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Summary 
The cytokine interleukin (IL) 12 stimulates T cell and natural killer cell production of interferon 
(IFN) 3' and inhibits T cell production of IL-4. We investigated the effects of IL-12 on cytokine 
gene expression, immunoglobulin (Ig)E, mucosal mast cell, and eosinophil responses, and the 
course of infection in mice inoculated with the nematode parasite Nippostrongylus brasiliensis, as 
well as the IFN-3" dependence of these effects. IL-12 stimulated IFN-3' and IL-10 gene expression 
during primary and secondary N. brasiliensis infections and inhibited IL-3, IL-4, IL-5, and IL-9 
gene expression during primary infections but had little inhibitory effect during secondary infections. 
IL-12 inhibited IgE, mucosal mast cell, and blood and tissue eosinophil responses during primary 
infections, but only eosinophil responses during secondary infections. IL-12 enhanced adult worm 
survival and egg production during primary, but not secondary infections. IL-12 needed to be 
administered by day 4 of a primary infection to inhibit IgE and mucosal mast cell responses, 
and by day 6 to strongly inhibit eosinophil responses and to enhance worm survival and fecundity. 
Anti-IFN-3" mAb inhibited the effects of IL-12 on IgE secretion, intestinal mucosal mastocytosis, 
and parasite survival and fecundity, but did not affect IL-12 inhibition of eosinophilia. These 
observations indicate that IL-12, if administered during the initiation of an immune response, 
can change the response from one that is characterized by the production of T helper (Th)2-associated 
cytokines to one characterized by the production of Th-1 associated cytokines. However, IL-12 
treatment has less of an effect once the production of Th2-associated cytokines has become 
established. In addition, our results provide evidence that Th2-associated responses protect against, 
and/or Thl-associated responses exacerbate, nematode infections. 

T he nature of an immune response is defined not only 
by its specificity but also by the effector mechanisms that 

are induced. The selection of effector mechanisms is controlled, 
to a large extent, by the cytokines that are produced during 
the response. In the mouse, Thl-associated cytokines (IL-2, 
IFN-3,, and TNF-/~) favor NK cell, CTL, and complement- 
fixing antibody (IgG3 and IgG2a) responses whereas Th2- 
associated cytokines (IL-4, IL-5, IL-9, and IL-10) favor 
noncomplement-fixing antibody (IgG1) and allergy-associated 
responses (IgE, mast cells, and eosinophils) (1, 2). T cell 
cytokine responses, in turn, are regulated by cytokines that 

can be produced early in an immune response by non-T cells 
(3-8). Recently the cytokine IL-12, which is produced by 
macrophages and B lymphocytes (6, 9, 10), has been found 
to induce Thl-associated responses by stimulating T cell and 
NK cell production of IFN-3, (4-6, 11) and by inhibiting 
T cell production of IL-4 (4-6). Stimulation of IFN-3' produc- 
tion and suppression of IL-4 production by IL-12 has been 
shown to enhance protective immunity against some intra- 
cellular parasites, such as Leishmania major (12, 13), to pro- 
mote tumor immunity (14), and to suppress in vitro and in 
vivo IgE responses (15, 16). These observations suggest that 
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IL-12 may be clinically useful in the treatment of infectious 
diseases, cancer, and allergic disorders. 

We wished to extend these observations by investigating: 
(a) whether IL-12 could inhibit the development of eo- 
sinophilia and mastocytosis as well as IgE production during 
a primary response; (b) whether IL-12 needed to be present 
at the initiation of the response to alter its course; (c) whether 
IL-12 could inhibit these phenomena during a secondary re- 
sponse; (d) whether IL-12 administration during a primary 
response would influence the characteristics of a subsequent 
secondary response; (e) whether IL-12 might inhibit protec- 
tive immunity to infectious agents that typically induce a 
Th2-type cytokine response; and (~ whether IFN-3' was a 
critical mediator of the effects of IL-12 that we were studying. 
To investigate these issues we inoculated BALB/c mice with 
infective larvae of the nematode parasite, Nippostrongylus 
brasiliensis, which stimulates IL-3, IL-4, IL-5, and IL-9 cytokine 
production that induce IgE, eosinophil, and mast cell responses 
(17-20, and Madden, K., unpublished data). The results of 
our studies provide evidence that IL-12 is more effective at 
influencing a developing immune response than an established 
response, that eosinophil responses are more sensitive than 
mast cell or IgE responses to the inhibitory effects of  IL-12, 
that IL-12 administered during a primary response can in- 
fluence a subsequent secondary response, that IL-12 can ex- 
acerbate nematode infections, and that IFN-'t  is a critical medi- 
ator of most of these effects of IL-12 in nematode-infected mice. 

Materials and Methods 

Animals. Female BALB/c mice were purchased from the Small 
Animals Division of the National Cancer Institute (Frederick, MD) 
and were used at age 6-12 wk. Experimental groups contained five 
mice each. 

Immunological Reagents. Recombinant routine Ib12 was pro- 
duced in serum-free medium by transfected ClIO ceils and purified 
by sequential chromatography on Q Sepharose Fast Flow (Phar- 
macia, Piscataway, NJ), Cellufine Sulfate (Amicon, Beverly, MA), 
and POROS 1 20 PE (PerSeptive Biosystems, Cambridge, MA) 
columns (21). IL-12 was diluted in PBS containing 1% BALB/c 
serum and was injected intraperitoneally in 0.1 ml. A rat IgG1 mAb 
that neutralizes IFN-'y (XMG-6) (22, 23) and a rat IgG2a mAb 
that binds mouse IgE (EM-95) (24) were produced in Pristane- 
primed nude mice and purified as previously described (22). A mouse 
IgE anti-TNP mAb (SPE-iv-7) (25), and a mouse IgG anti-FITC 
mAb (CG5, generated by Dr. Diana Goroff in the Department 
of Medicine, Uniformed Services University of the Health Sciences) 
were produced in Pristane-primed BALB/c mice and were purified 
by the same techniques. Rabbit anti-mouse IgE and goat anti-rabbit 
IgG antibodies were produced, absorbed, and affinity purified as 
described (26, 27). Sheep anti-mouse IgG1 antiserum was purchased 
from The Binding Site (San Diego, CA). 

Eosinophil Counts. Eosinophils were counted from fresh blood 
samples with the Unopette test (Becton Dickinson & Co., Ruther- 
ford, NJ). 

Evaluation of Mucosal Mast Cell Number. Tissue samples from 
8-10-cm mid-jejunal segments from individual mice were prepared 
by the Swiss-roll technique, fixed in Carnoy's fixative, paraffin em- 
bedded, and processed for staining with Alcian blue and safranin 
(18). After a random selection of the first microscopic field (at a 

magnification of 397), a total of 50 neighboring fields of a given 
section of rolled jejunum was scanned for mucosal mast cells 
(MMC) 1. MMC were identified both in the villi and the crypts 
by their distinct intracellular granular staining with Alcian blue 
(18). All samples were evaluated blindly. 

Histological Evaluation of Pulmonary Lesions. Lungs were fixed 
by intratracheal injection of Bouin-Hollande fixative and processed 
routinely. Paraffin sections were stained with Litt's modification 
of the Dominici stain (28). Sections were evaluated blindly and scored 
for the intensity of perivascular infiltrates and the approximate per- 
centage of eosinophils in the infiltrates (29). 

Parasites. N. brasiliensis was maintained and passed alternately 
in BALB/c and SW mice; infections were established by subcuta- 
neous inoculation with 700 infective third-stage larvae. Infective 
third stage larvae were isolated with a Baermann apparatus after 
7-10 d of culture, washed in saline, counted, and stored at 4~ 
until use. Mice were inoculated orally with 200 infective larvae, 
using a ball-tipped feeding tube. Parasite egg numbers were deter- 
mined from group samples of feces collected for 1 h, while adult 
worm numbers of each sex were evaluated microscopically from 
individual mice after opening the small intestines with an entero- 
tome. Aliquots of the contents of the small and large intestines 
and cecum were processed to determine the total number of eggs 
in each mouse. Worm fecundity was expressed by dividing the total 
number of eggs recovered from each mouse by the total number 
of female worms. In some experiments mice were cured of N. bra- 
siliensis infection by treatment with a single oral dose of pyrantel 
pamoate (Strongid T; Pfizer Diagnostics, New York) administered 
through a feeding tube. 

Antibody Assays. Serum IgG1 was quantitated by radial im- 
munodiffusion, using a purified IgG1 mAb, CGS, as a standard. 
Serum IgE was quantitated by ELISA (30), using a purified IgE 
mAb, SPE-iv-7 (25), as a standard. 

Isolation ancl Purification of RNA. RNase-free plastic and water 
were used throughout. Payer's patch and mesenteric lymph node 
were homogenized in RNAzol (Tel-Test, Friendswood, TX) with 
a polytron (model PT3000; Brinkmann Instruments, Inc., West- 
bury, NY). Total RNA was isolated and quantitated as described 
(31). Purified RNA (10/~g) was electrophoresed on a 1% agarose 
gel containing ethidium bromide to check concentration and to 
verify that it was intact. 

RT/PCR. A coupled RT/PCR was used to quantitate tissue 
RNA levels (31). Briefly, the RNA sample was reverse-transcribed 
with Superscript RT (GIBCO BILL, Gaithersburg, MD) and 
cytokine-specific primers and probes were used to amplify selected 
cytokines. For each cDNA product, the optimum number of cycles 
for PCR amplification was determined experimentally and was 
defined as the number of cycles that would achieve a detectable 
concentration well below saturating conditions (i.e., the quantity 
of cytokine PCR product was shown to vary linearly with the quan- 
tity of input cytokine mRNA). Relative concentrations of IFN-% 
IL-3, IL-4, IL-5, IL-9, and IL-10 mRNA were determined. Primers 
for the "housekeeping gene" hypoxanthine-guanine phosphoribosyl- 
transferase (IIPRT), were used in each experiment to verify that 
equal amounts of RNA were added in each PCR. All cytokine 
values were individually normalized to the corresponding HPRT 
values. Amplified PCR product was detected by Southern blot anal- 
)'sis (17), and the resultant signal was quantitated with a Phos- 
phorimager (Molecular Dynamics, Sunnyvale, CA), which uses a 
phosphor screen instead of film to detect radioactive signals on the 
Southern blot. 

1 Abbreviation used in this paper: MMC, mucosal mast call. 
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Results 

IL-12 Inhibits IgE, Eosinophil, and Intestinal M M C  Responses 
during a Primary N. brasiliensis Infection. To determine the 
effects of  IL-12 on allergy-associated responses during a pri- 
mary immunization,  mice were inoculated with 700 N. bra- 
siliensis third-stage larvae and injected intraperitoneally with 
vehicle or wi th  100 or 1,000 ng/d of IL-12. Based on prelim- 
inary toxicity studies, 5 d of IL-12 treatment was followed 
by 2 d wi thout  IL-12 in this and in most  subsequent experi- 
ments. Mice were killed 13 d after parasite inoculation and 
blood eosinophil levels, intestinal mucosal mastocytosis, and 
serum IgE levels were evaluated (Fig. 1). IL-12 at both  doses 
completely inhibited eosinophil responses. 1,000 ng/d of IL-12 
also completely inhibited the IgE and M M C  responses, 
whereas 100 ng/d of IL-12 inhibited the IgE response by 
* 9 0 %  and the intestinal M M C  response by "~60%. 

IL-12 Inhibition of N. brasiliensis-induced IgE and Intestinal 
M M C  Responses is IFN-T Dependent. To determine the IFN-3, 
dependence of IL-12 inhibition o fN.  brasiliensis-induced IgE, 
intestinal MMC,  and eosinophil responses, mice inoculated 
with  N. brasiliensis received no additional treatment or were 
injected daily wi th  1,000 ng of IL-12 _+ 2 m g / w k  of anti- 
IFN-'y mAb. 14 d after parasite inoculation, IL-12 treatment 
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Figure 1. IL-12 suppresses IgE production, eosinophilia, and intestinal 
mucosal mastocytosis during a primary N. brasiliensis infection. BALB/c 
mice were inoculated subcutaneously with 700 N. brasiliensis third-stage 
larvae. Mice were injected intraperitoneally on days 0-4 and 7-11 with 
saline, 100 ng of Ib12, or 1,000 ng of IL-12/d. Mice were bled and killed 
13 d after inoculation. Serum IgE levels, blood eosinophil counts, and 
numbers of intestinal mucosal mast cells/50 high-powered microscope fields 
were determined on samples from individual mice as described in Materials 
and Methods. Geometric means and standard errors are shown for IgE 
levels; arithmetic means and standard errors are shown for eosinophil and 
mast cell counts. Similar results were obtained in several additional ex- 
periments. 
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Figure 2. IFN-~/dependence of the effects of II--12 on allergy-associated 
responses to N. brasiliensis infection. Mice were left untreated or were in- 
oculated with N. brasiliensis as in Fig. I and were injected with 1% BALB/c 
serum in saline or with 1,000 ng/d of IIA2 in the same vehicle on days 
0-4 and 7-11. Some mice received 2 mg of rat anti-mouse IFN-'y mAb 
or an isotype-matched control mAb intravenously on days 0 and 7. Mice 
were bled and killed 14 d after the N. brasiliensis inoculation. Effects of 
IL-12 and anti-IFN-~, mAb on blood eosinophil counts were determined 
in a separate experiment that followed the same protocol, with the excep- 
tion that the dose of IIA2 was reduced to 100 ng/day. 

was found to strongly inhibit the N. brasiliensis-induced IgE, 
intestinal MMC,  and eosinophil responses (Fig. 2). Although 
treatment wi th  anti-IFN-3, mAb reversed IL-12 inhibition 
of the IgE and mast cell responses, the combination of IL-12 
and anti-IFN-3, mAb still suppressed blood eosinophilia by 
>90%. Ant i - IFN-y  mAb had similar effects on IgE and eo- 
sinophil responses in an experiment in which an IL-12 dose 
of 100 ng/d was used (data not shown). Examination of lungs 
demonstrated that N. brasiliensis induced eosinophil-rich 
perivascular infiltrates. No eosinophils were observed in the 
infiltrates of  mice treated with  1,000 ng/d of IL-12, and the 
size of  these pulmonary infiltrates was substantially reduced 
(Fig. 3). Anti-IFN-3' mAb reversed IL-12 inhibition of infiltrate 
size, but had little effect on IL-12 inhibition of infiltrate eo- 
sinophil content. 

Effects of Delaying IL-12 Treatment on IgE, Intestinal MMC, 
and Eosinophil Responses to N. brasiliensis Inoculation. To de- 
termine how soon IL-12 needed to be administered after mice 
were inoculated with  N. brasiliensis to inhibit IgE, eosino- 
phil, and intestinal M M C  responses, experiments were per- 
formed in which treatment with IL-12 (1,000 ng/d) was ini- 
tiated at the time of, or 2, 4, 6, or 8 d after parasite inoculation 
and IgE, eosinophil, and intestinal M M C  responses were evalu- 
ated 13 d after inoculation. IL-12 treatment initiated at 4 d 
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Figure 3. Ib12 inhibits tissue eosinophilia in response to N. brasiliensis 
infection. In the same experiment depicted in Fig. 2, in which 1,000 ng 
of Ib12 was injected per day, lungs were excised, fixed, and stained, and 
pulmonary perivascular infiltrate size and eosinophil content were evalu- 
ated. Arithmetic means and standard curves are shown. 

still inhibited these responses by >90% (Fig. 4). IL-12 treat- 
ment no longer inhibited the IgE response, and only par- 
tially inhibited the mast cell response if initiated at 6 d, but, 
in contrast, still inhibited the eosinophil response by >90%, 
and initiation of IL-12 treatment 2 d later still inhibited blood 
eosinophilia by "~50%. 

Effect of lL-12 on IgE, Eosinophil, and Mast Cell Responses 
to a Second N. brasiliensis Infection. The inability of IL-12 
to block IgE and intestinal MMC responses to a primary 
N. brasiliensis infection when IL-12 administration was initi- 
ated 6 d after parasite inoculation suggested that IL-12 might 
also fail to inhibit these responses if administered for the first 
time during a second infection. To examine this possibility, 
mice were reinoculated with N. brasiliensis 33 d after an ini- 
tial inoculation. Treatment of these mice with 1,000 ng/d 
of IL-12, starting on the day of reinoculation with N. bra- 
siliensis, failed to inhibit IgE or intestinal MMC responses 
in these mice, but inhibited the blood eosinophil response 
to the second infection by >90% (Fig. 5). The presence of 
eosinophils in perivascular pulmonary infiltrates was simi- 
larly inhibited by IL-12 (data not shown). However, whereas 
anti-IFN-3~ mAb had little effect on IL-12 inhibition of eo- 
sinophilia during a primary N. brasiliensis infection, it con- 
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Figure  4. Effects of delayed initiation of lL-12 treatment on IgE, MMC, 
and eosinophil responses in N. brasiliensis-infected mice. BALB/c mice that 
were inoculated with N. brasiliensis larvae received either no further treat- 
ment or daily intraperitoneal injections of 1,000 ng of Ib12 that started 
2, 4, 6, or 8 d after inoculation. Mice were bled and killed 13 d after worm 
inoculation and serum IgE levels, numbers of intestinal mucosal mast calls 
per 50 microscope high-power fields, and blood eosinophil counts were 
determined. Means and standard errors are shown. 
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Figure 5. Effects of IL-12 on the IgE, MMC, and blood eosinophil re- 
sponses to a secondary N. brasiliensis infection. BALB/c mice were left un- 
treated or were infected with N. brasiliensis larvae. Some mice (late 1 ~ Nb) 
received no further treatment; others (2 ~ Nb) were reinoculated with 
N. brasiliensis larvae 33 d after the initial inoculation. Some reinoculated 
mice were treated with 1,000 ng/d i.p. of II.-12, starting on the day of 
the second inoculation with N. brasiliensis, and some of these mice were 
also injected intravenously with 2 mg/wk of rat anti-mouse IFN-',/mAb. 
Mice were bled and killed 13 d after the second inoculation. Means and 
standard errors are shown. 
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Figure 6. Treatment with [L-12 during a primary N. brasiliensis infec- 
tion inhibits IgE, MMC, and eosinophil responses during the second in- 
fection. BALB/c mice were left untreated or were inoculated with 
N. brasiliensis larvae. Two groups of infected mice were treated were 1,000 
ng/d i.p. of IF12 for 9 d. Infected mice were treated with pyrantel pamoate 
to cure residual infection 9 d after the initial inoculation and were reinocu- 
lated with N. brasiliensis 26 d later. At the time of the second worm inocu- 
lation, I1.-12 treatment (1,000 ng/d) was restarted for one group of mice 
that had received IL-12 during the primary infection and was initiated for 
one group of mice that had not initially received Ib12. One group of mice 
that was originally left untreated was given a primary inoculum of 
N. brasiliensis at this time. Mice were bled and killed 11 d later. Serum 
IgE levels, blood eosinophil counts, percentages of eosinophils in pulmo- 
nary perivascular infiltrates, and intestinal MMC numbers were determined. 
A diagonal line (/) is used in this figure to separate treatment given during 
primary and secondary infections. 

siderably decreased the ability of IL-12 to block eosinophilia 
during a second N. brasiliensis infection. The differential effects 
of  IL-12 on IgE and eosinophil responses during primary and 
secondary nematode infections were also seen in mice inocu- 
lated with  another intestinal nematode, Heligmosomoides poly- 
gyrus (data not shown). 

Treatment of  Mice with IL-12 during a Primary N. brasiliensis 
Infection Decreases IgE, MMC,  and Eosinophil Responses to a 
Secondlnfection. The failure oflL-12 to block IgE and M M C  
responses to a second N. brasiliensis infection might  reflect 
either different susceptibilities of  virgin or memory  T cells 
to the effects of  IL-12 or irreversible programming of T cell 
cytokine responses that occurred during the initial infection. 
To distinguish between these possibilities we examined whether 
allergy-associated responses during a second N. brasiliensis in- 
fection could be inhibited by treating mice with IL-12 during 
a primary infection or during both primary and secondary 
worm infections. Because IL-12 inhibits worm expulsion 
during a primary N. brasiliensis infection (see below), primary 
infections were terminated by treating mice wi th  pyrantel 
pamoate. IL-12 treatment during a primary N. brasiliensis in- 
fection inhibited the IgE response to a challenge infection 
by "~70%, the intestinal M M C  response to a challenge in- 
fection by •45%, the blood eosinophil response to a chal- 
lenge infection by ',o55%, and the pulmonary eosinophil re- 
sponse to a challenge infection by ,,085%. IL-12 treatment 
during both primary and secondary N. brasiliensis responses 
blocked the eosinophil, intestinal MMC,  and IgE responses 
to the second N. brasiliensis infection by >95% (Fig. 6). In 
the same experiment, IL-12 treatment that was initiated at 
the time of the challenge infection inhibited eosinophil re- 
sponses, but  did not significantly inhibit IgE or M M C  re- 
sponses. 

Effects of  lL-12 on Cytokine Responses to Primary and Sec- 
ondary N. brasiliensis Injections. Inasmuch as IL-4 is required 
for the generation of IgE responses (32, 33), IL-5 for the 
generation of eosinophil responses (34, 35), and IL-3, IL-4, 
and IL-9 all contribute to the generation of intestinal M M C  
responses in nematode-infected mice (18, and Madden, K., 
unpublished observations), our observations suggested that 
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Figure 7. Effect of IL-12 on cytokine gene ex- 
pression in N. brasiliensis-inoculated mice. BALB/c 
mice were left untreated or were inoculated with 
N. brasiliensis larvae. Some mice were killed 8 d 
after inoculation; some of these received 1,000 ng/d 
i.p. of IL-12 (5 d/wk), starting at the time of para- 
site inoculation. Some mice were reinoculated 29 d 
after the initial inoculation and killed 5 d after the 
second inoculation. Some of these mice received 
1,000 ng/d i.p. of Ib12 (5 d/wk), starting at the 
time of the second inoculation. RNA was prepared 
from mesenteric lymph nodes (MLN) and Peyer's 
patch (PP) of killed mice and reverse transcribed. 
cDNA was amplified by PCR, using HPKT, Ib3, 
IL-4, IL-5, Ib9, 1I.-10, and [FN-?-specific primer 
pairs. PCK products were electrophoresed and 
quantitated by Phosphorimager analysis of Southern 
blots hybridized with labded, cytokine-specific 
probes. All mRNA levels are expressed relative to 
the mean levels found in the same organs of unin- 
fected mice, which are arbitrarily given a value of 
1, and are normalized for differences in HPRT 
mRNA levels. Means and standard errors are 
shown. 
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Figure  8. IL-12 suppress protec- 
tive immunity to N. brasiliensis. The 
effects of treating IV. brasiliensis- 
inoculated mice with 100 or 1,000 
ng/d i.p. of II.-12 on egg produc- 
tion (determined by daily quantita- 
tion of eggs per gram of feces), and 
on adult worm numbers, parasite 
eggs per mouse, and worm fecun- 
dity 13 d after inoculation were de- 
termined in the same experiment 
shown in Fig. 1. Determination of 
eggs per gram of feces were made 
on pools of feces from five mice. 
Other determinations were made 
with individual mice and are 
depicted as arithmetic means • 
standard errors. 

IL-12 suppresses the production of these cytokines during 
primary, but not secondary, N. brasiliensis infections. To test 
this hypothesis, we quantitated IL-3, IL-4, IL-5, IL-9, IL- 
10, and IFN-3, mRNA levels in mesenteric lymph node and 
Peyer's patch 8 d after primary or 5 d after secondary N. bra- 
siliensis infections. These time points and organs were chosen 
because they were the times and sites of peak cytokine gene 
expression (17, and Madden, K., unpublished data). IL-12 
treatment during a primary N. brasiliensis infection constrained 
IL-4, IL-5, and IL-9 gene expression to below or near base- 
line levels in both mesenteric lymph node and Peyer's patch 
and significantly decreased the level of IL-3 mRNA in mesen- 
teric lymph node, but not Peyer's patch (Fig. 7). In contrast, 
during a secondary IV. brasiliensis infection IL-12 treatment 
had little effect on mesenteric lymph node expression of these 
cytokine genes and enhanced IL-3, IL-4, and IL-9 gene ex- 
pression in Peyer's patch. As has been observed in other systems 
(16), IL-12 enhanced IFN-3" and IL-10 gene expression during 
both primary and secondary N. brasiliensis infections. 

Effect of lL-12 on the Course of a Nematode Infection. In 
the same experiments shown above we examined the effect 
of IL-12 on adult worm survival and egg production (fecun- 
dity). IL-12 (either 100 or 1,000 ng/d) increased egg produc- 
tion and suppressed adult worm expulsion in N. brasiliensis- 
infected mice (Fig. 8). These effects were still substantial if 
IL-12 administration was delayed until 6 d after N. brasiliensis 
inoculation, but were limited or neglible if IL-12 treatment 
was started 8 d after inoculation (Fig. 9 and data not shown). 
Anti-IFN-',/mAb blocked most of the IL-12-induced increases 
in fecundity and adult worm survival (Fig. 10). During a 
second N. brasiliensis infection, no nematode eggs were de- 
tectable in mouse feces 8 d after inoculation and no adult 
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Figure  9. Effects of delayed initiation of lL-12 treatment on egg produc- 
tion and adult worm survival in N. brasiliensis-inoculated mice. The ability 
of IL-12 (1,000 ng/day) to enhance parasite egg production and adult worm 
survival when initiated 2-8 d after worm inoculation was studied in the 
same experiment shown in Fig. 4. Numbers of eggs per gram of feces 
and adult worms and worm fecundity were determined as described in 
Fig. 8. 
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Figure 11. IL-12 treatment during 1 ~ and 2 ~ N. brasiliensis infections 
inhibits protective immunity. The effects of IL-12 treatment on N. bras/l/ens/s 
adult survival and egg production were studied in the experiment shown 
in Fig. 6. Eggs per gram of feces were determined 8 d after the time of 
the second infection. Mice were killed and adult worm numbers and worm 
fecundity were determined 3 d later. Numbers of eggs per gram of feces 
and adult worms and worm fecundity were determined as described in 
Fig. 8. Pyrantel pamoate treatment was used to terminate primary infec- 
tions even in mice that were receiving IL-12. 

worms were present in mouse intestines 11 d after inocula- 
tion (Fig. 11). Treatment with IL-12 during a primary infec- 
tion prolonged egg production during a challenge infection 
but did not prevent worm expulsion by 11 d after challenge 
inoculation. IL-12 treatment that was restricted to a second 
N.  brasiliensis infection prolonged adult worm survival but 
only slightly increased egg production, whereas IL-12 treat- 
ment during both primary and second N. brasiliensis infec- 
tions allowed adult worms to survive and produce large 
numbers of eggs during the second infection. 

Discussion 

The results of our experiments demonstrate that the IgE, 
intestinal MMC, and eosinophil responses to IV. brasiliensis 
are all completely suppressed by IL-12 during a primary in- 
fection. IL-12 also completely suppresses N. brasiliensis in- 
duction of increased gene expression of the Th2-type cytokines 
that are associated with these responses: IL-4, IL-5, and IL-9. 
In addition, gene expression of IL-3, a cytokine associated 
with both Thl  and Th2 responses (1), but which contributes 
to the generation of intestinal mucosal mastocytosis (18), is 
considerably inhibited in mesenteric lymph node by IL-12 
treatment. IL-12 suppression of allergy-associated responses 
is not diminished when IL-12 administration is initiated 4 d 
after N.  brasiliensis inoculation. However, the IgE and mast 
cell responses are no longer suppressed if IL-12 treatment is 
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initiated at 6 d and suppression of the eosinophil responses 
is considerably reduced when IL-12 treatment is delayed for 
8 d. These observations and the findings that considerable 
increases in IL-3, IL-4, and IL-9 mRNA levels in gut-associated 
lymphoid organs are first observed 4 d after N.  brasiliensis 
inoculation and that IL-5 mRNA levels peak •8 d after in- 
oculation (Madden, K., unpublished data) suggest that IL-12 
loses its ability to suppress the production of aUergy-associated 
cytokines since the secretion of these cytokines has become 
established. This suggestion is consistent with the inability 
of IL-12 to suppress the secretion of allergy-associated cytokines 
during a second N. brasiliensis infection. Although IL-12 fails 
to suppress Th2-associated cytokine production under these 
circumstances, it induces a large increase in IFN-3~ mRNA 
and IFN-3' secretion, as demonstrated by increased spleen cell 
expression of an IFN-qr-induced surface marker (Ly6A/E [36], 
data not shown). These observations are all consistent with 
the observation by Manetti et al. (37) that IL-12 does not 
inhibit the secretion of IL-4 by cloned human Th2 cells, but 
induces these cells to secrete IFN-% 

An alternate possible explanation for the failure of IL-12 
to suppress Th2-associated cytokine production during a 
second N.  brasiliensis infection is that autocrine IL-4 produc- 
tion during the second infection blocks the inhibitory effects 
of IL-12. This possibility is compatible with evidence that 
exogenous IL-4 prevents IFN-y from suppressing the differen- 
tiation of mouse T cells into Th2 ceils in vitro (5, 6), but 



probably does not explain our observations, because treat- 
ment of mice with anti-IL-4 receptor mAb during a chal- 
lenge infection with the nematode parasite H. polygyrus does 
not promote IL-12 inhibition of IL-4, IL-5, and IL-9 gene 
expression (Finkelman, F., J. Urban, and W. Gause, unpub- 
lished data). An alternate explanation for the failure of IL-12 
to suppress Th2-associated cytokine production during a 
second N. brasiliensis infection is that these cytokines are not 
being produced by T cells but by FceRI-bearing cells that 
have had N. brasiliensis-spedfic IgE on their Fce receptors cross- 
linked by N. brasiliensis antigens (38-40). FceRI + cells that 
secrete Th2-associated cytokines in response to FceRI cross- 
linking increase in number during N. brasiliensis infections 
(39); IL-12 is not known to have any suppressive effects on 
cytokine production by these cells. We cannot rule out this 
possibility but believe that it is less likely than the possibility 
that T cells are the primary producers of Th2-associated 
cytokines during a second N. brasiliensis infection because: 
(a) IL-12 failed to suppress Th2-associated cytokine gene ex- 
pression in mesenteric lymph node in our experiments and 
cytokine-producing FceRI + cells have not been identified in 
this organ (39); and (b) CD4 + T cells are known to become 
activated during a second N. brasiliensis infection and are re- 
quired for the generation of an IgE response (41). 

Although IL-12 failed to inhibit Th2-associated cytokine 
gene expression, IgE secretion, and intestinal mucosal mastocy- 
tosis during a second N. brasiliensis infection, it strongly 
blocked the blood and tissue eosinophil responses. This sug- 
gests that IL-12 inhibits eosinophil responses even when 
eosinophil-stimulating cytokines are present. This effect of 
IL-12 is not most likely mediated by IFN-% because: (a) IFN-3' 
blocks cytokine stimulation of the in vitro generation of eo- 
sinophils from precursors (42); (b) IFN-y inhibits the eosin- 
ophil response to a primary N. brasiliensis infection (29) and 
to a secondary response to OVA (43); and (c) the ability of 
IL-12 to prevent the eosinophil response to a second N. 
brasiliensis infection is blocked, to a considerable extent, by 
anti-IFN-~/mAb. IL-12 inhibition of eosinophilia during a 
primary N. brasiliensis infection, on the other hand, may be 
IFN-3~ independent, since it is not inhibited by anti-IFN-3/ 
mAb. This apparent IFN-3~ independence of IL-12 inhibi- 
tion of the eosinophil response differs from the IFN-y de- 
pendence of IL-12 inhibition of the IgE and MMC responses 
to a primary N. brasiliensis infection. It may be more apparent 
than real, inasmuch as studies in another in vivo system have 
suggested that anti-IFN-3/mAb neutralization of IL-12-in- 
duced IFN-y is incomplete (16) and IFN-3' is more potent 
at suppressing the eosinophil response than either the IgE 
or MMC response to a primary N. brasiliensis infection (29). 
Alternatively, IL-12 may directly suppress IL-5 expression or 
eosinophil production, or stimulate the production of medi- 
ators other than IFN-3~ that have these effects. Experiments 
with mice that lack a functional IFN-3' (44) or IFN-~/receptor 
gene (45) will be needed to settle this issue definitively. 

The IFN-3~ dependence of IL-12 inhibition of IgE and mast 

cell responses during a primary N. brasiliensis infection sug- 
gests that IL-12 inhibition of the cytokines that induce these 
responses, IL-3, IL-4, and IL-9, is also IFN-y dependent. This 
is in apparent conflict with the demonstration that IL-12 in- 
hibition of the IL-4 and IgE responses induced in mice by 
anti-IgD antibody appears to be partially IFN-3~ independent 
(16), as well as the demonstration of IFN-y-independent IL-12 
inhibition of human in vitro IgE responses (15). Further studies 
will be necessary to determine whether the apparent ability 
of IL-12 to directly inhibit Th2 cytokine responses and allergy- 
associated responses in the absence of IFN-3~ in some systems 
is real or an artifact of incomplete neutralization of IFN-% 

Our observations have practical significance. Most impor- 
tantly, they indicate that IL-12 inhibits the production of Th2- 
associated cytokines and stimulates Thl-associated cytokine 
production in vivo even for immunogens that normally in- 
duce powerful Th2 responses. Furthermore, our observations 
suggest that Th2-associated cytokine responses to a second 
exposure to the same immunogen can be at least partially 
suppressed if IL-12 is administered during a primary immu- 
nization and completely suppressed if IL-12 is administered 
during both primary and secondary immunizations. How- 
ever, IL-12 fails to inhibit Th2-associated cytokine responses 
once they have developed, and, with the important excep- 
tion of eosinophil responses, fails to inhibit secondary allergy- 
associated responses. Thus, IL-12 may be more useful as an 
adjuvant for the induction of Thl  responses during initial 
immunization than for converting established Th2 responses 
to Thl responses. However, inasmuch as IL-12 induces IFN-y 
secretion by Th2 cells and established in vivo IgE responses 
have been reversed by IFN-3' in other systems (46), IL-12 
may be able to modify established Th2 or IgE responses that 
are induced by less potent stimuli than N. brasiliensis infection. 

In addition to defining the limits of IL-12 modulation of 
in vivo cytokine responses, our results indicate that IL-12, 
which has been shown to make mice less susceptible to some 
intracellular parasites, can increase their susceptibility to in- 
testinal helminths. This effect of IL-12 is probably mediated 
by IFN-% since it was greatly inhibited by anti-IFN-~/mAb. 
Treatment of N. brasiliensis-inoculated mice with IFN-3" in- 
creases worm fecundity and survival (29) and endogenous 
IFN-3, production suppresses protective immunity to the 
nematode parasite Trickuris muffs (47) in some mouse strains. 
Studies performed with N. brasiliensis-inoculated mice sug- 
gest that IFN-3~ suppression of immunity to helminths is not 
mediated only by inhibition of the production of known Th2- 
associated cytokines, since antibodies to IL-3, IL-4, IL-5, and 
IL-9 have little or no effect on the course of a N. brasiliensis 
infection (18, 48, and Urban, J. F., Jr., unpublished data). 
Regardless of the mechanisms involved, our observations sug- 
gest that IL-12 would be dangerous to use in rodents that 
have been exposed to parasitic helminths. Additional studies 
are needed to determine if the same concerns are valid about 
use of this cytokine in humans. 
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