
A coupled hydrodynamic (HEC-RAS 2D) and water quality 
model (WASP) for simulating flood-induced soil, sediment, and 
contaminant transport

Afshin Shabani1, Sean A. Woznicki2, Megan Mehaffey3, Jonathan Butcher4, Tim A. Wool5, 
Pai-Yei Whung3

1Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

2Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan

3Office of Research and Development, U.S. Environmental Protection Agency. Research Triangle 
Park, North Carolina

4Tetra Tech, Inc., North Carolina

5Region 4, U.S. Environmental Protection Agency, Atlanta, Georgia

Abstract

Increased intensity and frequency of floods raise concerns about the release and transport of 

contaminated soil and sediment to and from rivers and streams. To model these processes during 

flooding events, we developed an External Coupler in Python to link the Hydrologic Engineering 

Center-River Analysis System (HEC-RAS) 2D hydrodynamic model to the Water Quality 

Analysis Simulation Program (WASP). Accurate data transfer from a hydrodynamic model to 

a water quality model is critical. Our test results showed the External Coupler successfully 

linked HEC-RAS and WASP and addressed technical challenges in aggregating flow data and 

conserving mass during the flood event. We ran the coupled models for a 100-year flood event 

to calculate flood-induced transport of sediment-associated arsenic in Woodbridge Creek, NJ. 

Change in surface sediment and arsenic at the end of 48-h flood simulation ranged from a net 

loss of 13.5 cm to a net gain of 11.6 cm, and 16.2 to 2.9 mg/kg, respectively, per model segment, 

which demonstrates the capability of the coupled model for simulating sediment and contaminant 

transport in flood.
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1 | INTRODUCTION

Floods are one of the most common natural disasters, causing significant loss of life 

and property in the United States. During the 2018 water year (October 1st, 2017 to 

September 30th, 2018), floods caused 84 deaths and one billion USD in damages to 

buildings, infrastructure, and croplands in the United States (National Weather Service, 

2018). In addition to direct damages, floods have caused unintended release and dispersal 

of contaminated soils and sediments from contaminated sites (Horney et al., 2018; Su et 

al., 2008). Flooding from Hurricane Katrina (2005) damaged 21 oil refinery facilities in 

southeastern Louisiana and caused widespread sediment deposition in flood-inundated areas 

(Rotkin-Ellman et al., 2010). A post-Hurricane Katrina toxic trace assessment in surface 

sediment samples found arsenic and vanadium contamination in flood-affected areas of 

New Orleans, Louisiana (Su et al., 2008). Hurricane Harvey (2017) impacted Superfund 

sites in Texas and Louisiana. Among these sites, flooding damaged the San Jacinto River 

Waste Pits Superfund site cap and released underlying dioxins stored in the soil layer. As a 

result, cap repairs were made to reduce the dioxin concentration to the EPA recommended 

clean-up level for the site (U.S. Environmental Protection Agency Region VI, 2017). 

The role of fluvial flooding in contaminated sediment transport is also a concern, such 

as repeated flooding of the Chattanooga Creek, TN, causing mobilization of polycyclic 

aromatic hydrocarbons in the floodplain (Vulava et al., 2017). As the trend of increasing 

intensity and frequency of floods continues (Di Baldassarre et al., 2010; Vogel et al., 2011), 

there are increasing concerns of release and transport of contaminated soil and sediment 

(United States Government Accountability Office, 2019).

Soils and sediments act as sinks for contaminants in the environment because their 

organic and inorganic components provide attractive binding sites for low solubility toxic 

chemicals (Wölz et al., 2010). Binding to soil and sediment particles often immobilizes 

the contaminants in the environment by protecting them against external forces like 

transport of surface water (Brinkmann et al., 2010). In flood conditions, the opportunity 

for detachment and transport of contaminated sediment and soil particles increases due to 

the significant velocity and shear stress of floodwaters. The importance of sediment particles 

to contaminant transport under flood conditions has led to multiple studies on the topic 

(Baborowski et al., 2004; Foulds et al., 2014; Macklin et al., 2003; Miller et al., 1999; 

Moody et al., 2000; Navrátil et al., 2008; Vulava et al., 2017). A comprehensive list can 

be found in Ciszewski and Grygar (2016). However, a limited number of studies have used 

multidimensional hydrodynamic and water quality models to physically simulate and predict 

sediment and contaminant transport in flood events (Ciffroy et al., 2000; Hardy et al., 2000; 

Hostache et al., 2014; Schulz et al., 2009).

Typical two-dimensional (lateral and longitudinal) unsteady flood models use a fine-scale 

computational grid size on the order of meters with time steps on the order of seconds 

to accurately capture the complexity of river hydraulics (Bomers et al., 2019). Water 

quality models typically do not require such fine temporal and spatial resolution (Ganju 

et al., 2016). The resolution disparity causes flood models to become computationally 

expensive when solving water quality equations. By linking flood and water quality models, 
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hydrodynamic data can be aggregated and used for water quality simulation while reducing 

computational cost (Ganju et al., 2016).

We coupled the Hydrologic Engineering Center-River Analysis System (HEC-RAS) 2D 

and the Water Quality Analysis Simulation Program (WASP) to simulate flood-induced 

sediment and contaminant transport at contaminated sites. HEC-RAS is a commonly used 

hydrodynamic model that simulates flood hydrodynamic routing in one- and two-dimensions 

(Brunner, 2016). The model is an approved tool for studying flood hazards designated 

by the U.S. Federal Emergency Management Agency (FEMA) (U.S. Federal Emergency 

Management Agency, 2020) and the U.S. Army Corps of Engineers (Brunner, 2016). HEC-

RAS has been coupled with Qual2k for water quality studies (Fan et al., 2009) and Modular 

Three-Dimensional Finite-Difference Ground Water Flow Model (MODFLOW) to simulate 

surface water and ground water interaction (Rodriguez et al., 2008). Several programs such 

as HEC-RAS API controller, PyRAS (Peña-Castellanos, 2015), and Pyflood (Vimal, 2015) 

also have been developed to externally run and manipulate the model’s input and output, 

details of these programs can be found in Goodell (2014a), Goodell (2014b), and Dysarz 

(2018).

WASP is a fate and transport water quality framework developed by the U.S. Environmental 

Protection Agency (Ambrose & Wool, 2017) and is used worldwide (Knightes et al., 2019). 

WASP has been used in several sediment and contaminant studies (Carroll et al., 2000; 

Caruso, 2004; Franceschini & Tsai, 2010; Schultz, 2001; Suk & Fikslin, 2011). WASP does 

not simulate multidimensional hydrodynamics, but its flexible structure allows for importing 

hydrodynamic data from an external model. Although WASP accepts hydrodynamic 

data from several models (EFDC, DYNHYD, RIVMOD, CE-QUAL-RIV1, and SWMM) 

(Ambrose & Wool, 2017), and other linkages have been developed (Defne et al., 2017; Rifai 

et al., 2013; Wool et al., 2003), a coupler between HEC-RAS 2D and WASP framework has 

not been previously available. A coupled HEC-RAS 2D and WASP provides an opportunity 

to study fate and transport of sediment and contaminant in rivers and floodplains, which was 

not possible via the previously developed WASP linkages.

The objective of this study was to couple HEC-RAS 2D and WASP to simulate flood-

induced fate and transport of sediment and contaminants and demonstrate its application at a 

contaminated site. We hypothesize that coupling these two models will successfully simulate 

sediment and contaminant transport in dynamic flood conditions. The modeling results 

can provide information for contaminated site managers and associated communities for 

building resiliency. This research presents the HEC-RAS 2D to WASP coupling process and 

an example application for Woodbridge Creek in New Jersey, US. The linked HEC-RAS 2D 

and WASP were used to simulate fate and transport of sediment and contaminant (arsenic) 

during the 100-year flood event.

2 | METHODS

2.1 | HEC-RAS 2D description

HEC-RAS (v5.0.7) simulates steady and unsteady flow 1D and 2D. The 2D module 

simulates flow hydraulics in the river channel and over the floodplain where the flow is 
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mostly two-dimensional (Blanch, 2017). The model uses computational cells to represent 

terrain for calculating flow and velocity along a horizontal plane, from a computational cell 

into adjacent cell. HEC-RAS 2D calculates flow rate for a cell boundary using hydraulic 

properties of the cell and water surface elevation of adjacent cells (Brunner, 2016). The 

model solves the 2D shallow water equations (SWE) or diffusion wave equations (DWE) 

with an implicit finite volume solution algorithm. SWE is derived using continuity and 

momentum equations, and DWE is an approximation of SWE obtained by neglecting the 

inertial terms of the momentum equations (Moya Quiroga et al., 2016). Compared to DWE, 

SWE is more momentum conservative and it can model turbulence and Coriolis effect. Both 

methods, however, are expected to result in accurate simulations, except SWE should be 

used in situations when there are extreme changes in flood wave and velocity (Brunner, 

2016). Within the HEC-RAS, DWE is the default method since it improves model stability 

by simplifying calculations (Blanch, 2017). Since there are no drastic changes in flood wave 

and velocity during our flood simulation, we used DWE for HEC-RAS calculations.

HEC-RAS 2D uses spatially varying Manning’s roughness coefficients to calculate the 

flow velocity. HEC-RAS v5.0.7, used here, does not support sediment scour and deposition 

in two dimensions. However, the recently released HEC-RAS v6.0 (Beta) supports 2D 

sediment scour and deposition simulation and simulates 1D transport of some water quality 

parameters (e.g. dissolved oxygen and phosphorus). For this application, we linked HEC-

RAS v5.0.7 to WASP and simulated fate and transport of sediment and associated toxicants 

in WASP.

2.2 | WASP description

WASP is a widely used mass balance fate and transport modeling framework for simulating 

concentrations of contaminants in sediment and surface water (Ambrose & Wool, 2017; 

Arlos et al., 2014; Bouchard et al., 2017; Carroll et al., 2000; Wool et al., 2003; Yang et al., 

2012). The framework applies a differential mass balance equation for simulating advective 

and dispersive transport of a constituent in 1D, 2D, or 3D. WASP 8.4 includes the Advanced 

Toxicant module, which uses hydrodynamic data to calculate fate and transport of sediment 

and chemicals in surface waters and sediment layers. To simulate dissolved and suspended 

materials in 2D the model uses hydrodynamic data to solve the 2D advection-dispersion 

equation (Wool et al., 2020):

∂C
∂t = − ∂ UxC

∂x + ∂
∂x Ex

∂C
∂x − ∂ UyC

∂y + ∂
∂y Ey

∂C
∂y

+SL + SB ± SK
(1)

where C is the concentration (M/L3); t is time; Ux and Uy are velocities (L/T) in the x 
and y direction; Ex and Ey are longitudinal and lateral diffusion coefficients (L2/T); SL is 

direct and diffuse loading rate (M/L3T); SB is boundary loading rate (M/L3T); and SK is 

total kinetic transformation rate (M/L3T). Positive terms indicate sources and negative terms 

indicate sinks.

WASP sediment transport module allows simulation of up to ten solids classes with discrete 

particle size and density in descriptive and mechanistic approaches (Knightes et al., 2019). 
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In the mechanistic approach used in this study, the water shear stress and particle size mainly 

control erosion, deposition, and resuspension of the sediment, while settling is a function of 

particle size and density.

Depending on the magnitude of shear stress generated by the flood and the soil and 

sediment particle size, erosion can occur in cohesive and non-cohesive forms (Mitchener 

& Torfs, 1996). WASP calculates erosion and resuspension velocities and fluxes for cohesive 

and non-cohesive erosion and for mixtures of cohesive and non-cohesive sediments. For 

cohesive sediment, the model calculates erosion flux from the excess shear stress power law 

equation (Lick et al., 1994);

Ecoh = Fcoh × M × τ∗n (2)

where Ecoh is the cohesive erosion flux (g/m2 s); Fcoh is the fraction of the surface bed that 

is cohesive; M is the shear stress multiplier (g/m2 s); n is the shear stress exponent; and τ* is 

the excess shear stress (N/s):

τ∗ = τb − τce
τce

τb ≥ τce (3)

τ∗ = 0τb < τce (4)

where τb and τce are water shear stress and critical shear stress (N/m2) for cohesive 

sediment erosion. For non-cohesive sediment, WASP calculates erosion velocity and flux 

for each particle class separately. For details of WASP sediment flux and sediment transport 

calculations see Ambrose and Wool (2017).

WASP simulates sorption using equilibrium or kinetic models. In the equilibrium model 

applied in this study, the interaction between chemicals and solids is assumed to be 

fast relative to other environmental processes such as oxidation and photo-transformation 

(Ambrose et al., 2017). At equilibrium, concentrations of a chemical in dissolved and solid 

phases are determined by the partition coefficient (Equation (5)) to solve transport equation 

for chemicals (Equation (1)):

Cs = Kd, Cw (5)

where Cs and Cw are the concentrations of the chemical in dissolved and solid phases 

(mg/L); and Kd is the partition coefficient (L/kg).

2.3 | HEC-RAS 2D to WASP external coupler

WASP requires water volume, depth, velocity, and average interfacial flow at each time 

step to calculate sediment and contaminant transport in 2D. The model can obtain the 2D 

hydrodynamic data through a linkage file generated by the Hydrolink Application Program 

Interface (API). The Hydrolink API is included in the WASP package; it allows users to 

convert arrays of hydrodynamic information into binary input for the model (Ambrose & 

Wool, 2017). To accurately extract the hydrodynamic output from the HEC-RAS 2D flood 
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simulation and use it as an input for WASP, we developed an External Coupler using 

Python (v.3.7) to link the two models via the Hydrolink API. The External Coupler connects 

HEC-RAS 2D to WASP in an offline and one-way direction by: (a) reading hydrodynamic 

outputs from HEC-RAS 2D, (b) aggregating those outputs into larger cell sizes suitable for 

WASP, and (c) converting the aggregated data into a hydrodynamic input file for WASP 

using the Hydrolink API.

2.3.1 | Differences in WASP and HEC-RAS 2D spatial resolution—WASP uses 

explicit finite difference methods to solve mass balance and fate and transport equations 

(Ambrose & Wool, 2017). Providing HEC-RAS 2D hydrodynamic flow data at fine spatial 

and temporal time scales may cause numerical errors for WASP. In addition, this setup 

would result in excessively long runtimes because WASP uses a single processor to solve 

fate and transport equations (Defne et al., 2017). To create a computationally robust model, 

the HEC-RAS 2D computational grid cells should be aggregated for use in WASP.

HEC-RAS 2D reports velocity and flow components for cell faces. To preserve the fidelity 

of these data for WASP the aggregated cells (segments) must align with the underlying 

HEC-RAS 2D cells at their boundaries. We developed an automated aggregation routine 

(included in the External Coupler) to read HEC-RAS 2D cells and WASP segments in 

ESRI shapefile (ESRI, 1998) format and align the models’ grids by spatially intersecting 

HEC-RAS 2D cells’ centroid and segment polygons. That is, WASP segment boundaries 

are modified based on the HEC-RAS 2D cells within the segment. The program creates 

a connectivity table to catalogue mapping between WASP segments and HEC-RAS 2D 

cells to transfer data between the two models. The External Coupler also generates a flow 

direction map illustrating the neighboring information for WASP segments to simulate the 

2D flow transport within the grid.

2.3.2 | Spatially aggregating HEC-RAS 2D flood hydrodynamic data for WASP
—We calculated WASP segment volume in two steps. First, segment volume at time = 0 was 

calculated from the sum of HEC-RAS 2D cells’ volumes estimated from the water surface 

elevation output. For this purpose, a polynomial interpolation method was implemented 

within the coupler using the SciPy Python library (v.1.2.1). This method uses water surface 

elevation and estimates the volume for the HEC-RAS 2D cells from their elevation-volume 

table. The time series of volume for a WASP segment was calculated from the net inflow to 

the segment using Equation (6):

V s, t =
t

t + 1
Qin − Qout dt (6)

where Vs (m3) is the volume for the WASP segment; t is time; Qin and Qout are inflow and 

outflow (m3/s) to the segment.

WASP is not designed to simulate dry segments. Since WASP is designed to calculate 

concentration by dividing mass by volume, if the segment volume equals zero a fatal 

error occurs. This is a significant challenge, as rapid wetting/drying processes are possible 

throughout the duration of a flood. To address this issue, the coupler assigns a minimum 
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water volume for dry segments to allow WASP to operate. This volume should be selected 

with the objective of maintaining the smallest volume possible (representative of a dry 

segment) while conserving mass for WASP segments.

WASP uses water velocity to calculate shear stress, which determines the erosion and 

deposition velocities and fluxes for the segment. To calculate the velocity for WASP input, 

the vector of HEC-RAS 2D face velocities are weighted by their hydraulic areas and 

averaged to compute the cell velocity (Equation (7)). The calculated HEC-RAS 2D cell 

velocities (derived from cell-face velocities) are then weighted by the cell area and averaged 

to calculate an aggregate velocity for each WASP segment (Equation (8));

uc, t =
uf × Af

Af
(7)

us, t =
uc × Ac

Ac
(8)

where uc and us are cell and segment velocities (m/s); Af is hydraulic area of the cell face; 

Ac is area of cell (m2). A similar approach, weighted average by the cell area, is used to 

calculate water depth for WASP segments derived from the HEC-RAS 2D water depth of 

each cell.

WASP requires interfacial flow and its direction in each time step to calculate advective 

mass transport between segments. The velocity and hydraulic area at each cell face are used 

to calculate the interfacial flow, Qf (m3/s), at time t for HEC-RAS 2D cells:

Qf, t = ufAf (9)

The interfacial flow for the WASP segments was computed by summing the HEC-RAS 

2D interfacial flows at the segment boundaries. Since WASP requires integrated or average 

interfacial flow across the time step, a linear interpolation (averaging the flows at output 

time t and t − 1) method was used to integrate the calculated flow.

2.3.3 | Generating the hydrodynamic linkage—To generate an input file for WASP, 

the coupler organizes the aggregated flood hydrodynamic data into an input file for the 

Hydrolink API. The following data are created within the input file: (a) model set up 

information, such as number of segments, number of flow directions, time step, and time 

stamps of the flood simulation; (b) the flow direction, including the location of upstream and 

downstream boundaries for the model; (c) HEC-RAS 2D aggregated hydrodynamic outputs; 

(d) initial value volume for the surface sediment layer. By calling the Hydrolink API, the 

coupler-generated input file will be converted to a binary input file for WASP.

2.4 | Case study

We applied the coupled HEC-RAS 2D and WASP complete modeling approach in the 

Woodbridge watershed, New Jersey, USA. The approach for simulating flood-induced 
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sediment and contaminant transport consists of five steps: (a) data collection, (b) flood 

discharge simulation using the Hydrologic Engineering Center—Hydrologic Modeling 

System (HEC-HMS) watershed model, (c) flood hydrodynamic simulation using HEC-RAS 

2D, (d) linking HEC-RAS to WASP using the External Coupler, and (e) simulating sediment 

and contaminant transport using WASP.

2.4.1 | Study area—The Woodbridge watershed is in Perth Amboy, NJ and has a 

drainage area of 44.5 km2 (Figure 1(a)). Part of the watershed (5.3 km2) is a designated 

FEMA Special Flood Hazard Area (SFHA) because of its vulnerability to tidal and fluvial 

flooding (U.S. Federal Emergency Management Agency, 2014). Woodbridge Creek and its 

tributary, Spa Spring Creek, empty into the Arthur Kill tidal strait (Figure 1(b)).

Soils and sediments near Woodbridge Creek’s mouth are contaminated with toxic chemicals 

(TRC Environmental Corporation, 2016) from past industrial activities, primarily oil and 

gas production and storage. The location of soil and sediment contamination in the SFHA 

suggests potential for mobilization, transport, and dispersal of the contaminants during flood 

conditions.

We confined the modeling domain to 4.0 km upstream of the Arthur Kill along Woodbridge 

Creek. This corresponds to locations where the contaminated soils and sediments are 

found in the floodplains and river channel (Figure 1(c). The modeling domain is 5.8 

km2 and characterized by relatively flat terrain (Figure 1(b), with a mean slope of 

4.0%. Industrial and residential land uses are dominant, covering 70% of the model 

domain (Figure 1(c)). Average annual precipitation is 1025 mm with greatest rainfall in 

spring and summer months (Middlesex County Hazard Mitigation Plan, 2015). Tropical 

storms also affect the watershed. The 100-year, 24-h storm corresponds to a precipitation 

depth of 255 mm (National Oceanic and Atmospheric Administration, 2017). Flashy 

stormwater flows in the watershed result in high flood elevations, increased velocities, and 

wider floodplains in Woodbridge Creek and Spa Spring Creek (Township of Woodbridge 

Floodplain Management Plan, 2015).

2.4.2 | HEC-HMS flood discharge simulation—Time-varying discharge at the 

upstream boundaries was simulated using HEC-HMS. Using the SSURGO soil dataset 

(USDA NRCS, 2019) and a 2015 land cover map (New Jersey Department of Environmental 

Protection, 2015) as inputs, we simulated the 100-year flood discharge for Woodbridge 

Creek and Spa Spring Creek. Flood discharge was simulated using the Soil Conservation 

Service Runoff Curve Number Method (USDA NRCS, 1986) for a 24-h storm with a 100-

year return period (National Oceanic and Atmospheric Administration, 2017). HEC-HMS 

simulated flood discharge was calibrated against the FEMA’s steady 100-year flood peak 

(U.S. Federal Emergency Management Agency, 2014) by adjusting runoff curve numbers 

within 10% range of default value.

2.4.3. | HEC-RAS 2D set up for flood simulation—HEC-RAS 2D was set up using 

a LiDAR Digital Elevation Model (DEM) with 1 m spatial resolution (Office for Coastal 

Management, 2020). The DEM was modified by superimposing river channels and inserting 

aboveground structures (e.g., buildings and storage tanks) that were manually digitized using 
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60 cm resolution ESRI World Imagery in ArcGIS 10.7 (ESRI, 2019) to accurately capture 

surface topography and flow paths. A computational grid composed of 34,806 rectangular 

and irregular (greater than four faces/sides) cells of a nominal size between 5 and 30 m was 

generated to capture variability of the underlying terrain for the 2D flood simulation.

Manning’s roughness coefficients for the study area were defined based on land cover 

(Manandhar, 2010) derived from the 2015 New Jersey Department of Environmental 

Protection land cover map (New Jersey Department of Environmental Protection, 2015). 

Woodbridge and Spa Spring Creeks were established as two upstream boundaries for our 

modeling domain and their associated 100-year flood was input from HEC-HMS. The stage 

for the model’s downstream boundary was calculated from the Manning equation based on 

the simulated flows in the outlet.

We ran HEC-RAS 2D using Diffusion Wave equations with a 1-s computational interval 

to simulate the 100-year flood for a 48-h duration. The HEC-RAS 2D hydrodynamic 

simulation output was exported in 1-min output intervals, as an input to WASP. Due 

to the lack of 100-year floodplain inundation observations and water surface elevation 

measurements for Woodbridge Creek, the HEC-RAS 2D was calibrated against the SFHA 

100-year floodplain extent and water surface elevation in 102 locations ((Figure 1(c)) by 

locally adjusting value of Manning’s roughness coefficients for river channel and floodplain.

2.4.4 | WASP segments—According to the SFHA, 61% of the HEC-RAS 2D cells 

would be inundated in a 500-year flood. The WASP simulation domain was therefore 

confined to the 21,098 HEC-RAS cells that were inside the 500-year SFHA. This provided 

an upper bound on the model domain, with the potential to expand simulations to the 

500-year flood. Using the External Coupler program 21,098 HEC-RAS 2D cells data were 

aggregated into 812 WASP computational segments ranging from 900 to 21,600 m2 (mean 

2500 m2). The WASP segments were aligned to HEC-RAS 2D cell boundaries to accurately 

transfer data between the two model grids (Figure 2). WASP segments were set up using 

surface water and surface benthic layer. A surface benthic layer with 15 cm depth was 

generated for WASP segments to simulate transport of sediment and contaminant between 

water column and surface sediment.

2.4.5 | WASP setup for sediment and contaminant simulation—WASP must 

be parameterized with initial and boundary conditions after completing the hydrodynamic 

linkage. Clay, silt, and organic matter that can potentially adsorb contaminants (Ji, 2017) 

and fine sand served as solids classes for the WASP simulation of flood-induced sediment 

and arsenic transport. The initial volumetric concentrations of these solids in the bed (mg/L), 

within a depth of 15 cm, were defined for the model based on their percentage, soil bulk 

density in the SSURGO dataset (USDA NRCS, 2019), and 14 in situ surface sediment 

samples that were collected in Woodbridge Creek and Spa Spring Creek in 2013 and 2014 

(Figure 1(c)).

Due to a lack of suspended sediment concentration measurements, the initial concentration 

of solids in the surface water and their loads at the upstream model boundaries were 

estimated from Landsat 8 imagery. For this purpose, 14 Landsat 8 images for the time period 
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from 2013 to 2014 were processed using Acolite software (Vanhellemont, 2019) to calculate 

the total particulate matter (TPM) in the surface water. The maximum calculated TPM was 

selected as a representative for flood condition and it was partitioned into individual solids 

classes using the Stokes’ settling velocity for the solids (Lerman et al., 1974). This assumes 

the fraction of a solid in TPM is proportional to the solid’s settling velocity, calculated by 

dividing the solid’s settling velocity by settling velocity of the smallest particle (clay). For 

example, silt concentration was 25 times smaller than clay due to its larger settling velocity, 

7.1 m/day versus 0.28 m/day.

We performed a one-at-a-time sensitivity analysis for WASP sediment transport by 

individually adjusting values of eight model parameters: critical shear stress (τce) for 

cohesive and non-cohesive erosion, shear stress multiplier (M) and exponent (n) for 

cohesive and non-cohesive resuspension, and lower and upper critical shear stress for solids 

deposition. The sensitivity analysis showed that the critical shear stress for cohesive erosion 

is the most sensitive parameter. The critical shear stress value for cohesive erosion was set to 

0.03 N/m2 following Berenbrock and Tranmer (2008).

Arsenic measurements (555 samples) in soil and sediment were used to initiate initial 

concentrations in WASP segments (Figure 1(c)). Inverse Distance Weighting (IDW) in 

ArcGIS 10.7 was used to spatially interpolate arsenic samples measured within a soil 

and sediment depth of 15 cm. For segments beyond the IDW boundary, arsenic initial 

concentration was set to zero. Initial and boundary concentrations of arsenic in surface 

water were set to zero due to lack of water quality measurements. The partition coefficient 

of arsenic to soil and sediment particles was set to 10,000 L/kg (Allison & Allison, 

2005). WASP was run with a 1-min computational interval to calculate the sediment and 

contaminant transport in the 100-year flood for a 48-h duration.

We performed an uncertainty analysis for sediment and contaminant simulations by testing 

a combination of high and low bounds of estimated suspended sediment (28 and 78 

mg/L). Arsenic concentration at the upstream boundary was set to 0.00135 mg/L in the 

water column, a median value for 36 water samples measured in neighboring watershed 

(USGS-01395000). The results were compared with the sediment and contaminant 

simulation to address the sensitivity of suspended sediment and arsenic concentration in 

WASP.

3 | RESULTS

3.1 | Flood simulation

The calibrated HEC-HMS 100-year, 24-h flood discharge of 64.8 m3/s and 23.5 m3/s 

reproduced FEMA’s 100-year steady flood peak discharge (U.S. Federal Emergency 

Management Agency, 2014) for Woodbridge Creek and Spa Spring Creek respectively 

(Figure 3), reported at their junction (Figure 1(c)).

The extent of the 100-year flood simulated in HEC-RAS 2D matched the 100-year 

floodplain from FEMA SFHA (Figure 4(a)) with a mean absolute error of 0.07 m in water 

surface elevation, minimum and maximum of 0.007 and 0.17 m, in 102 locations (Figure 
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4(b)). Deviation in water surface elevation and area was minimal. The differences are likely 

due to the HEC-RAS 2D unsteady flood simulation compared with the FEMA 1D steady 

flood simulation. In 2D, the flood wave is represented as a function of time and influenced 

by topography and structures such as buildings, better capturing the flood wave and pattern 

horizontally (Cook & Merwade, 2009). The simulated 100-year flood raised the Woodbridge 

Creek stage from 0.5 to 4.5 m above mean sea-level, which caused partial inundation of 

industrial and residential areas with water depths less than 2.6 m and 0.5 m, respectively 

(Figure 4(b)).

3.2 | Coupled HEC-RAS and WASP 2D sediment transport simulation in 100-year flood

Using the HEC-RAS 2D 100-year flood hydrodynamic simulation data via the coupler, 

WASP calculated flood-induced sediment erosion and transport for 812 model segments. 

Time series of flow velocity, shear stress, surface sediment volume (in the top 15 cm of the 

surface sediment layer), and suspended sediment concentration for two-channel segments 

are shown in Figure 5, in which one segment experiences erosion and the other deposition. 

The WASP-calculated shear stress exceeded the minimum critical shear stress for cohesive 

erosion (Figure 5(c)–(d)) when the floodwater velocity was ≥0.06 m/s (Figure 5(a)–(b)). 

By exceeding the critical shear stress for cohesive erosion, the flood scoured the sediment 

layer and resuspended the eroded solids for both segments, thereby decreasing the volume 

of the surface sediment layer when erosion was greater than deposition (Figure 5(e)). The 

concentration of suspended sediment reached its maximum at the flood peak, coinciding 

with the greatest volume of sediment eroding at peak velocity and shear stress and load from 

upstream (Figure 5(g)–(h)). Note, the WASP sediment transport model is parameterized 

based on available data, but further sensitivity analysis and calibration are required to 

address high concentrations of total suspended sediment in surface water.

The concentration of suspended sediment in the surface water at the end of the 48-h flood 

simulation ranged from 0–2000 mg/L, of which about 80% were clay particles (Figure 6(a)). 

Concentration of suspended sediment increases from the river channel toward the floodplain 

and is greatest in model boundary segments. High concentrations of suspended sediment 

(>200 mg/L) are caused by clay particles trapped in dry segments at the end of the 48-h 

flood in HEC-RAS 2D output; the coupler forces dry segments to maintain a minimum 

water volume (20 m3, a value that we identified as optimal volume for dry segments based 

on the Woodbridge Creek model grid) in WASP. Surface sediment at the end of 48-h flood 

simulation ranged from a net loss of 13.5 cm to a net gain of 11.6 cm per model segment 

(Figure 6(b)), with an average of 3.7 cm and 0.14 cm for net loss and net gain, respectively. 

Changes to the surface sediment depth occurred in channels and on the floodplain. Although 

most segments experienced net deposition at the conclusion of the 48-h simulation, erosion 

was the dominant process near the upstream model boundary, where velocity and shear 

stress were greatest. A few segments at the model’s downstream boundary edge exhibit high 

erosion and deposition because these segments overlap a small strip of the Arthur Kill strait, 

which was included in the HEC-RAS 2D model domain.

Arsenic concentration in surface sediment at the end of the 48-h simulation is presented and 

compared to the contaminant initial concentration in soil and sediment in Figure 7(a)–(b). 
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Predicted changes in arsenic concentration in surface sediment after the 100-year flood 

mostly ranged from −1.0 to 1.0 mg/kg (light blue and red colors in Figure 7(c)), except for 

the few segments at the model’s downstream boundary that experienced larger changes due 

to greater erosion and deposition (Figure 7(c)). Deposition of eroded sediment from the Spa 

Spring Creek and Woodbridge Creek channels increased arsenic concentration in middle and 

north parts of the study area. Expansion of the extent of arsenic contamination in the north 

section of the model domain occurred after the 48-h simulation where deposited sediments 

increased arsenic concentration above zero initial concentration (Figure 7(c)). Most of the 

model domain showed decreases in arsenic concentration due to deposition of previously 

suspended sediments with lower concentration.

There was minimal change in surface sediment (Figures 6(b) and 8(a)) and contaminant 

concentration (Figures 7(c) and 8(b)) with boundary conditions of 0.00135 mg/L arsenic 

concentration in combination with 28 mg/L and 78 mg/L of suspended sediment. The 

exception was a small area in the north part of the modeling domain where the concentration 

of arsenic in soil and sediment increased from zero initial concentration to 0.1 mg/kg due to 

deposition of contaminated sediments (Figures 7(a) and 8(b)).

4 | DISCUSSION

Accurate data transfer from a hydrodynamic model to a water quality model is critical. 

Temporal and spatial upscaling when moving from the hydrodynamic model to the water 

quality model can result in a loss of hydrodynamic information (Defne et al., 2017). 

Temporal aggregation of the HEC-RAS 2D output in 1-min intervals had minimal impact on 

WASP results. This is because the calculated volumes for the WASP segments were equal 

when the HEC-RAS 2D instantaneous interfacial flow and integrated interfacial flow were 

used. However, the WASP mass balance and sediment transport results appear to be sensitive 

to the size of segments. The WASP segments typically had smaller velocities compared to 

the underlying HEC-RAS 2D cells because they contain dry cells with zero velocity. Since 

WASP uses velocity for calculating shear stress, the underestimation can result in lower than 

expected erosion and resuspension. This issue was addressed by adjusting the critical shear 

stress for erosion and resuspension (see Berenbrock and Tranmer (2008)) within WASP.

Results of sediment transport simulation in the 100-year flood for Woodbridge Creek 

showed widespread deposition in river channels and the floodplain. Sediment deposition 

was dominant because of the flat terrain and prominent floodplains in the study area, which 

reduces flood velocity and shear stress (Figure 5(a)–(d)). The maximum depth of deposited 

sediment in 100-year flood was 11.6 cm. This is within the range of 0 to 30 cm reported 

by Hostache et al. (2014) for simulating transport of fine sediments in floods with similar 

discharge. The depth of deposited sediment in river channels, however, appears to be small 

(<1 cm, Figure 6(b)) in the context of the 100-year flood magnitude (Figure 3). This is 

because suspended particles in the Woodbridge watershed were mainly composed of clay 

and silt, which were transported out of the watershed by the flood due to their low settling 

velocity.

Shabani et al. Page 12

J Flood Risk Manag. Author manuscript; available in PMC 2022 July 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Soil and sediment erosion and deposition are a primary mechanism for the transport 

and distribution of contaminants in floods (Hostache et al., 2014; Schulz et al., 2009). 

By analyzing changes in arsenic concentrations under flood conditions for Woodbridge 

Creek (Figure 7(c)), the results showed that flood deposited sediment causes redistribution 

of arsenic in the river channel and floodplain. Arsenic concentration was predominantly 

reduced (Figure 7(c)) because the contaminant concentration sorbed to suspended sediments 

was lower than surface sediment. Since most of the suspended sediment was sourced 

from eroding segments near the Woodbridge Creek and Spa Spring Creek boundaries and 

upstream boundary loads with low or zero arsenic concentration, the deposited sediment 

reduced arsenic concentration in the river channel and floodplain due to the mixing process. 

Similar results have been reported in studying distribution of heavy metals in floods 

(Bradley & Lewin, 1982; Ciszewski, 2001; Schulz et al., 2009).

In 2D simulations of flooding, some computational cells on the floodplain progressively wet 

and dry over the course of the flood. WASP is not designed to simulate wetting and drying 

segments and will not operate with segment volumes equal to zero. In order to address this 

limitation, we included a minimum volume parameter, set to 20 m3, for dry segments in this 

study. This minimum volume ensured WASP mass balance continuity, where the internal 

mass check variable remains close to one. The minimum volume should be defined by the 

user when the External Coupler developed here is used to link HEC-RAS 2D and WASP. 

This gives the user flexibility in determining the best minimum volume for their specific 

study. In the future, this limitation can be resolved by encoding the capability of simulating 

dry segments in WASP.

Calibration and validation of water quality simulations under flood conditions is a long-

standing difficulty due to insufficient samples, particularly at peak discharge. With limited 

or no calibration and validation, a robust parameter estimation and uncertainty analysis 

to develop uncertainty bounds around simulation results are necessary to communicate 

confidence in the model output.

5 | CONCLUSIONS

Floods play an important role in mobilization of soil and sediment and transport of 

contaminants. Quantifying fate and transport of sediment and contaminants under flood 

conditions is a challenging task because it typically requires a composite hydrodynamic 

and water quality simulation. The development of a HEC-RAS 2D and WASP External 

Coupler provides the capability to adequately model these situations. The External Coupler 

operates in an offline, one-way manner to accurately extract hydrodynamic data (interfacial 

flow, water velocity, and water volume) from HEC-RAS 2D as an input to initiate sediment 

and contaminant transport simulations via WASP v8.4. The research in Woodbridge Creek 

demonstrated the success of coupling the models to simulate flood-induced fate and 

transport of sediment and contaminants, with sediment-arsenic redistribution as an example.

Results of the case study of the external coupler demonstrated that shear stress, initial 

contaminant concentrations in surface sediment (and their spatial distribution), and 

suspended sediment impact distribution of sediment-associated contaminants during and 
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after a flood event. The coupled HEC-RAS 2D and WASP models developed in this study 

can be used to simulate sediment, toxicants, and water quality parameters under flood 

conditions. In addition to fluvial flooding, we could assess climate future impacts and 

examine the coupled model framework under tidal, storm surge, and sea-level rise scenarios 

in coastal watersheds. This scenario research would add another level of complexity to 

the coupled models by combining fluvial flooding with dynamic downstream boundary 

conditions. The coupled HEC-RAS 2D and WASP model is a reliable tool to predict fate 

and transport of sediment and contaminants in floods, with applications for contaminated 

site managers and decision-makers to address flood resilience. In addition, it creates a link 

between two widely used models and their communities of practice.
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FIGURE 1. 
Map of the study area. (a) Location of the watershed in New Jersey, US; (b) elevation 

of the Woodbridge Creek watershed based on the Digital Elevation Model (Office for 

Coastal Management, 2020), model domain, and FEMA SFHA (U.S. Federal Emergency 

Management Agency, 2019); (c) land use/land cover (New Jersey Department of 

Environmental Protection, 2015) and model domain. Background image source—ESRI, 

GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other 

contributors
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FIGURE 2. 
(a and b) HEC-RAS 2D computational grid cells (21,098) converted to WASP computational 

segments (812). Model domain is the FEMA 500-year floodplain SFHA
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FIGURE 3. 
HEC-HMS calibrated 100-year flood discharge for Woodbridge (blue solid) and Spa Spring 

(orange solid) compared to their FEMA’s corresponding steady flood peak discharges, 

dashed blue and orange lines
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FIGURE 4. 
(a) HEC-RAS 2D simulated 100-year floodplain extent versus the FEMA floodplain extent; 

(b) HEC-RAS 2D simulated maximum 100-year water depth. Basemap image source—

ESRI, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, 

IGN, IGP, swisstopo, and the GIS User Community
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FIGURE 5. 
(a, b) floodwater velocity; (c, d) flood shear stress, (e, f) surface sediment depth; and 

(g, h) suspended sediment concentration simulated for two WASP segments within the 

Woodbridge Creek channel. Left-panel figures (a, c, e, g) correspond to the erosional 

(upstream) segment, and right-panel figures (b, d, f, h) correspond to the depositional 

(downstream) segment
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FIGURE 6. 
(a) WASP simulated suspended sediment concentration in surface water at time = 48 h for 

Woodbridge Creek and Spa Spring Creek. Dark and light brown colors present high and 

low concentrations of suspended sediment, respectively; (b) change in WASP simulated 

sediment layer depth in 100-year flood, negative values indicate loss of sediment (erosion) 

and positive values indicate gain (deposition). Blue and red colors present erosion and 

deposition, respectively. Darker colors correspond to greater changes in sediment layer 

depth. Background image source—ESRI, GEBCO, NOAA, National Geographic, DeLorme, 

HERE, Geonames.org, and other contributors
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FIGURE 7. 
(a) Initial concentration of arsenic in soil and sediment interpolated by Inverse Distance 

Weighting method; (b) arsenic concentration in surface sediment at the end of 48-h flood 

simulation; (c) difference in arsenic concentration between (a) and (b). Background image 

source—ESRI, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, 

and other contributors
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FIGURE 8. 
(a and b) change in surface sediment depth and arsenic concentration at the end of 48-h 

flood simulated using lower bound of suspended sediment (28 mg/L) and 0.0013 mg/L 

arsenic for the upstream boundaries. The change in arsenic using higher bound of suspended 

sediment (78 mg/L) looks the same as (b) when divided into 7 bins shown in the figure. 

Background image source—ESRI, EBCO, NOAA, National Geographic, DeLorme, HERE, 

Geonames.org, and other contributors
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