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Abstract

Visual crowding, the impairment of object recognition in peripheral vision due to flanking objects,

has generally been studied using simple stimuli on blank backgrounds. While crowding is widely

assumed to occur in natural scenes, it has not been shown rigorously yet. Given that scene

contexts can facilitate object recognition, crowding effects may be dampened in real-world

scenes. Therefore, this study investigated crowding using objects in computer-generated real-

world scenes. In two experiments, target objects were presented with four flanker objects placed

uniformly around the target. Previous research indicates that crowding occurs when the distance

between the target and flanker is approximately less than half the retinal eccentricity of the target.

In each image, the spacing between the target and flanker objects was varied considerably above

or below the standard (0.5) threshold to either suppress or facilitate the crowding effect.

Experiment 1 cued the target location and then briefly flashed the scene image before participants

could move their eyes. Participants then selected the target object’s category from a 15-alterna-

tive forced choice response set (including all objects shown in the scene). Experiment 2 used eye
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tracking to ensure participants were centrally fixating at the beginning of each trial and showed the

image for the duration of the participant’s fixation. Both experiments found object recognition

accuracy decreased with smaller spacing between targets and flanker objects. Thus, this study

rigorously shows crowding of objects in semantically consistent real-world scenes.
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Visual Crowding in Real-World Scene Perception

We see the scenes surrounding us in our visual world with both central and peripheral vision.
Our entire horizontal visual field extends to roughly 210� in diameter, however, much of our
conscious experience occurs within a 5� to 8.5� radius central window (i.e., central vision),
which contains the macula and the highest density of photoreceptors (for review, see
Strasburger, 2020). Therefore, most of our visual environment is processed using peripheral
vision. This raises a key question that vision scientists have been investigating for more than
the last 100 years—what is the nature of vision in our visual periphery (for review, see
Loschky et al., 2017; Strasburger et al., 2011; Wilson et al., 1990)? Here we are concerned
with a particular visual phenomenon known as crowding, which limits both our conscious
perception of things in peripheral vision and our ability to recognize them. Crowding has
been studied relatively intensively over the last two decades, including special issues of the
Journal of Vision in both 2007 (Pelli, Cavanagh, et al., 2007) and in 2014 to 2017 (Crowding:
New Vistas,2014–2017), and several in-depth review articles (Levi, 2008; Pelli & Tillman,
2008; Strasburger, 2020; Strasburger et al., 2011; Whitney & Levi, 2011), but an important
and unanswered question is, does it operate for objects in real-world scenes? If crowding can
affect object recognition in real-world scenes, then it may place very important constraints
on our experience of the visual world.

Visual crowding has been characterized as impaired object or form recognition due to the
presence of surrounding objects (Bouma, 1970; Ehlers, 1936; Stuart & Burian, 1962;
Woodrow, 1938). The most fundamental aspect of crowding is the existence of a critical
spacing, which is defined by the separation between the centers of the target and the flanking
object that is necessary to achieve recognition performance equivalent to that of a target
presented in isolation. It was discovered that the critical spacing between target and dis-
tractor objects for a given eccentricity was equal to approximately 1=2 the visual angle of the
retinal eccentricity of the target object (Bouma, 1970), which has come to be known as
Bouma’s constant (Whitney & Levi, 2011) or Bouma factor (Pelli et al., 2004; Pelli,
Tillman, et al., 2007; Strasburger, 2020). It has been replicated across a number of studies
and a range of stimuli (Latham & Whitaker, 1996; Pelli et al., 2004; Pelli & Tillman, 2008;
Whitney & Levi, 2011). Whether nearby objects are separated by a distance either greater
than or equal to the Bouma factor, or less than the Bouma factor, determines, to a first
approximation, whether they do or do not suffer impaired object discrimination,
respectively.1

Although crowding and its properties have been extensively studied, previous studies of
crowding may have only limited generalizability to seeing real-world objects in scenes in
peripheral vision. The majority of crowding studies have used simple stimuli such as
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alphanumeric characters (Strasburger et al., 1991), Gabor patches (Parkes et al., 2001; Poder
& Wagemans, 2007), or Vernier acuity stimuli (Levi et al., 1985). Nevertheless, studies uti-
lizing complex displays of these simple stimuli have found important contextual effects of
flanking objects on targets, where targets and flankers are more likely to be pooled together
when they conform with Gestalt grouping principles (for reviews, see Herzog & Manassi,
2015; Herzog et al., 2015). However, the familiar structure of our environment has facilitated
more efficient extraction of information in the environment, and thus high-level scene
representations may provide more functional separation between targets and flankers, espe-
cially if the Gestalt of the flanking objects extends away from the target object (Van der Burg
et al., 2017).

Only recently has crowding of real-world stimuli begun to be investigated. One study
investigated crowding of realistic objects on a blank gray background (e.g., a rubber
ducky crowded on the vertical meridian by a lamp and watering can) and produced results
similar to those from experiments using simpler stimuli (Wallace & Tjan, 2011). While that
study was an important advance in the direction of investigating crowding of ecologically
valid stimuli, it did not situate the objects in realistic scene contexts, as they would occur in
the real world. A step in this direction was recently taken by creating an image to demon-
strate crowding of one real-world object, a boy, in one real-world scene, a street (Whitney &
Levi, 2011). While the image is a compelling demonstration, it also highlights the lack of
empirical studies to both quantify and test the generality of the phenomenal experience
engendered by the demonstration.2 Another study by Wallis and Bex (2012) investigated
crowding in natural scenes using so-called dead leaves, which were synthetic texture patches
embedded in various locations and sizes within the image. The results from this study show
that, while participants’ ability to detect the leaves varied as a function of patch size and
eccentricity, detection was impaired when the dead leaves appeared in regions of the scene
where structural complexity was high. While this does not demonstrate crowding of real-
world objects in natural scenes, it does demonstrate how real-world environments can con-
tribute to crowding.

A more recent study investigated the detection of vulnerable road users (VRUs) such as
pedestrians, motorcyclists, and bicyclists in traffic scenes (Sanocki et al., 2015). The authors
found that VRU detection was significantly impaired when vehicles flanked the VRUs, with
the presence or absence of flanking vehicles defining the crowding manipulation (Sanocki
et al., 2015). Interestingly, the crowding manipulation showed participants’ bias becoming
more conservative in crowded scenes, relative to uncrowded scenes. The fact that flanking
objects decreased overall object detection could be argued to be inconsistent with previous
results showing that crowding does not affect detection of objects, only their identification.
Specifically, one could argue that the results of Sanocki et al. either suggest that crowding
operates differently in real-world scenes than with simpler stimuli, or that the phenomenon
was something other than crowding. The latter possibility cannot be dismissed easily because
Sanocki et al. did not explicitly account for the retinal eccentricity of targets and flanking
objects, nor did they calculate the target–flanker spacing to interpret their resulting data.
However, an alternative argument is that the “VRU detection task” did, in fact, involve
identification (or superordinate level categorization), rather than detection, and that their
results are therefore consistent with prior crowding results. Specifically, the target VRUs
came from a variety of different basic level categories (i.e., pedestrians, bicyclists, and
motorcyclists) and had to be identified as members of the superordinate VRU category.
Finally, Sanocki et al. leave open the question of whether their effects on detection of
VRUs actually involved crowding, per se, rather than some related phenomenon (e.g., mask-
ing, attentional capture).
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Given that crowding has been argued to be ubiquitous in spatial vision (Levi, 2008), an
alternative question could be, is there any good reason not to expect crowding of objects in
real-world scenes? In fact, there are. Specifically, if crowding of objects occurred ubiquitous-
ly in natural scenes, one might assume that peripheral object recognition in scenes should be
difficult, if not impossible. Yet, there is evidence that people are able to recognize objects
(animals) in natural scenes presented in their visual periphery, even as far as 70� eccentricity
(Thorpe et al., 2001).

One study which has rigorously investigated whether crowding can occur in natural scenes
did so by comparing peripheral object recognition for objects completely isolated from their
scenes, versus the same objects viewed through apertures (“windows”) that showed increas-
ingly more surrounding context (Wijntjes & Rosenholtz, 2018). If crowding were occurring,
the isolated objects would be easiest to recognize. Furthermore, as more surrounding context
was revealed, performance would become increasingly degraded. However, the results
showed exactly the opposite pattern, with the poorest recognition performance occurring
when objects were isolated, and increasingly better recognition performance occurring as
more surrounding context was revealed (Wijntjes & Rosenholtz, 2018). The authors argued
that any detrimental effects of crowding produced by flanking objects in scenes was more
than compensated for by the benefits of context (e.g., by priming scene-consistent object
representations). This is consistent with the idea that the gist of a scene facilitates recognition
of objects in it (Biederman et al., 1982; Boyce et al., 1989; Davenport & Potter, 2004). Thus,
there is good reason to expect little, if any, crowding effect for objects viewed peripherally in
scenes. However, there is an equally compelling alternative explanation of their results. It is
important to note that the authors produced no positive evidence of crowding in any con-
dition—they only showed negative evidence. Thus, Occam’s razor suggests that the simplest
explanation of their results is an issue of construct validity, and that there was no crowding
to begin with. If so, how can they explain the lack of crowding in their natural scenes, when
we expect it to be there? Here, it is important to note that, as with the study by Sanocki et al.
(2015), Wijntjes and Rosenholtz (2018) did not manipulate target–flanker spacing when
attempting to evoke the conditions for crowding. Instead, in their first experiment, they
varied the size of an aperture which allowed for the possibility of nearby objects to flank
the target as they were revealed in the scene image (Wijntjes & Rosenholtz, 2018). Thus, it is
plausible that the surrounding scene contexts were simply not cluttered enough to produce
clear evidence of crowding. If so, sufficient clutter might have produced clear evidence of
crowding in natural scenes. In Experiment 2 of Wijntjes and Rosenholtz (2018), participants
categorized objects which were either isolated or occluded from the scene. Surprisingly, both
conditions yielded approximately 40% accuracy (with chance being 1.2% correct), suggest-
ing that the scene background itself produced object predictions that were roughly equal to
the ability to recognize objects in peripheral vision in the absence of scene context. This
suggests that, during the object recognition process, the presence a scene context may reduce
the potential number of candidate objects that could be in peripheral vision (Wijntjes &
Rosenholtz, 2018). Nevertheless, the question remains whether crowding can occur in nat-
ural scenes at all. Without varying the target/flanker relationship while holding scene/object
context constant, whether and when we should expect to find crowding of objects in natural
scenes remains to be determined.

Thus, this study addresses a key question for crowding research, namely, whether there is
compelling evidence of crowding of real-world objects in real-world scenes as has been shown
for simpler stimuli (e.g., letters, numbers, or Gabor patches) on blank screens, or is the
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crowding effect overcome by the benefit of having objects in the context of semantically

consistent scenes? As noted earlier, there is scant empirical evidence of crowding of realistic

objects in realistic real-world scenes along with evidence against the existence of crowding in

scenes, which may be due to facilitation of object recognition by scene context. Therefore,

the chief goal of this study was to rigorously experimentally test for a crowding effect on

recognition of real-world objects in real-world scenes. If facilitation of object recognition by

consistent scene context is sufficient to overcome any crowding effects, then we should find

little if any evidence of crowding in scenes containing objects consistent with their scene

backgrounds. We therefore produced scenes containing only scene-consistent objects.

However, to rigorously test for the existence of crowding in scenes, we have manipulated

both the retinal eccentricities of target objects and the spacing between the centers of the

target and flanking distractor objects. We have then compared spacing conditions that would

be predicted to produce more crowding versus less. We did this by using architectural ren-

dering software to produce highly realistic scenes in which we could precisely control the

locations and spacing of target and distractor objects. Furthermore, because the most com-

pelling demonstration to date of crowding in a realistic scene included only a single target

object and scene, in order to produce more generalizable results, we produced several scenes

with multiple objects in multiple locations.

Experiment 1: Tachistoscopic Presentation

Method

Participants. Forty-four undergraduates from Kansas State University (21 females) gave

informed consent to participate in the experiment for course credit. Participants had a

mean age of 20.0 years and all had visual acuity of 20/30 or better.

Stimuli. Computer generated living room scenes were created using Autodesk 3ds MaxVR

design software.3 Eight different base images were created, with six versions of each base

image: three crowded and three uncrowded (see Figure 1). The objects and backgrounds used

were available within the software library. All scene images were 1,024� 768 pixels and

37� 27.5 cm. At the viewing distance of 53.3 cm, images subtended 38� � 29� of visual

angle. Target objects were presented approximately 11.3� to 13.8� (M¼ 12.0�, standard devi-

ation [SD]¼ 1.0�) from the center of fixation at eight potential locations. Four flanker

objects were placed around the target object, with the distance between the target and

flankers varying in a way that would make the crowding effect more or less likely to

occur. The spacing between flankers and target objects ranged between 2.5� and 9.8�

(M¼ 5.75�, SD¼ 2.39�), and the Bouma factor,4 the ratio between the mean visual angle

between the target and flankers and target retinal eccentricity, ranged between 0.18 and 0.87

(M¼ .45, SD¼ 0.20; see Figure 2). Note that crowding typically diminishes when the Bouma

factor is above a critical value of 0.4 (Pelli et al., 2004; Pelli, Tillman, et al., 2007;

Strasburger, 2020; Strasburger et al., 1991). The stimuli were constructed so that both the

overall scene configuration and the arrangement of target and distractor objects appeared

natural and realistic for both the crowded and uncrowded conditions. Objects were placed in

scene-consistent locations and all items that appeared within the scene could reasonably be

expected to appear in a living room.
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Procedure. Participants’ visual acuity was tested using a Snellen eye chart, and all had 20/30
vision or better. Participants were then given instructions for the experimental procedures.
Participants viewed images using a chin rest to maintain a constant viewing distance
throughout the experiment and between participants. To familiarize participants with the

Figure 1. Sample scenes showing examples of crowded (left) and uncrowded (right) targets within a single
base-image. The yellow circle in the center of each scene represents the central fixation point. The object
located within the red ring is the target object to be identified. Note that the red circles shown in this figure
only indicate the target for demonstrative purposes and were not included in the actual experiment. Within
each base-scene, six versions were generated: three versions with different target objects and locations, and
a crowded and uncrowded version for each target object. Participants saw each unique target once.
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names associated with each of the objects, participants went through a learning phase, in

which each object was presented at the center of the screen on a neutral gray background for

750 milliseconds followed by its label, which remained on the screen until the participant

clicked a mouse to proceed to the next object. A total of 50 objects were presented in

the learning phase. Following the learning phase, participants completed six practice

trials. Half of the trials included crowded objects and half uncrowded, and participants

were given feedback after each trial, to allow them to become familiar with the task and its

difficulty level.

Trial Procedures. At the beginning of the trial, the participant was presented with a fixation dot

(see Figure 3A). To begin the trial, participants clicked the mouse button. A small white dot

flickered 4 times at fixation (one flicker cycle: 36 milliseconds on, 24 milliseconds off) to

capture attention at the center of the screen (Carmi & Itti, 2006; Ludwig et al., 2008; Mital

et al., 2010). Next, a white dot, 0.5� in diameter, flickered at the target object’s location twice

(one flicker cycle: 36 milliseconds on, 24 milliseconds off) as a sudden-onset cue to capture

attention at the target location and help store information from the upcoming target in visual

working memory (Belopolsky et al., 2008; Theeuwes et al., 1999). Then, a scene image con-

taining the target object was presented for 80 milliseconds. Because the minimum normal

saccadic latency is 150 milliseconds, and average saccadic durations are 50 milliseconds, if a

participant quickly made a saccade to the cued target location, their eyes should have arrived

there no earlier than 200 milliseconds after the cue onset, by which time the target would be

extinguished. Then, the scene image was followed by a blank gray screen for 750 milliseconds.

Participants responded by clicking on the target object’s category name from among a 15-

alternative forced choice matrix containing the names of the target, its flankers, and all other

objects used in that scene, but only on the other two trials for that scene. The arrangement of

the object names on the response screen was randomized on each trial.

Figure 2. The distribution of flanker/target spacing ratio (the Bouma factor) values or the ratio of the
flanker-to-target spacing and the retinal eccentricity of the target. Each point represents a single image
version of a given base image, and its color represents its base image. X-values on the plot represent the
Bouma factor, and Y-values represent their frequency, which has been smoothed along the x-axis using the
kernel density function of the lattice library in R.
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Design. Six different scenes were included in the experiment, with each scene containing three
potential target objects. Each scene was shown only 3 times, once for each of three targets in
that scene. However, to avoid having the participants learn the targets and distractors, only
the specific target and its four specific distractors were shown on any given trial, and on only
that single trial. The two other targets for that scene, and each of those targets’ specific
distractors, were shown on the two other trials for that scene (see Figure 1). A total of 18
experimental trials were completed, with half of the trials displaying crowded targets and the
other half uncrowded targets. No participant viewed both the crowded and uncrowded
version of the same target. Scenes were presented in a random order, and the image-
condition blocks (i.e., crowded vs. uncrowded) were counterbalanced across participants.

Figure 3. Trial schematics for Experiments 1 and 2. A: Schematic for Experiment 1, utilizing a tachistoscopic
presentation. B: Schematic for Experiment 2, utilizing eye tracking and a gaze-contingent presentation.
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Results

Precursors. With 44 participants each completing 18 trials, there were a total of 792 observa-
tions.5 Due to an error in stimulus creation and peripheral cue location in three base image
pairs, 3 trials out of 18 were filtered out for each participant (i.e., 132 total observations were
filtered). After the above filtering, analyses were carried out on a total of 660 observations.

Mean Object Identification Accuracy. In the study of crowding (and psychophysics in general) a
two-stage analytical approach often used is to (a) identify each subject’s parameter estimates
of their best-fitting psychometric function and (b) then subject these individual parameter
estimates to a standard analysis of variance to determine whether they vary across predictors
of interest. This analysis is typically performed on data collected over many trials using
homogeneous stimuli, for instance, Gabor patch identification against a neutral-gray back-
ground. In contrast, this study estimated object identification performance in natural scenes,
thus contributing an additional source of within-subject variance in the parameter estimates.
Furthermore, not all participants saw the same version of each scene/object pairing, making
it impossible to disentangle the influence of each image on each participant’s performance
using the standard two-stage approach.

To address this issue, generalized linear mixed-effect modeling was used to calculate the
(logistic) psychometric function (i.e., object recognition as a function of Bouma factor) while
accounting for the independent sources of variability from subjects and stimuli. Mixed-effect
models include fixed-effect predictors (e.g., the Bouma factor) while also modeling the
random variation in each subject’s average accuracy, each subject’s sensitivity to within-
subject variables (e.g., Bouma factor), and differences in the average difficulty of each
scene. This random variation is not treated as the result of fixed effects but rather as the
result of random sampling from a population of subjects and stimuli (Baayen et al., 2008).
Because the analysis was performed at the individual trial level, the outcome variable (correct
vs. incorrect response) was binomial, necessitating the use of a generalized linear model with
a binomial distribution for the outcome variable and a logit link function (Jaeger, 2008) with
the lme4 package (Bates et al., 2014) in the R statistical software (version 3.1.3).

Our criterion variable was object recognition accuracy (coded as 0 and 1 for incorrect
and correct responses, respectively), therefore we specified a binomial distribution with a
logit link function and used Bouma factor as our sole fixed effect (i.e., predictor; see Table
1, Column 1). With respect to random-effect structures, two classes of models were con-
structed to predict object recognition accuracy. The first class of models included by-subject
random effects only, accounting only for individual participant differences (see Table 1,
Column 2). The second class of models included both by-subject and by-item (base-image)
random effects, which accounted for individual differences among participants as well as
individual effects of each scene (see Table 1, Table 4). Within each of these two classes of
models, three versions were generated. The first version included a random intercept with
no fixed effects (i.e., a null model). The second version had a fixed effect of Bouma factor
and a by-subject random intercept, which accounted for individual variability among par-
ticipants’ mean accuracy, but did not account for individual differences when calculating
the fixed effect (i.e., the slope) for Bouma factor. The third version had a fixed effect of
Bouma factor, a by-subject random intercept and random slope for Bouma factor. This
model version calculated the fixed effect (i.e., the slope) of Bouma factor on object recog-
nition accuracy on the basis of individual subjects’ slopes. By-item random effects were
included as random intercepts only, as not all participants viewed the same versions (i.e.,
crowded vs. uncrowded) of each image, and thus, these models accounted for the impact of
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Figure 4. Fitted mean accuracy for object identification as a function of the fixed effect of Bouma factor,
based on the optimally fit mixed-logit model from Experiment 1. The log-odds for object recognition have
been transformed with an inverse-logit function to provide proportion correct for the logistic function. The
range of Bouma factor extends from the minimum to the maximum values used in this study (as illustrated in
Figure 2). Error bars represent a 95% confidence interval above and below the mean (using model parameter
estimates obtained from lme4). The dotted line indicates the chance level of accuracy (6.7%).

Table 1. Model Fitness Comparisons for Experiment 1.

Fixed effects

By-subject

random effects

Model log likelihood

(by-subject only)

Additional by-item

random effects

Model log likelihood

(by-subjectþ by-item)

Null/intercept Intercept �352.47 (2) Intercept �338.83 (3)

�327.47 (4)*

�326.89 (6)

Bouma factor Intercept �343.66 (3) Intercept

Bouma factor Bouma factor �342.95 (5) Intercept

For more details on parameter estimates, see Equation 1 and Figure 4 in the main text.

Column 1: The Fixed Effects structures for the models being compared. These include a null/intercept model on Row 1,

which serves as a random chance/baseline comparison. Rows 2 and 3 include the fixed effect of Bouma factor.

Column 2: The By-Subject Random Effects structures account for variability in object recognition across subjects. Rows 1 and

2 show random Intercept models, which account for individual differences for overall object recognition (i.e., random

subject intercepts). Row 3, Bouma factor, includes models where the slope for Bouma factor can vary across participants

(i.e., random subject slopes).

Column 3: Log-likelihood values for the By-Subject Only random-effect models.

Column 4: The By-Item Random Effects structures include measures of variability in object recognition across base images.

Note that these models also include the By-Subject Random Effects from the same row of Column 2.

Column 5: Log-likelihood values for the By-Subject + By-Item random-effect models.

*Denotes the model with the combined largest log likelihood with the smallest df This model included the fixed effect of

Bouma factor, the “By-Subject Random Effect” of Intercept, and the By-Item Random Effect of Intercept of base image. For

more details on parameter estimates, see Equation 1 and Figure 4 in the main text.

10 i-Perception 12(2)



the image when calculating the fixed effect of Bouma factor. Model fitness was evaluated
through likelihood ratio tests between the models with the two highest log-likelihood ratio
values (Bates et al., 2015).

The likelihood ratio tests demonstrated that the model which included Bouma factor as a
fixed effect, and further included by-subject and by-item random intercepts, provided a
significantly better fit than the null fixed-effect model with the same random-effect structure
(�327.47 vs. �338.83, respectively; v2¼ 22.73, df¼ 1, p< .001).6 Although the model with
by-subject random slopes and by-item random intercepts showed a slightly greater likelihood
ratio value (�326.89), it was less parsimonious as it also had more free parameters and did
not demonstrate significantly better fit (v2¼ 1.16, df¼ 2, p ¼.56). Therefore, the by-subject
and by-item random-intercept model was selected. This model structure is given by the
generalized linear equation (Equation 1):

ln
p

1� p
¼ aþ bXþ Zi þ Zj (1)

In this equation, the log-odds for target recognition accuracy (i.e., ln p
1�p) vary as a func-

tion of the intercept (a) and the fixed effect of Bouma factor, where X represents the cen-
tered.7 Bouma factor value for a given image and b represents the slope for Bouma factor.
Additional model flexibility is provided by the random intercepts of Subject (Zi) and Base
image (Zj). This model was selected to evaluate the fixed effect of Bouma factor on object
recognition accuracy. Mean accuracy (i.e., the intercept) was low, approximately 17.9%, but
well above the chance-level (6.7%) performance (a¼�1.52, z¼�4.73, p¼ .001). As shown
in Figure 4, the slope for Bouma factor was significantly positive (b¼ 2.46, z¼ 4.76,
p< .001), meaning that accuracy was lowest when the space between the target and flanker
objects was small, but improved with increasing space. Thus, the crowding effect was found
for objects in real-world scenes. However, the psychometric function presented in Figure 4 is
clearly only a small portion of the overall function, with accuracy continuing to steepen at
the upper limit of Bouma factors used in this study.

In addition, the optimal model’s random effects included only a random intercept, indi-
cating that there was substantial individual variability in terms of mean accuracy (i.e., the
intercept) but not as a function of the effect of Bouma factor. This suggests that the effect of
Bouma factor on recognition accuracy was quite uniform across participants (see Figure 5A).
Furthermore, there was no systematic relationship between the fixed effects of intercept (i.e.,
individual subjects’ mean accuracy) and slope (i.e., individual subjects’ change in accuracy
across Bouma factor), r(43)¼�.10, p¼ .51.

Discussion

This experiment provides a rigorous test of object crowding in real-world scenes. This was
shown experimentally by comparing conditions predicted to produce crowding, with the
Bouma factors ranging from 0.2 to over 0.8. It also used numerous (15) different realistic
objects in several (6) different realistic scenes. The objects were also placed in scene-consistent
locations within the scenes, which should enhance object identification (Boyce & Pollatsek,
1992; Davenport & Potter, 2004; Wijntjes & Rosenholtz, 2018, but see Hollingworth &
Henderson, 1998). Likewise, the flankers at their respective spacings were also put in scene-
consistent locations for the same reasons (see Figure 1). However, Experiment 1 had an
important limitation. Specifically, all target presentations were presented at roughly equal
distances from the center of the image. Thus, if participants noticed this, they could have
adopted a strategy of quickly moving their eyes from the center of the screen in hope of
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fixating the target when it appeared, in which case they would not need to use their peripheral

vision to accomplish the task.Wijntjes and Rosenholtz (2018) shared a similar concern in their

study. To deal with that concern, in their study, the experimenter watched a live video image

of participants in order to visually detect eye movements during each trial. We adopted a

different approach to dealing with this concern, by carrying out a second experiment using an

eyetracker to more carefully control for eye movements by participants.

Experiment 2: Gaze-Contingent Presentation

To rule out the possibility of participants adopting a strategy of foveating the target object,

which would invalidate the results of Experiment 1, we conducted a gaze-contingent version

of the experiment using high spatial and temporal resolution eye tracking.

Method

Participants. Seventy-three undergraduates from Kansas State University (53 females) gave

informed consent to participate in the experiment for course credit. Participants had a mean

age of 18.4 years and all had visual acuity of 20/30 or better.

Figure 5. Fitted log-odds accuracy as a function of Bouma factor for individual participants in Experiment 1.
A: Proportion correct is indicated on the right y-axis. Each line represents an individual participant’s fitted
accuracy for the by-subject random slopes model (third row, far-right column of Table 1), and the panels are
divided among participants with low (left), medium (center), or high (right) levels of mean accuracy for object
recognition. Group divisions were based on random-effect residual scores in Figure 5B. The horizontal
dotted line indicates chance-level performance. This is not the model used to generate Figure 4, because it
has additional flexibility for individual slopes, whereas the optimally fit model for Experiment 1 only used
random intercepts. Notice that only the subjects’ intercepts for object recognition accuracy vary between
the three accuracy groups, even though slope is also left free to vary. B: Mean accuracy (intercept) residual
scores for individual subjects. Individual subjects are ordered by mean accuracy rank, and the vertical lines
indicate divisions used to generate the binned accuracy groups in Figure 5A.
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Stimuli. The stimuli used were the same as those in Experiment 1.

Procedure. Procedures were exactly the same as in Experiment 1, with the following excep-

tions: Participants were given a demonstration of how their eye movements could affect the

image shown on the screen through the use of a gaze-contingent display (see Figure 3B). This

was intended to make participants more aware of their eye movements and help them main-

tain central fixation during the experiment, rather than trying to fixate the peripheral target

in order to identify it. We used an EyeLink 1000 eyetracker with an average accuracy of 0.25�

to 0.5�, a resolution of 0.01� root mean square, and a micro-saccade resolution of 0.05�.
A 9-point calibration was performed for each participant with an average error of �0.5�. We

no longer used flicker to capture attention to the fixation point at the beginning of the trial as

we were using the gaze-contingent display. At the beginning of each trial, a central fixation

dot was present and the participant pressed a button on a control pad to begin a trial.

To ensure central fixation, we used a “fixation failsafe” algorithm such that, if the partic-

ipant’s gaze was not within 0.5� of the fixation dot when they pressed the button to initiate

the trial, the trial did not proceed. Then, a white dot 0.5� in diameter flashed at the target

object’s location for 120 milliseconds as a sudden onset cue. However, in contrast to

Experiment 1, this was followed by presentation of the target image for the length of one

eye fixation, but with a maximum duration of 1 second. This was accomplished by removing

the target image as soon as an eye movement was detected (>30 deg/s peak velocity), or if no

eye movement was detected after an image duration of 1 second. Image presentation dura-

tions lasting less than 50 milliseconds or greater than 1,000 milliseconds (1 second) were

removed from the analysis.

Results

Precursors. With 74 participants participating in 18 trials each, there were a total of 1,332

observations. Prior to any analyses, 3 trials from each participant were filtered to remove 222

trials that contained erroneously generated images.8 This resulted in a total of 1,110 obser-

vations remaining for the final analyses.

Object Identification Accuracy. Results were analyzed similarly to the method of Experiment 1

(see Table 2). As in Experiment 1, the results from Experiment 2 showed that the model with

the optimal fit for random effects included by-subject and by-item random intercepts.

Furthermore, the model that included the fixed effect of Bouma factor (�441.95) provided

a significantly better fit to the data than the null model with the same random-effect struc-

ture (�448.61; v2¼ 13.38, df¼ 1, p< .001). Another important distinction between

Experiment 1 and Experiment 2 was that the amount of time available for participants to

view the image was controlled by how long they were able to maintain gaze at the center of

the display. Specifically, in Experiment 1, the viewing time was fixed by the 80-millisecond

target presentation, whereas in Experiment 2, viewing times ranged from 51 to 970 milli-

seconds. This provided a means of testing whether viewing time (i.e., fixation duration)

interacted with Bouma factor as a fixed effect, and whether there was substantial variability

in rate of information processing over time across participants as a random effect. However,

when the centered fixation duration was included as a fixed effect (�440.72), it provided no

improvement to model fitness (v2¼ 3.78, df¼ 3, p¼ .43) and therefore had no effect on object

recognition accuracy. Thus, the same generalized linear equation as before (i.e., Equation 1)

was used to fit the results from Experiment 2.
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Mean accuracy was approximately 11.8% (a¼�2.01, z¼�6.25, p< .001), and slightly

above the chance-level accuracy of 6.67%. As shown in Figure 6, target identification accu-

racy increased significantly with Bouma factor (b¼ 1.64, z¼ 3.69, p< .001). This replicates

the primary results of Experiment 1 of crowding of objects in real-world scenes and shows

that those results cannot be explained by subjects fixating the target object. The fact that

object recognition improved as flanker spacing increased provides evidence for the general

phenomenon of crowding. However, recognition accuracy as a function of Bouma factor

seemed to improve at a more gradual rate than in Experiment 1.
Similar to Experiment 1, Experiment 2’s model comparisons found that the optimal

random-effect structure was a random-intercept model. This model was tested against a

model with a random slope of Bouma factor, which fitted individual subjects’ slopes for

accuracy as a function of Bouma factor (see models in Line 3 of Table 2). However, this

additional level of model complexity provided identical goodness of fit, and thus the simpler

random-intercept model was found to be optimal. Again, this result demonstrates that there

were minimal individual differences across participants with respect to the effect of Bouma

factor (i.e., slope) on overall recognition accuracy (i.e., intercept, see Figure 7A). This is

further supported by the fact that the fixed-effect correlation between subject intercept and

Bouma factor slope was not significant, r(74) ¼.08, p¼ .51.
Figure 7 also illustrates some characteristics of the results in Experiment 2. The reason

that Figure 7A appears to contain only a single line for the Medium Accuracy tertile is that

there was only a single accuracy level in that tertile. This is indicated in Figure 7B, which

shows that the residual score for the Medium Accuracy tertile had only a single value.

Figure 6. Fitted mean accuracy for object identification as a function of the fixed effect of Bouma factor,
based on the best-fit mixed-logit model from Experiment 2. The log-odds for object recognition have been
transformed with an inverse-logit function to provide proportion correct for the logistic function. The range
of Bouma factor extends from the minimum (0.18) to the maximum (0.81) values used in this study (as
illustrated in Figure 2). Error bars represent a 95% confidence interval above and below the mean (using
model parameter estimates obtained from lme4). The dotted line indicates the chance level of accuracy
(6.7%).
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Similarly, in Figure 7A, there are only two slopes for the Low Accuracy tertile, which is
because there were only two scores in that tertile, as shown in Figure 7B. In fact, in the
Medium Accuracy tertile, the single score was 2/15, or 13.3% correct, and in the Low
Accuracy tertile, the two scores were 1/15 (6.7% correct), and 0/15 (0% correct). The
Medium and Low Accuracy tertiles therefore had a floor effect, producing scant information
about the relationship between Bouma factor and accuracy. On the other hand, there was
much more variability in the High Accuracy tertile, as shown by the multiple different (but
highly similar) slopes in Figure 7A, and multiple different residuals in Figure 7B. The High
Accuracy tertile provided the variability in accuracy as a function of Bouma factor which
allowed the model to determine the slopes for that function. The model was then able to
extrapolate that function to the Medium and Low Accuracy tertiles, providing one and two
slopes for the Medium and Low Accuracy tertiles respectively. Despite this, further analysis
has shown that the three accuracy tertiles demonstrate the same general pattern: more incor-
rect responses as Bouma factor increased. It is for this reason that the slopes for accuracy as
a function of Bouma factor were roughly equivalent across the accuracy tertiles.

General Discussion

Experiment 2 replicated the crowding effect found in Experiment 1. Thus, we conclude that
crowding can indeed occur within the context of naturalistic scenes in which both the target
objects and their flankers are consistent with those scenes. Thus, unlike in Wijntjes and
Rosenholtz (2018), the context of the surrounding consistent scene information was not
enough to overcome the crowding produced by flanking objects. A likely reason for the
contrasting results between studies is that this study systematically varied the spacing
between flanker and target objects at a range around Bouma’s constant, such that images
would be more or less likely to produce the crowding effect. This was not the case in the
study by Wijntjes and Rosenholtz (2018), where an aperture was placed around objects in
real-world scenes to either include or exclude nearby scene information. The fact that we
created different versions of the same images in which only the target flanker spacing varied
provides additional evidence that scene context was not sufficient to counteract the crowding
effect. Instead, this study provides more rigorous and controlled experimental support for
the earlier demonstration of crowding of a single object in a single scene by Whitney and Levi
(2011) and for the possible crowding effects in street scenes shown by Sanocki et al. (2015).
Furthermore, this study did so with a relatively large number of naı̈ve participants while
carefully controlling target and flanker retinal eccentricities by using a gaze-contingent fix-
ation fail-safe algorithm.

Although object recognition accuracy was somewhat low in this study, most participants
were well above chance-level accuracy despite using their peripheral vision to recognize
objects. Both experiments found the same general pattern of crowding in real-world
scenes, but performance was better overall in Experiment 1 than in Experiment 2. One
explanation for the better performance in Experiment 1, which did not use eye tracking to
ensure central fixation, is that participants adopted the strategy of fixating off center in order
to view the target objects in central vision. However, given that participants did not know the
locations of the targets prior to each trial, the interstimulus interval between the location
prime and the onset of the image was too brief to make an eye movement. Adopting such a
strategy is just as likely to have impaired performance as it was to have improved it.
Alternatively, in Experiment 2, the target image disappeared from the screen as soon as
participants moved their eyes from fixation, and therefore untrained observers may have
had difficulty in maintaining stable central fixation while they covertly attended to the
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peripheral target. The median viewing time for images in Experiment 2 was 373 milliseconds,

which is slightly longer than the average fixation duration in scenes (330 milliseconds;

Rayner, 1998), and was nearly double the sum of the cuing duration and target duration

in Experiment 1 (120 millisecondsþ 80 milliseconds, respectively,¼ 200 milliseconds).

Although trained observers who are able to maintain longer fixations (e.g., 1,000 millisec-

onds) while attending to peripheral targets might perform better than the untrained observ-

ers in Experiment 2, the current results with untrained observers likely represent the

difficulties caused by crowding in normal real-world scene perception. This result is consis-

tent with results fromWallace et al. (2013), who showed that identification of crowded letters

in the periphery did not benefit from processing times beyond 250 milliseconds.
Conversely, data from a visual search task in which participants were required to maintain

gaze at a central location showed that detection rates benefitted from fixation durations

lasting up to 3 seconds, and that detecting targets positioned 12� from the fovea occurred

after approximately 400 to 1,200 milliseconds of search time (Motter & Simoni, 2008). The

results from Experiment 2 in this study clearly demonstrate that accounting for viewing time

did not provide any benefit to object recognition accuracy, which suggests that the crowding

phenomenon may hinge entirely on signal data limitations, rather than processing resources,

like processing time (Norman & Bobrow, 1975). This is not to say that crowding is

Figure 7. Fitted log-odds accuracy as a function of Bouma factor for individual participants in Experiment 2.
A: Proportion correct is indicated on the right y-axis. Each line represents an individual participant’s fitted
accuracy for the random slopes model, while the panels are divided among participants with low (left),
medium (center), or high (right) levels of mean accuracy for object recognition accuracy. This is not the
model used to generate Figure 6 because it had additional flexibility for individual subjects’ slopes but does
demonstrate that the addition of random slopes provided no benefit for improved goodness of fit. Notice
that the slope for object recognition accuracy across Bouma factor does not differ as a function of overall
accuracy (i.e., intercept) even though slopes were able to vary. Group divisions were based on random-effect
residual scores (as shown in Figure 5B). The horizontal dotted line indicates the centered model intercept. B:
Mean accuracy (intercept) residual scores for individual subjects. Individual subjects are ordered by rank, and
the vertical lines indicate divisions used to generate the accuracy groups in Figure 7A.
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completely independent of other processing resources, like attention. For instance, Yeshurun
and Rashal (2010) have previously reported that the critical spacing value for crowding in
peripheral vision (i.e., the minimal spacing at which crowding no longer occurs) can be
decreased using transient attentional cues. Consistent with our results, Yeshurun and
Rashal also found no change in accuracy with increased viewing time. Recent computational
models of crowding have found evidence that the visual system’s sparse coding for early gist
information is quite accurate at predicting the crowding effect across multiple levels of
processing (Chaney et al., 2014). Given that gist is rapidly acquired and heavily dependent
upon peripheral vision (Larson & Loschky, 2009; Wang & Cottrell, 2017), it is unsurprising
that we did not find an effect of viewing time.

The data presented in this study do show that crowding can occur in real-world scenes,
even when the target and flanker objects are semantically consistent with the scene. However,
the precise mechanisms which contribute to crowding are still being investigated. Specifically,
whether crowding is a product of spatial pooling (Dakin et al., 2010; Greenwood et al., 2010;
Parkes et al., 2001; Wallis & Bex, 2012; Wolford, 1975), localization errors (Freeman et al.,
2011; Huckauf & Heller, 2002; Poder & Wagemans, 2007; Strasburger, 2014; Strasburger &
Malania, 2013), or both (Hanus & Vul, 2013; Strasburger, 2005; Strasburger et al., 1991), is
an ongoing debate. For instance, Wallis and Bex (2012) found compelling evidence that
crowding occurs in the visual stream prior to object recognition. In that study, participants
were required to detect textured, elliptical patches—called dead leaves—in natural scenes.
They found that the degree to which participants could detect artifacts in natural scenes at
different eccentricities depended on the size of the patches as well as the local contrast of the
image structure surrounding. More importantly, they found that the relationship between
eccentricity, local root mean square contrast, and patch size closely resembles receptive field
sizes in V1, which would suggest that crowding can occur before object recognition.
Nevertheless, there is a wealth of evidence demonstrating that crowding can occur at later
stages of processing (e.g., V4; van den Berg et al., 2010) when object features are preserved
but are not effectively isolated from the features of nearby objects (Pelli et al., 2004).
Therefore, an analysis of errors in Experiments 1 and 2 may provide further insights into
nature of the crowding effect in natural scenes.

We carried out an exploratory analysis of the errors to see whether there was evidence of
localization errors. We found that approximately 41% and 44% of all errors, in Experiments
1 and 2, respectively, were due to mistaking flanker objects for the targets. Note that those
percentages are considerably higher than the chance probability of randomly selecting one of
the four flankers from among the 14 distractor options (� 28.5%). This result is consistent
with numerous prior studies (Chung et al., 2003; Estes et al., 1976; Huckauf & Heller, 2002;
Strasburger, 2005; Strasburger et al., 1991; Strasburger & Malania, 2013; Vul et al., 2009;
Wolford & Shum, 1980; see Strasburger, 2020, for review). For example, Strasburger (2005,
p. 1028) found up to 52% of errors were localization errors in crowding. However, the
Bouma factor did not appear to affect the likelihood of mistakenly selecting a flanker
object in either Experiment 1 (b¼�0.634, z¼�1.37, p¼ .17) or Experiment 2
(b¼�0.078, z¼�0.16, p¼ .87). Nevertheless, the general finding that participants erred
by confusing nearby objects with target objects is partially in agreement with the crowding
literature.

As noted earlier, Wijntjes and Rosenholtz (2018) raised the important question regard-
ing the degree to which scene context provides protection from crowding. In their
Experiment 1, they estimated crowding in scenes by increasing the size of an aperture
around a target object, with the assumption that more of the viewable scene would include
more crowding objects. Because accuracy improved with increased aperture size, they
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concluded that scene information provided a protective effect against crowding. Although
they found that more flanker objects were generally visible with a larger aperture, the
number of objects within the critical (crowding) radius was not included as a fixed param-
eter in their model. In contrast to Wijntjes and Rosenholtz, the models evaluated in our
experiments explicitly tested whether object/flanker distance contributed to a meaningful
difference in object recognition accuracy and found that it did. Our results do not rule out
the hypothesis that natural scenes provide some protection against crowding, as even the
smallest target/flanker ratios resulted in above-chance recognition accuracy. However, the
design of our study also manipulated the Bouma factor of targets and flanker objects
across different versions of the same scene, effectively holding scene context constant.
The comparisons made in our models indicated that target/flanker distance contributes a
meaningful, generalizable effect (Baayen et al., 2008) on object recognition in simulated
natural scenes, and that this crowding effect is similar to the findings of other less natu-
ralistic crowding experiments (Levi, 2008; Parkes et al., 2001; Poder & Wagemans, 2007;
Whitney & Levi, 2011).

One limitation of this study is the stimulus set used. On the one hand, by using interior
design software to create the stimuli in this study, we had the advantage of being able to
control target/flanker distances while creating highly realistic scene stimuli in which the
objects were semantically consistent with the scenes. On the other hand, the task of
creating such stimuli was far from trivial, thus limiting our total number of scenes,
and the range of scene categories, as compared with the studies in Wijntjes and
Rosenholtz (2018), who tested for crowding in a wider variety of natural scene images.
Future research will need to go beyond the assumption that individual differences in
participants and scene context affect crowding and determine how these individual differ-
ences affect crowding.

One consistent result across participants was that object recognition was quite low across
most participants, even when the flanker objects were far from the targets, and likely not
crowded. Low recognition accuracy could be attributed to the large distance of the target
objects from the center of gaze (11.3�–13.8� eccentricity) as well as the added difficulty of a
15-alternative forced choice recognition task. As reported in Experiment 2, the Bouma factor
that yielded above-chance object recognition was approximately 0.5. Bouma (1970) origi-
nally found that the critical value for crowding was approximately 0.5, and many other
studies have found similar critical values (Pelli, Tillman, et al., 2007; Strasburger, 2020;
Strasburger et al., 1991). However, the interpretation of the critical value derived from
our study differs from these prior studies because they reflect disparate points on the psy-
chometric function. Specifically, the critical value from our study represents the point at
which object recognition is minimally above chance, whereas the original Bouma factor
reflects the point at which crowding diminishes. To frame our results in terms of the broader
context of the crowding literature, it is important to consider several components of our task
and stimuli and their impact on performance.

First and foremost, object identification was fairly difficult, regardless of the Bouma
factor, with mean accuracy failing to exceed 40% in Experiment 1 and 22% in
Experiment 2 (with chance being 1/15¼ 6.6%). Although the slope for accuracy as a function
of Bouma factor was positive, recognition accuracy did not seem to reach asymptotic per-
formance, regardless of the spacing between flankers and targets. Extrapolating perceptual
performance from the available data suggests that the Bouma factor necessary to reach 80%
accuracy would be between 1.55 (Experiment 1) and 2.55 (Experiment 2), both substantially
larger than those estimated by (Pelli, Tillman, et al., 2007). Indeed, given that our target
eccentricities were roughly 10�, Bouma factors of 1.5-2.5 would require flankers at 15� to 25�
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from the target, many of which would be outside of the visible image space. This level of

added task difficulty made estimating the entire psychometric function for accuracy as a

function of Bouma factor impractical, if not impossible. Therefore, future investigations of

crowding in natural scenes should explore peripheral object recognition accuracy over a

wider range of target eccentricities and target sizes, contextual coherence, and with varying

numbers (and arrangements) of flankers to account for the whole range of the psychometric

function.
It is possible that multiple factors affect crowding of objects in natural scenes, as proposed

by Wijntjes and Rosenholtz (2018). For instance, if the semantic context of the scene is

capable of counteracting the crowding effect, then the critical spacing for targets and flankers

should decrease when targets and objects are consistent with scene category and increase

when they are inconsistent with their scene category (Wijntjes & Rosenholtz, 2018).

Conversely, it may be the case that crowding is unaffected by semantic consistency versus

inconsistency but is dependent upon abstract representations of scene space (e.g., openness,

navigability, depth; Greene & Oliva, 2009). Such a distinction may be difficult to tease apart,

given that high- and low-level representations of scenes are strongly correlated with each

other (Groen et al., 2017). However, distinguishing between categorical and spatial influen-

ces of objects in natural scenes will be crucial to forming a more complete model of crowding

in natural scenes.
In sum, this study has shown clear evidence of crowding of objects embedded within

realistic real-world scenes, in the general sense of the phenomenon. Furthermore, this

study showed crowding of objects in realistic scenes while carefully controlling for both

the retinal eccentricity of targets and the spacing between targets and flankers according

to the Bouma factor. Additional control over target and flanker distance was enforced with

the use of gaze-contingent displays. Further such studies are called for to investigate the

range of critically important questions regarding crowding (Pelli & Tillman, 2008;

Strasburger, 2020; Strasburger et al., 2011; Whitney & Levi, 2011) within the context of

real world scenes (e.g., simulated driving). Such studies will play an important role in under-

standing peripheral vision in scene perception.
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Notes

1. It is important to note that the vast literature on crowding over the last two decades has shown a
large number of other variables can influence the critical spacing necessary to produce the crowding
phenomenon (Whitney & Levi, 2011). However, discussion of most of these factors is beyond the
scope of this study.

2. Natural images have also been manipulated using algorithms to create pseudo-crowding (Freeman
& Simoncelli, 2011).

3. Thanks to Michael R. Luczak for the design and creation of the stimuli and to Kevin K. Rooney for
assistance in stimulus design.

4. The conventional usage of the term Bouma factor (or Bouma’s factor) is as the parameter in Bouma’s
law, which describes the ratio between critical flanker spacing and target eccentricity, where critical
spacing refers to the spacing necessary to achieve a specific criterion level of accuracy (Pelli, Tillman,
et al., 2007; Strasburger, 2020). Because our study manipulated target eccentricity and flanker
spacing through the method of constant stimuli and not an adaptive threshold, here we use the
Bouma factor in an image as a variable to quantify the range of target-flanker spacing as a value that
is normalized across target eccentricity in each image.

5. Below chance (i.e., <6.7%) accuracy was found for 13 of the 44 participants. However, comparisons
of the results with and without the below-chance participants did not substantially affect the slope
for Bouma factor. Therefore, the reported results for Experiment 1 were generated using data from
all participants.

6. The reported comparison was between two fixed-effect models that had by-subject random-inter-
cepts and by-item random effects.

7. Prior to analysis, Bouma factor was centered by the mean Bouma factor for all images, or 0.45.
Therefore, the intercept (a) should be interpreted as accuracy of the mean Bouma factor of images
used in the study.

8. Twenty-three participants demonstrated accuracy below chance (6.7%) accuracy. However, a com-
parison between results with and without the low performing individuals showed no meaningful
difference. Therefore, results reported include all participants.
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