trained classifier based on multiple PWMs or a
deep learning model trained directly on strongly bound enhancer
sequences. We provide a hub at the UCSC Genome Browser, con-
taining genome-wide binding across experiments and the scores

for the model predictions (Methods). This TP53 hub can serve as
a reference for TP53-related future studies. Indeed, we argue that
the observed consistency of direct TP53 binding across experimen-
tal conditions is so high that our ranking can be a good guide for
the putative functionality of a given TP53 site, regardless of the ex-
perimental conditions. Note that the models presented here are
derived from data sets after inducing TP53 in cell culture, both
in cancer and normal cell lines. The question whether this unso-
phisticated enhancermodel for TP53 also applies to other TP53-re-
lated functions, for example during in vivo development, remains
to be investigated.

Figure 6. DNA features of TP53 responsive enhancers. (A) Sequence constraint (phastCons) of the DNA sequence around the predicted TP53 binding
sites for the three classes (strongly bound, weakly bound, unbound): (inset) zoom in of the TP53 binding sites shows the highest conservation around the
core C and G nucleotides. (B) Different features and different machine learning methods were tested individually and in combination for their ability to
discriminate strongly bound from unbound binding sites. (C,D) Dinucleotide composition of the 800-bp sequence around the binding sites. Bound se-
quences (C) show depletion of TT and AA (blue lines) and AT and TA (gray-black lines) at 100 bp flanking the binding site compared to unbound sequences
(D). (E–G) DNA shape features within 700 bp sequences around the predicted binding sites. Gray region ∼100 bp away from the binding site shows the
strongest differences between bound and unbound sites.
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Only a small, yet predictable, subset of experimentally deter-
mined binding events represents TP53 responsive elements. The
other binding events (up to >90%, depending on the data set)
(Fig. 4D,E) are presumably the result of cross-linking artifacts or
other technical aspects of the ChIP method or its analysis.
Similar observations have been made before, in which binding
of a transcription factor to the DNA can occur either due to the
presence of its motif, when the binding is functional, or indepen-
dently of themotif, when the binding is not functional. For exam-
ple, Kvon et al. (2012) found that Twist is often bound to HOT
regions in Drosophila, but only the binding in the mesoderm at

the right time point, when Twist is actually expressed, correspond-
ed to motif-dependent direct binding sites.

In this study, we have learned several new things about TP53.
First, our data support the most commonmodel for TP53 binding,
namely that TP53 binds the DNA strictly as a tetramer, to a
duplicate of the consensus palindromic responsive element
RRRCWWGYYY (R = purine; W = adenine/thymine; Y = pyrimi-
dine), separated by a spacer of length N = 0, and not to single
half-sites.Whereas previous reports argued that the sequence com-
position of the TP53 binding site may play a role in explaining
context-dependent activation (Szak et al. 2001; Weinberg et al.

Figure 7. Quantitative prediction of functional TP53 sites. (A) Heatmap showing the TP53 ChIP-seq coverage across all 16 data sets for the approximately
21,000 predicted sites, after rank aggregation, alongside H3K27ac, DNase-seq, andGRO-seq status in untreated and TP53-stabilizing conditions. The color
gradient on the left indicates the original clusters from Figure 5. Smoothed scores on the right showgradual declinewith themeta-ranking: (DL) deep learn-
ing; (RF) random forest; (PWM score) position weight matrix score. (B) For each binding site within the clusters, the closest gene within 20 kb was assigned
and the average differential expression was calculated using RNA-seq data. Only strongly bound sites associatewith genes that are up-regulated upon TP53
stimulation compared to random control: (∗) P-value = 2.45 × 10−10. (C ) CHEQ-seq barcode reporter increase is also correlated with the level of binding, as
compared to random regions as control: (∗) P-value = 9.83 × 10−49; (∗∗) P-value = 4.06 × 10−27; (∗∗∗) P-value = 3.55 × 10−5.
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2005; Beckerman and Prives 2010), our results are consistent with
other studies that reject this hypothesis (Wei et al. 2006; Smeenk
et al. 2008). Another clear result from our experiments is that
TP53 can only directly activate enhancers and in contrast to previ-
ous reports (Hoffman et al. 2002; Godar et al. 2008), we find no ev-
idence of direct repression. Another intriguing finding is that TP53
seems to bind to chromatin independently of preexisting nucleo-
some accessibility. For this, we confirm earlier studies (Lidor Nili
et al. 2010; Cui et al. 2011; Su et al. 2015). This finding supports
the clutch-like model, whereby transcription factors are able to
displace nucleosomes, and are in competition with nucleosome
binding. Finally, we find that TP53mostly acts alone as a TF bound
to its target enhancers, although previous studies had suggested
cofactorship at the DNA level (Koutsodontis et al. 2001; Thornbor-
row and Manfredi 2001). Note that non-sequence-specific cofac-
tors (e.g., EP300) are likely to interact with TP53 at the protein
level, independent of the DNA sequence, to recruit RNA polymer-
ase and activate target gene transcription.

Enhancer sequences have recently been shown to share char-
acteristic features beyond transcription factor binding sites, such
as a particular distribution of Cs, Gs, and CpGs (Kwasnieski et al.
2012) or the presence of dinucleotide repeat motifs, such as CA,
GA, or CG (Yáñez-Cuna et al. 2014). The flanking nucleotides
of our TP53 responsive elements also show an intriguing bias
in nucleotide composition, which likely represents preferential
nucleosome binding positions. Although these patterns are clearly
visible at the global level, these features do not have predictive
power.

Among the approximately 21,000 potential TP53 binding
sites, we find about 1000 regions that are strongly bound and rep-
resent bona fide responsive elements, regulating target gene ex-
pression, as effectors of the TP53 response. In addition, another
subset of around 3000 sites show weak TP53 binding. This set is
much less related to enhancer activity, gene expression, or nearby
gene function. On the other hand, the recognition sites are more
conserved in evolution, and they have stronger PWM matches
than the unbound. It is intriguing to speculate what the function
of these sites could be. One possibility is that these sites could be
preferentially bound when there is an excess of TP53 protein.
Indeed, from a statistical point of view, given that TFs need
“time” to find their functional binding sites, a cell needs to pro-
duce an excess of functional transcription factors to ensure
that the entire functional cistrome remains occupied. Thus, at all
times, a fraction of molecules is undergoing fast binding turnover
at nonfunctional sites (also called treadmilling) (Lickwar et al.
2012), in which they become fixated during the ChIP protocol.
Interestingly, we find a quantitative relationship between pro-
longed residence and the strength of the TP53 binding site, rather
than other additional sequence features. This idea adheres to the
recently proposed clutch-like model of transcription factor bind-
ing (Lickwar et al. 2012).

Achieving high-confidence predictions at the genome-wide
scale requires machine learning classifiers that are trained on large
sets of positive and negative enhancer sequences. We, and others
before us, have shown that massively parallel enhancer-reporter
assays can relatively quickly lead to such training sets, and usually
lead to exciting new insight into the cis-regulatory logic of enhanc-
ers (Kwasnieski et al. 2012; Melnikov et al. 2012; Arnold et al.
2013; Kheradpour et al. 2013; White et al. 2013). In our study,
we tested long enhancer sequences, of several hundreds of base
pairs. Earlier methods for massively parallel enhancer-reporter as-
says (MPRA) often relied on oligonucleotide synthesis to generate

sequences, thereby limiting the fragment size considerably below
that of an average metazoan enhancer (∼200 bp as compared to
∼500–800 bp) (LeProust et al. 2010). This issue has recently been
overcome by cloning captured fragments into a barcoded reporter
assay (Shen et al. 2015). In addition, the STARR-seq method
bypasses the issue of short input fragments by inserting randomly
fragmented regions of the genome straight into a library down-
stream from a reporter gene rather than upstream (Arnold et al.
2013). STARR-seqwasoriginallydeveloped forDrosophila, inwhich
the genome size is manageable to clone in its entirety. However,
considering that the human genome is 25 times larger, it presents
a considerable challenge toward genome-wide assays. A solution
to this is to preselect the input, as has been done in the preset
study, as well as recently inmice, using a STARR-seq-like approach,
called CapStarr-seq (Vanhille et al. 2015). The possibilities that
these methodologies provide with regard to enhancer validation,
both in vitro and in vivo (White et al. 2013; Shen et al. 2015), un-
derscore the value and the need for such approaches in the field of
regulatory genomics today.

Our case study of TP53 may seem peculiar in the sense that
TP53 acts in isolation, without coregulatory transcription factors
that bind to the same enhancer. Although this was quite an unex-
pected finding, in retrospect this observation fits well within the
cell-autonomous function of TP53. Indeed, upon DNA damage,
TP53 activates the appropriate target genes to either repair the
damage or launch the apoptotic program (Beckerman and Prives
2010). Although we now have a better understanding of the
TP53 cistrome, it remains to be discovered how generic activation
of the same set of enhancers is differentially steered in the current-
ly operational gene regulatory network, and how the cellular con-
text further contributes to the resulting responses like apoptosis
or growth arrest.

The unsophisticated enhancermodel, with only a single TP53
binding site, is to our knowledge the first report of such a new class
of enhancers in the human genome. Previously, such enhancer
models were used for compact genomes from bacteria, or some-
times yeast, but not formulticellular organisms. Plant andmetazo-
an enhancers are usually classified using the enhanceosome or
billboard model (Arnosti and Kulkarni 2005), but these types of
models are based on the combinatorial action of multiple tran-
scription factors to reach specificity. Whereas developmental en-
hancers need to integrate multiple signals and environmental
queues (e.g., signaling gradients), each cell can be considered inde-
pendently responsible for its own genome integrity. Such a model
may be valid for additional cell-autonomous factors, such as the
cell cycle–related factors of the E2F family. Thus, we consider the
TP53 enhancer model to represent a new class of unsophisticated,
single-factor metazoan enhancers.

Methods

CHEQ-seq plasmid and bait design

A super core promoter, a synthetic intron (Arnold et al. 2013), and
a venus reporter gene (Roure et al. 2007) were inserted between the
KpnI and XbaI restriction sites of the pGL4.23 plasmid (Promega
Catalog No. E8411). Barcodes were incorporated using an inverse
PCR into the modified pGL4.23 backbone with AscI (see
Supplemental Material). One hundred twenty nanograms of plas-
mid was electroporated per 20 µL of electrocompetent cells
(Invitrogen, Catalog No. C6400-03) and extracted using a Giga
prep (Qiagen No. 12191). ChIP-seq peaks for TP53 were called
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against input (GSE47043) as described before (Janky et al. 2014)
and were filtered for centromere and telomere regions and ranked
based on their peak score. The top 1700 regions were selected for
bait design as described in Supplemental Materials and Methods.

Generating the CHEQ-seq and STARR-seq libraries

Genomic DNA was extracted, adapter ligated, and amplified. Tar-
geted regions were captured with the MYbaits protocol (Custom
bait libraries, MYcroarray). At least three captures were performed
and pooled after purification. The CHEQ-seq plasmid containing
the barcode pool was linearized and combinedwith∼250 ng input
DNA in a total of four infusion reactions (Clontech). The recom-
bined library was precipitated overnight and transformed at 100
ng per 20 µL electrocompetent cells. See Supplemental Materials
and Methods for additional details.

Cell work and extractions

MCF7 cells (TP53 wild type or TP53 knockdown) were cultured
and transfected as described before (Janky et al. 2014). DNA and
RNA were extracted and cDNA prepared according to the manu-
facturer’s guidelines. See Supplemental Materials and Methods
for more details.

Library preparations

cDNA or (extracted) plasmid DNA was amplified with two rounds
of PCR using the Phusion High-fidelity PCR master mix (Catalog
No.M0532S; PCRdetails in SupplementalMaterials andMethods).
The library was purified using the AMPure XP Beads (Beckman
Coulter, Catalog No. A63880) and sequenced on the Illumina
HiSeq2500 platform. For STARR-seq, the DNA and cDNA libraries
were created as described before (Arnold et al. 2013). For PacBio
sequencing, the input library was amplified using the Phusion
High-fidelity PCR master mix (Catalog No.M0532S; PCR details
in Supplemental Materials and Methods). The linear fragments of
∼2–3 kb were purified using AMPure XP Beads (Beckman Coulter,
Catalog No. A63880). Libraries were subsequently sent for SMRT
PacBio sequencing (Pacific Biosciences).

Data processing and subset determination for bothCHEQ-seq
and STARR-seq libraries are described in Supplemental Materials
and Methods.

Motif discovery and motif scoring

HOMER (Heinz et al. 2010) and RSAT peak motifs (Thomas-
Chollier et al. 2011) were run on the positive set with the negative
set as background. i-cisTarget (Imrichová et al. 2015) was run on
the positive set. For HOMER, length of the motif was set at length
19 or 20 (-len) to allow for discovery of the consensus TP53 motif
in the de novo option. Motifs were selected based on their overall
performance and low occurrence in the negative set (Supplemen-
tal Materials and Methods). For each obtained motif or the com-
bination of all 10 motifs, Cluster-Buster (Frith et al. 2003) was
used to score the positive and negative sets using –c 0 and –m 0.
The highest motif score (or CRM score) for each region was ob-
tained and used to determine the predictive value of each motif
to classify regions into positives or negatives. In short, the sensitiv-
ity and specificity for eachmotif was calculated, and the area under
the receiver operating characteristic curve (AUC) determined.

ChIP-seq, RNA-seq, and public data

ChIP-seq against H3K27ac was performed and analyzed as de-
scribed before (Verfaillie et al. 2015). RNA-seq for MCF7 TP53
knockdown was extracted and performed as described previously

(Janky et al. 2014). The collected public ChIP-seq data against
TP53 are summarized in Supplemental Table S7. See Supplemental
Materials andMethods for amore extendedmethodology and pro-
cessing of the data.

Random forest model and feature-vector representation

Different random forest models were generated (Supplemental
Materials and Methods). As random forest implementation, we
used the scikit-learn Python package. Each classifier uses an en-
semble of 151 decision trees. The parameter max_features (respon-
sible for number of features to consider when looking for the best
split) was set to sqrt (number of features). To calculate the feature
importance, we used the Gini impurity criterion averaged across
trees, using the whole training data. The quality of each model
was estimated in fivefold cross validations. For each PWM, the
motif score was calculated using a HiddenMarkovModel as imple-
mented in Cluster-Buster (Frith et al. 2003). Number of coding
genes and lncRNAs was calculated using BEDTools (Quinlan and
Hall 2010) and a custom bash script. The file with TSSs of genes
was downloaded from theUCSCGenomeBrowser. High confident
subsets of lncRNAs were downloaded from LNCipedia (Volders
et al. 2015). Files with the positions of promoters with TATA-box
and/or GpC islands have been downloaded from the FANTOM5
resource (Lizio et al. 2015).

seqMINER, clustering, and DNA shape

BAM files of all public data (15 samples) and in-house data (see
GSE47043) were loaded into seqMINER (Ye et al. 2011). A BED
file with all predicted TP53 binding sites was loaded. Alternatively,
in-house TP53 ChIP-seq data, H3K27ac, or DNase-seq BAM files
were loaded and compared across the positive and negative
CHEQ-seq peaks. The flanking area was set at 2000 bp around
the binding site. Heatmaps show the raw tag count coverage from
each BAM file for each input site or peak. Determination of cluster-
ing is described in Supplemental Materials and Methods and in
Supplemental Figure S26. DNA shape data indicating Helix Twist
(HelT) and Propellor Twist (ProT) for HG19 were downloaded
from ftp://rohslab.usc.edu/hg19/ in bigWig format (Chiu et al.
2015) and analyzed as described in Supplemental Materials and
Methods.

Prediction of TP53 binding using deep learning

The network was trained using the RMSprop algorithm for Sto-
chastic Gradient Descent with 100 training samples in each mini-
batch and binary cross-entropy loss function for minimization.
The Keras 0.2.0 library (https://github.com/fchollet/keras) with
the Theano 0.7.1 backend was used for implementation. Cal-
culations have been performed with NVIDIA K40c accelerator.
The regularization parameters are dropout proportion (fraction
of outputs randomly set to 0) for layer 2: 10%; layer 3: 10%; layer
6: 50%; all other layers: 0%. The details of the CNN model archi-
tecture are listed in Supplemental Materials and Methods.

Data access

Data generated for this study have been submitted to the
NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE76657. The predicted
genome-wide TP53 binding sites and combined ChIP-seq data
from all experiments used in this work are available as a track
hub (http://ucsctracks.aertslab.org/p53/hub.txt). To activate this
track hub, go to My Data, Track hubs in the UCSC Genome
Browser menu, and provide this URL in “My Hubs.”
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Stark A. 2014. Dissection of thousands of cell type-specific enhancers
identifies dinucleotide repeat motifs as general enhancer features.
Genome Res 24: 1147–1156.

Ye T, Krebs AR, Choukrallah MA, Keime C, Plewniak F, Davidson I, Tora L.
2011. seqMINER: an integrated ChIP-seq data interpretation platform.
Nucleic Acids Res 39: e35.

Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J,
Birney E, Bickel P, Snyder M, et al. 2012. Classification of human geno-
mic regions based on experimentally determined binding sites of more
than 100 transcription-related factors. Genome Biol 13: R48.

Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F,
Davies B, Peterse EFP, Sacilotto N,Walker GJ, et al. 2013. A polymorphic
p53 response element in KIT ligand influences cancer risk and has
undergone natural selection. Cell 155: 410–422.

Received January 6, 2016; accepted in revised form May 17, 2016.

TP53 enhancer logic

Genome Research 895
www.genome.org


