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Migraine seriously affects the physical and mental health of patients because of its recurrence and the hypersensitivity to the
environment that it causes. However, the pathogenesis and pathophysiology of migraine are not fully understood. We addressed
this issue in the present study using an autodynamic functional connectome model (A-DFCM) with twice-clustering to compare
dynamic functional connectome patterns (DFCPs) from resting-state functional magnetic resonance imaging data from
migraine patients and normal control subjects. We used automatic localization of segment points to improve the efficiency of
the model, and intergroup differences and network metrics were analyzed to identify the neural mechanisms of migraine. Using
the A-DFCM model, we identified 17 DFCPs—including 1 that was specific and 16 that were general—based on intergroup
differences. The specific DFCP was closely associated with neuronal dysfunction in migraine, whereas the general DFCPs
showed that the 2 groups had similar functional topology as well as differences in the brain resting state. An analysis of network
metrics revealed the critical brain regions in the specific DFCP; these were not only distributed in brain areas related to pain
such as Brodmann area 1/2/3, basal ganglia, and thalamus but also located in regions that have been implicated in migraine
symptoms such as the occipital lobe. An analysis of the dissimilarities in general DFCPs between the 2 groups identified 6 brain
areas belonging to the so-called pain matrix. Our findings provide insight into the neural mechanisms of migraine while also
identifying neuroimaging biomarkers that can aid in the diagnosis or monitoring of migraine patients.

1. Introduction

Migraine is a headache disorder characterized by pulsating
recurrent pain attacks combined with nausea, vomiting, sleep
disorder, and hypersensitivity to visual, auditory, olfactory,
and somatosensory stimuli [1]. Migraine affects approxi-
mately 14.7% of the global population and has a hereditary
component [2]; because of the high morbidity and difficulty
in treatment, migraine can severely limit patients’ work effi-
ciency and quality of life. Although many theories have been
proposed for the etiology of migraine (including the vaso-
genic, cortical spreading depression, and trigeminal vascular
theories), the neurologic basis is not well understood.

Resting-state functional magnetic resonance imaging (rs-
fMRI) technology is a noninvasive method for measuring the
spontaneous activity of neurons [3] that has enabled the
identification of several brain regions involved in the patho-
genesis of migraine based on the amplitude of low-
frequency fluctuations (ALFFs) in the resting state [4]. For
example, ALFF abnormalities have been observed in multiple
brain regions in migraine patients including the right insular
lobe, prefrontal cortex (PFC), and medial (m)PFC [5]. Other
studies have used regional homogeneity (ReHo) to analyze
the synchronization of local activity in the brain [6] and have
found altered ReHo values in multiple brain regions in
migraine patients such as those related to pain [7–9]. The
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causes of migraine have also been explored by analyzing cor-
relations in activity between a predefined seed region and
other brain areas; it was found that functional connectivity
(FC) between some seed points (e.g., cerebellum, insula, fron-
tal lobe, cingulate gyrus, superior marginal gyrus, and brain-
stem) and other regions was increased or decreased in
migraine, resulting in changes in the integration of pain
information [10–12]. Additionally, independent component
analysis (ICA), temporal clustering analysis, and small-
world network theory [13–17] have been applied to the study
of migraine and have revealed that long-term repetitive pain
stimulation can lead to abnormal synergistic processing and
topologic abnormalities in brain functional networks [18, 19].

Although the abovementioned studies have provided
insight into the neurologic mechanisms of migraine, they
involved the analysis of static rs-fMRI data. Meanwhile, the
brain exhibits complex spatial and temporal variations dur-
ing dynamic processing as well as functional activity alter-
ations in the resting state [20, 21] that must be taken into
account. Dynamic (d)FC analysis evaluates brain activity
fluctuations on the scale of seconds to minutes [22, 23] and
has been used to establish activity profiles of thalamocortical
in migraine patients [24]. Combined with Group ICA, dFC in
brain networks has also been examined to find the functional
characteristics of the migraine brain and revealed more func-
tional networks related to migraine than the conventional
static analysis [25]. Based on comparing dynamic functional
connectivity patterns in migraine versus persistent posttrau-
matic headache, significant differences between migraine and
persistent posttraumatic headache for 10 region pairs were
found [26]. From the perspective of multichannel hierarchy,
dFC combined topology properties have been investigated
between large-scale brain networks in migraine patients,
and results showed that the dynamic FCs and corresponding
global topology properties have significant differences
between migraine patients and healthy controls, while local
topological properties and dynamic fluctuations were easily
affected by window widths [27].

The above findings suggest that migraine can be investi-
gated in terms of functional dynamics. To this end, in this
study, we used an auto- (A-) DFCM with twice-clustering
to establish a dFC profile in migraine based on rs-fMRI data.
We speculated that in addition to migraine-specific dFC pat-
terns (DFCPs), there are general DFCPs that are also present
in both subjects. The results showed that the specific pattern
and the particular brain regions can be detected for migraine
patients, which can be useful for the clinical diagnosis of
migraine.

2. Materials and Methods

2.1. Data Acquisition. A total of 34 migraineurs (19 males
and 15 females; average age: 36.12 years (range: 17–58 years))
were recruited at the Department of Neurology of Shanghai
Sixth People’s Hospital East Affiliated with Shanghai Univer-
sity of Medicine and Health Science. All procedures were
approved by the Independent Ethics Committee of Shanghai
Sixth People’s Hospital East Campus, and all participants
provided informed consent before participating in the study.

Migraine patients were diagnosed with chronic migraine
according to International Classification of Headache Disor-
ders 3rd Edition (beta version) criteria [28]. rs-fMRI data
were acquired using a 3T scanner (Siemens, Erlangen, Ger-
many). During the scan, subjects were awake and were
instructed not to think and to remain still. The scanning
parameters were as follows: slice number = 38 (covering all
brain areas), repetition time ðTRÞ = 3:0 s, number of time
points = 160, scan resolution = 64 × 64, on-chip resolution
= 4 × 4mm, and slice thickness = 4mm. rs-fMRI data of 34
normal control subjects (14 males and 20 females; average
age: 21.4 years (range: 18-26 years)) for the control group
were obtained from a free public database (http://fcon_1000
.projects.nitrc.org/fcpClassic/FcpTable.html) and were
abbreviated as Beijing_Zhang which were released by Dr.
Yu-Feng Zang; the parameters for the scans were as follows:
slice number = 33 (covering all brain areas), TR = 2:0 s, num-
ber of time points = 225, scan resolution = 64 × 64, on-chip
resolution = 3:13 × 3:13mm, and slice thickness = 3:6mm.
All of the above data had been used in a published paper
[27]. To check the repeatability of the consequence, addi-
tional rs-fMRI data of 34 normal control subjects (19 males
and 15 females; average age: 36.18 years (range: 19-62 years))
were also obtained from a free public database (http://fcon_
1000.projects.nitrc.org/fcpClassic/FcpTable.html) and were
abbreviated as ICBM which were released by Alan C. Evans;
the parameters for the scans were as follows: slice number
= 23 (covering all brain areas), TR = 2:0 s, and number of
time points = 128. The p value for ages was 0.9844 based on
the unpaired t-test with Welch’s correction and indicated
no significant difference between ICBM and migraineurs,
which means the data from ICBM were gender-matched
and age-matched with the migraineur group.

2.2. Data Preprocessing. rs-fMRI data were preprocessed with
Data Processing Assistant for Resting-State fMRI [29], which
involved slice timing and head motion correction, spatial
normalization, and spatial smoothing. Before slice timing
correction, the first 10 time points were removed, and the
middle slice was used as the reference frame for the correc-
tion. Sinc interpolation and 6° transformation were applied
to eliminate temporal and spatial offsets, respectively. To
minimize artifacts, data for which there was >1.5mm dis-
placement in any direction or head rotation > 1:5° were dis-
carded. Spatial normalization involved reslicing to 2 × 2 × 2
mm using an echoplanar imaging template released by the
Montreal Neurological Institute. A Gaussian kernel of
6mm was applied to smooth the data.

2.3. A-DFCM with Twice-Clustering. The framework for A-
DFCM with twice-clustering included dFC analysis using a
sliding time window, an automatic segmentation algorithm,
and K-means clustering combined with hierarchical cluster-
ing (Figure 1). The first step involved extracting the time
series of each region of interest (ROI). Based on the Pearson
correlation, dFC matrices were constructed with the sliding
time window method. An automatic segmentation algorithm
was used to construct the whole-brain quasistable connec-
tome pattern (WQCP) sample set (Section 2.4). A twice-
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clustering algorithm that included K-means and hierarchical
clustering was used to obtain cluster labels for each sample in
a WQCP set. The specific and general DFCPs were identified
by analyzing intergroup differences in the distribution ratio
for each DFCP (Section 2.5). Local network metrics were cal-
culated to identify brain regions that were important in the
specific DFCP. Finally, significantly different dFCs were
extracted with the independent 2-sample t-test for each gen-
eral DFCP; intersecting dFCs were identified as those existing
in all general DFPCs and were used to evaluate differences
between the 2 groups (Section 2.6).

2.4. Automatic Generation of WQCPs. For each subject, the
Brainnetome Atlas [30] with 246 ROIs in 210 cortical and
36 subcortical subregions was used to extract the time series
comprising preprocessed rs-fMRI signal values. The mean
time series was calculated based on the average rs-fMRI sig-
nal values of each ROI. For each subject, the mean time series
was defined as

Tn = tn,1, tn,2,⋯, tn,M½ �, ð1Þ

where tn,i (1 ≤ n ≤ 246; 1 ≤ I ≤M) is the average time signal
value of all voxels in the nth ROI at the ith time point and
M is the length of time points.

As information processing in the brain changes over
time, FC in the brain undergoes temporal transformation
[20, 31]. A sliding time window [32] was used to evaluate
FC dynamics. The mean time series Tn was first partitioned
into temporal segments; the segment in the nth ROI at the i
th time point was expressed as

STn,i = tn,i, tn,i+1,⋯, tn,w+i+1½ �, ð2Þ

where 1 ≤ n ≤ 246 and 1 ≤ i ≤ ðM −W + 1Þ;W is the window
length; and step length is 1. We determined thatW was 12 for
migraine patients and 18 for normal control subjects, with a
time duration of 36 s.

The Pearson correlation between 2 temporal segments at
the same time point in all ROIs was calculated to determine
dFC, as shown below:

Corri,j,t =
Cov STi,t , ST j,t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D STi,tð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D STj,t
� �q , if i ≠ j,

Corri,j,t = 0, if i = j,

dFCi,j,t = Corri,j,t ∣ i, j ∈ 1,246½ � ; t ≤M −W + 1
� �

:

ð3Þ

A dFC matrix was constructed with all dFC values at a
given time point for the same subject. The dFC matrix at
the bth time point was defined as

dFCMb =

dFC1,1,b dFC1,2,b ⋯ ⋯ ⋯ dFC1,246,b
dFC2,1,b dFC2,1,b ⋯ ⋯ ⋯ dFC2,246,b

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

dFCu,1,b dFCu,1,b ⋯ dFCu,v,b ⋯ dFCu,246,b

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

dFC246,1,b dFC246,2,b ⋯ ⋯ ⋯ dFC246,246,b

2

666666666664

3

777777777775

,

ð4Þ

where 1 ≤ b ≤ ðM −W + 1Þ, 1 ≤ u ≤ 246, and 1 ≤ v ≤ 246.
The dFC strength (dFCS) vector was obtained by adding

all absolute values of dFC for the same ROI, as follows:

dFCSVb =

〠
246

c=1
abs dFC1,c,bð Þ

〠
246

c=1
abs dFC2,c,bð Þ

⋮

〠
246

c=1
abs dFCi,c,bð Þ

⋮

〠
246

c=1
abs dFC246,c,bð Þ

2

6666666666666666666664

3

7777777777777777777775

, ð5Þ

where 1 ≤ b ≤ ðM −W + 1Þ and 1 ≤ i ≤ 246.
All dFCS vectors were ordered according to time point,

and the dFCS matrix of each subject was constructed as
shown below:

dFCSM = dFCSV1, dFCSV2,⋯, dFCSVb,⋯, dFCSVM−W+1½ �:
ð6Þ

The illustrated dFCS matrix was divided into several seg-
ments based on similarities in the color of adjacent rows. In
previous work [33, 34], segment points were manually
located; in order to improve efficiency in the present study,
automatic localization was adopted by calculating the Euclid-
ean distance between adjacent rows. If the distance between

fMRI data
(migraine patients and normal

control subjects)

Extraction of time series of each ROI

dFC matrix construction

Building of WQCP sample set

Construction of DFCPs

Sliding time window method

Automatic segmentation algorithm

K-means clustering combined with
hierarchical clustering

Figure 1: Framework of A-DFCM with twice-clustering.
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the ith and ði + 1Þth rows was larger than that between the ith
and ði − 1Þth rows and between the ði + 1Þth and ði + 2Þth
rows, then the point i was selected as the segment point. A
dFCS matrix is shown as a jet colormap in Figure 2 along
with Euclidean distances between adjacent rows in the dFCS
matrix (Figure 2); it can be seen that the segment points are
the peak points in the Euclidean distance curve and separate
the matrix into distinct components.

Once the segment points were located and marked, the
dFCS matrix was divided into several sections; for each of
these, the WQCP (246 × 1) vector was obtained by time aver-
aging. WQCPs from all subjects were assembled to form the
WQCP dataset, which was analyzed with a machine learning
method to obtain brain DFCPs.

2.5. Identification of Specific/General DFCPs. Specific DFCPs
describe the brain state specific to migraine patients, whereas
general DFCPs show similarities and differences in the brain

states of the 2 groups. In order to identify specific and general
DFCPs, each WQCP sample in the WQCP dataset of the
migraine and normal control groups was partitioned into dif-
ferent clusters by applying a twice-clustering algorithm that
included K-means and hierarchical clustering. In traditional
K-means clustering, initial cluster centers are randomly
generated, which hinders the optimal performance of the
algorithm and makes it inconvenient to use. Therefore, hier-
archical clustering was used to determine the initial centers,
and all WQCP samples were grouped into 17 clusters based
on the Davies-Bouldin index [35]; these were considered
the DFCPs that revealed dynamic functional layouts of the
brain in the 2 states (i.e., migraine and normal). All dFC
matrices matching each WQCP of each cluster were recap-
tured. Mean dFC matrices with a dimension of 246 × 246
were obtained by averaging all dFC matrices in the time
dimension for migraine patients, normal control subjects,
and both groups and were defined as the respective centroids.
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Figure 2: dFCS matrix shown as jet colormaps and curve of Euclidean distance values.
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After the grouping procedure, each WQCP sample had a
DFCP label from 1 to 17. The distribution ratio of WQCP
samples in each DFCP for each subject was calculated. We
also compared the distribution ratio between migraine
patients and normal control subjects with the independent
2-sample t-test for each DFCP using a threshold of p < ð
0:0001/17Þ. The DFCP was deemed specific if it showed a sig-
nificant difference in the distribution ratio between the 2
groups; otherwise, it was considered a general DFCP.

2.6. Analysis of Specific/General DFCPs. For the specific
DFCP, local network metrics were calculated based on its
centroid in the migraine group for extraction of critical brain
regions. For each node, 2 local metrics—i.e., degree k [36]
and participation coefficient p [37]—were calculated using
the Brain Connectivity Toolbox (https://sites.google.com/
site/bctnet/); these are described in Supplementary
Table S1. Threshold values (i.e., ratio of the number of
existing edges to the maximum possible number of edges in
the graph [=30,135]) used in this study ranged from 10% to
40%. As there was a high correlation between metrics and
threshold values for each node and no uniform criterion
for threshold selection, the area under the curve (AUC) of
each metric was calculated to eliminate threshold
randomness [38].

Critical brain areas are often identified using degree k and
participation coefficient p [39, 40]. The greater the degree of a
node, the more edges are connected to that node; thus, the
degree is the simplest and most common way of identifying
key nodes. The participation coefficient is another index for
evaluating the importance of nodes; a large coefficient indi-
cates involvement in more modules and can be considered
the center of information integration. In this study, we iden-
tified key brain areas based on k and p values >1 standard
deviation above the mean for all nodes in the network [41].

For general DFCPs, intergroup differences were evalu-
ated by comparing dFCs in the dFC matrices with the
independent sample t-test at a threshold p value
<(0.0001/30135). The number of dynamic functional con-
nections in 1 dFC matrix was 30,135. Brain regions corre-
sponding to the detected dynamic functional connections
were identified.

3. Results

3.1. Ratio Distribution of WQCP Samples under Resampling.
A total of 17 DFCPs were extracted using the twice-
clustering algorithm; DFCP4 differed significantly between
migraine patients and healthy control subjects and was
deemed a specific DFCP, while the remaining DFCPs were
considered as general. Ratio distributions of WQCP samples
corresponding to the migraine and normal control groups
under 17 clusters were compared (Figure 3). DFCP4 showed
a greater difference between the 2 groups than the other
DFCPs; meanwhile, the ratio distribution was broader in
migraine patients than in normal control subjects, implying
that DFCP4 comprised a large number of samples from the
former but few from the latter and could thus be a DFCP spe-
cific to migraine.

We evaluated the reproducibility of the data by random
resampling. Ratio distributions under 4 resampling processes
with a sampling rate of 50% and 4 with a sampling rate of
90% showed 1 cluster that differed significantly between the
2 groups (Supplementary Figure S1). There was a strong
correlation between this cluster and DFCP4, indicating that
it corresponded to the specific DFCP. Correlation
coefficients are listed in Supplementary Table S2.

In order to illustrate the differences caused by different win-
dow lengths, we computed the DFCPs based on the window
length of 12 s and 60 s using the Beijing_Zhang dataset. Ratio
distributions for the window length of 12 s and 60 s also dem-
onstrated that there was 1 cluster that had the most significant
difference between the 2 groups (Supplementary Figure S2).
Besides that, the correlation coefficient (Supplementary
Table S3) was strong between this cluster and DFCP4,
representing that it was compatible with the specific DFCP.

For reasons of matching gender and age, we take the
ICMP dataset for the control group with the window length
for 12 s, 36 s, and 60 s to extract the DFCPs. Ratio distribu-
tions for the window length of 12 s, 36 s, and 60 s manifested
that there was a significant difference in 1 cluster between the
2 groups (Supplementary Figure S3), which also has a strong
correlation with DFCP4 implying that it was consistent with
the specific DFCP. Correlation coefficients are listed in
Supplementary Table S4.

3.2. Specific DFCP. A full matrix view of DFCP4 for the
migraine group is shown in Figure 4(a), and connectivity pat-
terns with a strength > 0:75 projected onto a standard brain
surface are shown in Figure 4(b) as previously described
[33, 34]. The degree and participation coefficient of DFCP4
were calculated in order to identify brain areas critical for
migraine. ROIs whose AUC value of degree or participation
coefficient was >1 standard deviation above the mean value
in DFCP4 are shown in Figure 5; the critical ROIs detected
by the intersection of these 2 types of ROI are shown in
Table 1. Figure 6 shows the critical ROIs for DFCP4 pro-
jected onto a standard brain surface; this was visualized,
and connectivity strength was determined, using BrainNet-
Viewer [42].

3.3. General DFCPs and Intergroup Differences. The 16 gen-
eral DFCPs were visualized and projected onto a standard
brain surface (Figure 7). The strength of the edges was
>0.75. Figure 8 shows information pertaining to the 16 gen-
eral DFCPs for the migraine and normal control groups. By
analyzing the intersection of significantly different dFCs in
each general DFCP, we identified 3 dFCs that were present
in all general DFCPs; these were projected onto the cortical
surface (Figure 9). And the ROIs of the 3 dFCs were mainly
distributed in Brodmann area 10, Brodmann area 32, the
basal ganglia, and the thalamus. Detailed information about
each brain region in the 3 dFCs is presented in Table 2.

4. Discussion

4.1. DFCP Specific to Migraine. The results of this study dem-
onstrate that migraine is associated with a specific DFCP.
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Several neuroimaging studies have shown that pain elicits
activity across a network of brain regions (referred to as the
pain matrix) that includes the primary (S1) and secondary
(S2) somatosensory cortices, anterior cingulated cortex
(ACC), supplementary motor cortex area, PFC, thalamus,
amygdala, basal ganglia, and insula [43–45]. The sensation
of pain is thought to be caused not only by activation of 1
or more specific brain regions in the pain matrix but also
by information flow and integration in these areas [46, 47].
Brodmann area 10 may play an important role in the colla-
tion, integration, and high-level processing of nociceptive
information and pain [48]. In addition, imaging studies have
revealed abnormal activity in brain regions associated with
pain information processing in migraine patients, including

the ACC, thalamus, insula, and PFC [49–51]. In the present
study, DFCP4 brain regions with strong connectivity
included Brodmann area 1/2/3 (primary somatosensory cor-
tex in the postcentral gyrus—i.e., S1), Brodmann area 6 (sec-
ondary motor cortex—i.e., S2), Brodmann area 10 (anterior
PFC), Brodmann areas 24 and 32 (ventral and dorsal ACCs,
respectively), insular gyrus, basal ganglia, and thalamus
(Figure 4), indicating that these ROIs are closely related to
pain processing. ROIs that are not part of the pain matrix
but have also been linked to migraine or pain were Brod-
mann area 4 (primary motor cortex), Brodmann area 5
(superior parietal lobule), Brodmann area 7 (visuomotor
coordination), posterior parietal cortex, and medioventral
occipital cortex, which is consistent with findings from
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previous studies on migraine and pain. For instance, stimula-
tion of the motor cortex has been used to treat chronic pain
[52], and stimulation of Brodmann’s area 5/7 revealed this
region as being among the most closely associated with pain
perception [53]. FC in the left posterior cingulate cortex
(PCC) was found to be increased in migraineurs without aura
[54]. The involvement of the visual cortex could explain why
migraine patients experience photophobia. Thus, DFCP4
identified in this study may reflect the neurologic mecha-
nisms of migraine.

In order to investigate this DFCP in greater detail, we
analyzed network metrics. According to the degree, the
selected ROIs in DFCP4 were mainly distributed in Brod-
mann areas 1/2/3, 4, 8, 23, and 37; occipital lobe, basal gan-
glia; and thalamus. According to participation coefficients,
the selected ROIs in DFCP4 were mainly distributed in Brod-
mann areas 1/2/3 (lower limb region), 4 (lower limb region),
8 (medial region), 23 (ventral area), and 37 (dorsolateral
area); caudoposterior superior temporal sulcus; occipital
lobe, basal ganglia; and thalamus. From the intersection of
the two sets of ROI, we identified 16 critical ROIs that were
mainly distributed in Brodmann areas 1/2/3 (lower limb
region), 8 (medial region), and 23 (ventral area); occipital
lobe; basal ganglia; and thalamus. Brodmann areas 1/2/3
and 8, basal ganglia, and thalamus belong to the pain matrix
whereas Brodmann area 23 and occipital lobe are implicated
in migraine.

The functions of ROI1 include language cognition, work-
ing memory, and pain anticipation [55]; ROI66 has been
linked to pain localization, movement, and swallowing;
ROI181 and ROI182 are involved in cognition and emotion;
and ROI191, ROI192, ROI195, ROI197, and ROI198 are
related to memory, cognition, and visual perception. Besides
their involvement in pain, ROI221, ROI231, ROI234, and
ROI235 are associated with the imagination and execution
of actions; ROI239 is implicated in the execution of actions;
and ROI245 and ROI246 are involved in pain monitoring,
pain perception in somesthesis, and execution of actions.
Of the 16 ROIs in DFCP4, 9 were related to pain processing.
Additionally, emotion, cognition, action, and vision are
influenced in migraine, which could explain why migraine
patients may experience vision and memory problems as well
as cognition dysfunction [56, 57].

4.2. Similarities and Differences in General DFCPs. There
were 16 general DFCPs that reflected similarities in brain
function between migraine patients and normal subjects. In
the resting state, we observed temporal variations in FC pat-
terns (Figures 7 and 8), which is consistent with previous
reports [31, 33, 34]. All of the general DFCPs involved several
regions of the default mode network (DMN) [58, 59], which
is associated with dFC [60]. The core areas in the DMN are
the mPFC, PCC, superior frontal cortex, precuneus, inferior
parietal lobule, lateral temporal cortex, and parahippocampal

ROIs selected by degree

Occipital lobe
Parietal lobe
Limbic lobe

Temporal lobe
Insular lobe
subcortical nuclei
Frontal lobe

(a)

Occipital lobe

ROIs selected by participation coefficient

Parietal lobe
Limbic lobe

Temporal lobe
Insular lobe
subcortical nuclei
Frontal lobe

(b)

Figure 5: ROIs in migraine patients selected based on networkmetrics. (a, b) ROIs with AUC values of degree (a) and participation coefficient
(b) >1 standard deviation above the mean value.
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gyrus [61, 62]. In addition to having overlapping brain
regions, each DFCP differed from the DMN. The ROIs of
DFCP14 and DFCP15 were the most similar to the DMN,
with direct connections between functional hubs such as
PCC and mPFC. Moreover, these two DFCPs covered the
parietal and occipital lobes, with sparser connections in
DFCP15 than in DFCP14. DFCP1, DFCP2, and DFCP3
involved DMN activities but hadmore interhemispheric con-
nections in the parietal lobe, insular lobe, basal ganglia, and
thalamus. Besides connections in the DMN, DFCP5 DFCP6,
and DFCP17 showed more interhemispheric connections in
the parietal, frontal, and occipital lobes; DFCP6 involved
more frontal lobe activity whereas DFCP17 had a higher den-
sity of connections, especially in the visual area. DFCP8,
DFCP13, and DFCP16 also exhibited activities in the DMN
but showed greater FC in the frontal and temporal lobes
and subcortical nuclei, with DFCP8 and DFCP13 involving
more connections in the frontal and occipital lobes, respec-
tively. DFCP10 and DFCP3 involved activities in the DMN;
the former had more interhemispheric connections in sub-
cortical nuclei and the latter in the frontal lobe and thalamus,
with more long-distance connections. DFCP12 had connec-

tions in the parietal and frontal lobes with long connections
between these 2 areas. DFCP7 showed the highest degree of
complexity and the largest number of connections in all brain
regions, indicating that the brain is highly active in the rest-
ing state [33, 34]; this is evidenced by the fact that it con-
sumes approximately 20% of the energy produced by the
body while accounting for just 2% of total body weight [63,
64]. DFCP9 had just a few sparse connections, demonstrating
that the brain was in a true resting state.

Migraine patients exhibited abnormal dFC in general
DFCPs compared to normal control subjects (Figure 8).
Three pairs of dFCs were present in each DFCP (Figure 9
and Table 2). The ROIs of these dFCs were distributed in
A10m (Brodmann area 10 in the superior frontal lobe),
A32sg (Brodmann area 32 in ACC), basal ganglia, and thala-
mus and are components of the pain matrix. Thus, even
among general DFCPs, there are functional differences in
those ROIs that may have clinical significance for migraine.

4.3. Static FC and DFCP Specific to Migraine. In this paper,
the critical ROIs of the static network were extracted in the
same way based on static functional connectivity, which

Table 1: Critical regions of interest (ROIs)∗.

ROI number Abbreviation Anatomic and modified cytoarchitectonic description

1 A8m Medial Brodmann area 8 in superior frontal gyrus of frontal lobe

66 A1/2/3ll Brodmann area 1/2/3 (lower limb region) in paracentral lobule of frontal lobe

181 A23v Brodmann area 23 (ventral area) in cingulate gyrus of limbic lobe

182 A23v Brodmann area 23 (ventral area) in cingulate gyrus of limbic lobe

191 rCunG Rostral cuneus gyrus in ventromedial occipital cortex of occipital lobe

192 rCunG Rostral cuneus gyrus in ventromedial occipital cortex of occipital lobe

195 rLinG Rostral lingual gyrus in ventromedial occipital cortex of occipital lobe

197 vmPOS Ventromedial parieto-occipital sulcus in ventromedial occipital cortex of occipital lobe

198 vmPOS Ventromedial parieto-occipital sulcus in ventromedial occipital cortex of occipital lobe

221 GP Globus pallidus in basal ganglia

231 mPFtha Medial prefrontal thalamus in subcortical nuclei

234 mPMtha Premotor thalamus in subcortical nuclei

235 mPMtha Premotor thalamus in subcortical nuclei

239 PPtha Posterior parietal thalamus in subcortical nuclei

245 rLinG Lateral prefrontal thalamus in subcortical nuclei

246 lPFtha Lateral prefrontal thalamus in subcortical nuclei

Frontal lobe
Limbic lobe

Insular lobe
subcortical nuclei
Occipital lobe

Figure 6: Critical ROIs projected onto a standard brain surface.
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was referred to as Supplementary Table S5. According to the
two attributes, 15 critical ROIs can be extracted. Compared
with DFCP4, ROI181, ROI182, ROI195, and ROI197 were

extracted at the same time. The ROIs in the static network
were mainly in the frontal lobe, limbic lobe, and occipital
lobe. In addition to the above brain regions, the specific

Frontal lobe
Temporal lobe
Parietal lobe

Limbic lobe
Insular lobe
subcortical nuclei

Occipital lobe

DFCP1

DFCP2

DFCP3

DFCP5

DFCP6

DFCP7

DFCP8

DFCP9

DFCP10

DFCP11

DFCP12

DFCP13

DFCP14

DFCP15

DFCP16

DFCP17

Figure 7: Visualization of 16 general DFCPs on a standard brain surface in migraine patients and normal control subjects. ROIs are shown as
colored spheres, and FC values between ROIs represented by Pearson’s correlation coefficients are shown as brown edges. A threshold > 0:75
was defined to retain higher connective edges. Each brain area is shown as a different color.
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DFCP also extracted the brain regions distributed in basic
ganglia and subcortical nucleus, which were also associated
with migraine in previous studies. It could be seen that
these were the critical ROIs revealed by changing a time
scale from static to dynamic functional connectivity, which
can provide different perspectives and references to
understand the neural mechanism of migraine.

4.4. Different Dataset and Different Window Lengths.
According to the results, the specific DFCPs obtained from
different datasets and different window lengths have a strong
correlation. This may be caused by the following reasons.
First of all, this paper uses the method of segment, averaging,
and clustering, which may reduce the impact of different
window lengths. As no matter how long the window length

DFCP1
Migraine group NC group Diversity Migraine group NC group Diversity

DFCP2

DFCP3

DFCP5

DFCP6

DFCP7

DFCP8

DFCP9

DFCP10

DFCP11

DFCP12

DFCP13

DFCP14

DFCP15

DFCP16

DFCP17

Figure 8: Visualization of 16 general DFCP centroids and intergroup difference matrices. Centroids with dimensions of 246 × 246 in
migraine patients and normal control subjects are shown as jet colormaps, and 246 × 246 intergroup difference matrices are shown as gray
colormaps. DFCP centroids are depicted in full matrix view and color-coded according to the strength of each DFC matrix. Intergroup
differences are shown as a gray matrix, and a darker color represents a significantly different value.
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is, the dFCS matrix would be automatically divided into dif-
ferent segments then be averaged, which might reduce the
inconsistency caused by different window lengths. Secondly,
when the time scale becomes dynamic and smaller, it can bet-
ter reveal the fine information of network nodes that may not
be revealed by the static network and might reduce the
impact of different TR from different datasets. Therefore,
the specific DFCP obtained by this method has certain reli-
ability and repeatability.

4.5. Segmenting and Clustering. In previous studies [65, 66],
dynamic functional connectivity was used to consider a sin-
gle sample for the clustering approach which is an excellent
approach. In our study, it could be seen from Figure 2 that
adjacent dFCS are similar in color, so the illustrated dFCS
matrix could be divided into several segments based on sim-
ilarities in the color of adjacent rows to reduce the calculation
amount and improve efficiency. For this reason, we adopt the
method of segmentation in advance and then clustering. Fur-
thermore, the approach of automatic localization can avoid
the error caused by humans, which is beneficial to the wide
application of this method.

4.6. Limitations and Future Directions. This study had some
limitations. Firstly, we did not analyze the various subtypes
of migraine, which may have distinct DFCPs. Secondly, the
temporal relationships between DFCPs were not investi-
gated. In future studies, we will construct a model based on
the migraine-specific DFCP and associated ROIs that can
serve as a diagnostic reference for clinicians and validate
the specificity and sensitivity of this model.

5. Conclusion

In this study, we used the A-DFCM with twice-clustering to
elucidate the neurologic basis of migraine patients. In this
model, a novel method of automatically generating WQCPs
from rs-fMRI data improved the efficiency and accuracy of
segmentation, and K-means clustering combined with hier-
archical clustering eliminated randomness. Using this
approach and the independent 2-sample t-test, we identified
17 DFCPs including 16 that were general and 1 that was
closely related to the pathologic features of migraine and
could serve as a sensitive and specific neuroimaging diagnos-
tic biomarker. Another important finding of our work was
that the general DFCPs were associated with 6 critical brain
areas and are thus complementary neuroimaging features
that can help to distinguish migraine patients from normal
subjects.

Data Availability

The data of migraineurs were obtained from the Department
of Neurology of Shanghai Sixth People's Hospital East Affili-
ated to Shanghai University of Medicine & Health Science
and were approved by the Independent Ethics Committee
of Shanghai Sixth People's Hospital East Campus. According
to the Regulations on Human Genetic Resources Manage-
ment published by the Chinese government and in order to
ensure the privacy of patients, these data are not available.
The data of normal controls were obtained from a free public
database which can be accessed at http://fcon_1000.projects
.nitrc.org/fcpClassic/FcpTable.html.

Limbic lobe
Insular lobe
subcortical nuclei
Frontal lobe

Figure 9: Visualization of 3 dFCs differing significantly for all general DFCPs on a standard brain surface. Colored spheres represent brain
regions, and brown edges denote the connection between them.

Table 2: Regions of interest (ROI)∗ in the 3 dynamic functional connectivity.

ROI number Abbreviation Anatomic and modified cytoarchitectonic description

13 A10m Medial Brodmann area 10 in superior frontal gyrus of frontal lobe

187 A32sg Subgenual Brodmann area 32 in cingulate gyrus of limbic lobe

219 vCa Ventral caudate in basal ganglia of subcortical nuclei

221 GP Globus pallidus in basal ganglia of subcortical nuclei

231 mPFtha Medial prefrontal thalamus in thalamus of subcortical nuclei

237 rTtha Rostral temporal thalamus in thalamus of subcortical nuclei
∗ROI descriptions and abbreviations were obtained from the Brainnetome Atlas [30].

11Computational and Mathematical Methods in Medicine

http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html


Conflicts of Interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Authors’ Contributions

WN, WZ, JY, and NW designed the study. WN and JY per-
formed the experiments. WN, LZ, YL, and DC analyzed the
data. WN, WZ, JD, and YS wrote the manuscript.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 31870979, No. 61701318,
No. 61701298, and No. 61906117), Pudong New Area Sci-
ence and Technology Development Fund (Grant No.
PKJ2014-Y08), SUMHS seed foundation project (Grant No.
SFP-18-20-14-006), Shanghai Sailing Program (Grant No.
19YF1419000), and Science and Technology Support Pro-
jects of the Shanghai Science and Technology Committee
(Grant No. 19411971400).

Supplementary Materials

The online version of this article contains supplementary
material, which includes the supporting tables and figures
for this paper and is available to authorized users.
(Supplementary Materials)

References

[1] T. J. Schwedt, C.-C. Chiang, C. D. Chong, and D. W. Dodick,
“Functional MRI of migraine,” The Lancet Neurology, vol. 14,
no. 1, pp. 81–91, 2015.

[2] T. J. Steiner, L. J. Stovner, and G. L. Birbeck, “Migraine: the
seventh disabler,” The Journal of Headache and Pain, vol. 53,
no. 2, pp. 227–229, 2013.

[3] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain mag-
netic resonance imaging with contrast dependent on blood
oxygenation,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 87, no. 24, pp. 9868–9872,
1990.

[4] Y. F. Zang, Y. He, C. Z. Zhu et al., “Altered baseline brain
activity in children with ADHD revealed by resting-state
functional MRI,” Brain & Development, vol. 29, no. 2,
pp. 83–91, 2007.

[5] C. Fu, K. Li, H. Liu et al., “Abnormal amplitude of low-
frequency fluctuation during the resting-state functional mag-
netic resonance imaging in migraine patients without aura,”
Chinese Journal of Integrative Medicine on Cardio/Cerebrovas-
cular Disease, vol. 13, pp. 1833–1836, 2015.

[6] Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homo-
geneity approach to fMRI data analysis,” NeuroImage, vol. 22,
no. 1, pp. 394–400, 2004.

[7] K. Li, Z. Yong, Y. Ren, H. Zhang, Z. Tan, and Y. Zou, “Study on
the cortex regional homogeneity based on functional magnetic
resonance imaging in migraine patients without aura,” Chinese
Journal of Integrative Medicine on Cardio/Cerebrovascular
Disease, vol. 13, pp. 181–184, 2015.

[8] Z. Xi, W. Zhihong, Z. Yang et al., “Altered cortical and subcor-
tical local coherence in migraine with and without aura: evi-
dence from resting-state fMRI,” Zhonghua Yi Xue Za Zhi,
vol. 95, pp. 3196–3200, 2015.

[9] D. Yu, K. Yuan, L. Zhao et al., “Regional homogeneity abnor-
malities in patients with interictal migraine without aura: a
resting-state study,” NMR in Biomedicine, vol. 25, no. 5,
pp. 806–812, 2012.

[10] L. Fan, H. Li, J. Zhuo et al., “The human brainnetome atlas: a
new brain atlas based on connectional architecture,” Cerebral
Cortex, vol. 26, no. 8, pp. 3508–3526, 2016.

[11] L. Ren, X. Zhang, Z. Wang, J. Cheng, D. Zhang, C. Wang et al.,
“Migraine and resting-state functional connectivity of the
brain,” Journal of Brain and Nervous Diseases, vol. 22,
pp. 188–191, 2014.

[12] Y. Zhang, Y. Ren, S. Li, Z. Tan, and Y. Zou, “Study on default
mode network based on resting-state in migraine patients
without aura,” Chinese Journal of Integrative Medicine on
Cardio/Cerebrovascular Disease, vol. 12, pp. 570-571, 2014.

[13] B. B. Biswal and J. L. Ulmer, “Blind source separation of mul-
tiple signal sources of fMRI data sets using independent com-
ponent analysis,” Journal of Computer Assisted Tomography,
vol. 23, no. 2, pp. 265–271, 1999.

[14] Y. Shi, W. Zeng, N. Wang, and D. Chen, “A novel fMRI group
data analysis method based on data-driven reference extract-
ing from group subjects,” Computer Methods and Programs
in Biomedicine, vol. 122, no. 3, pp. 362–371, 2015.

[15] Y. Shi, W. Zeng, N. Wang, and L. Zhao, “A new constrained
spatiotemporal ICA method based on multi-objective optimi-
zation for fMRI data analysis,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 26, no. 9,
pp. 1690–1699, 2018.

[16] T. Uehara, T. Yamasaki, T. Okamoto et al., “Efficiency of a
“small-world” brain network depends on consciousness level:
a resting-state fMRI study,” Cerebral Cortex, vol. 24,
pp. 1529–1539, 2014.

[17] J. Wang, S. Qiu, Y. Xu et al., “Graph theoretical analysis reveals
disrupted topological properties of whole brain functional net-
works in temporal lobe epilepsy,” Clinical Neurophysiology,
vol. 125, no. 9, pp. 1744–1756, 2014.

[18] D. Chen, J. Yang, W. Zeng, Y. Xu, L. Jiao, and N. Lei-Jiao
Wang, “Brain functional connectivity investigation of
patients with migraine based on complex networks analy-
sis,” Chinese Journal of Medical Imaging, vol. 23, pp. 418–
422, 2015.

[19] T. Xue, K. Yuan, L. Zhao et al., “Intrinsic brain network abnor-
malities in migraines without aura revealed in resting-state
fMRI,” PLoS One, vol. 7, no. 12, article e52927, 2012.

[20] V. D. Calhoun, R. Miller, G. Pearlson, and T. Adalı, “The
chronnectome: time-varying connectivity networks as the next
frontier in fMRI data discovery,” Neuron, vol. 84, no. 2,
pp. 262–274, 2014.

[21] C. Chang and G. H. Glover, “Time–frequency dynamics of
resting-state brain connectivity measured with fMRI,” Neuro-
Image, vol. 50, no. 1, pp. 81–98, 2010.

[22] R. M. Hutchison, T. Womelsdorf, E. A. Allen et al., “Dynamic
functional connectivity: promise, issues, and interpretations,”
NeuroImage, vol. 80, pp. 360–378, 2013.

[23] M. G. Preti, T. A. Bolton, and D. Van De Ville, “The dynamic
functional connectome: state-of-the-art and perspectives,”
NeuroImage, vol. 160, pp. 41–54, 2017.

12 Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2021/6614520.f1.docx


[24] Y. Tu, Z. Fu, F. Zeng et al., “Abnormal thalamocortical net-
work dynamics in migraine,” Neurology, vol. 92, no. 23,
pp. e2706–e2716, 2019.

[25] M. J. Lee, B.-Y. Park, S. Cho, H. Park, S.-T. Kim, and C.-
S. Chung, “Dynamic functional connectivity of the migraine
brain: a resting-state functional magnetic resonance imaging
study,” Pain, vol. 160, no. 12, pp. 2776–2786, 2019.

[26] G. Dumkrieger, C. D. Chong, K. Ross, V. Berisha, and T. J.
Schwedt, “Static and dynamic functional connectivity differ-
ences between migraine and persistent post-traumatic head-
ache: a resting-state magnetic resonance imaging study,”
Cephalalgia, vol. 39, no. 11, pp. 1366–1381, 2019.

[27] Y. Shi, W. Zeng, N. Wang, and J. Yang, “Multi-channel hierar-
chy functional integration analysis between large-scale brain
networks for migraine: an fMRI study,” NeuroImage: Clinical,
vol. 28, p. 102462, 2020.

[28] Headache Classification Committee of the International Head-
ache Society, “The international classification of headache dis-
orders, 3rd edition (beta version),” Cephalalgia, vol. 33, no. 9,
pp. 629–808, 2013.

[29] C.-G. Yan and Y.-F. Zang, “DPARSF: a MATLAB toolbox for
“pipeline” data analysis of resting-state fMRI,” Frontiers in Sys-
tems Neuroscience, vol. 4, p. 13, 2010.

[30] K. Fan, L. Ren, X. Zhang et al., “Abnormalities on resting-state
functional magnetic resonance imaging in migraine with aura
patients during interictal period,” Journal of Brain and Ner-
vous Diseases, vol. 24, pp. 95–99, 2016.

[31] S. M. Smith, K. L. Miller, S. Moeller et al., “Temporally-inde-
pendent functional modes of spontaneous brain activity,” Pro-
ceedings of the National Academy of Sciences of the United
States of America, vol. 109, no. 8, pp. 3131–3136, 2012.

[32] X. Zhang, L. Guo, X. Li et al., “Characterization of task-free
and task-performance brain states via functional connectome
patterns,” Medical Image Analysis, vol. 17, no. 8, pp. 1106–
1122, 2013.

[33] X. Li, D. Zhu, X. Jiang et al., “Dynamic functional connec-
tomics signatures for characterization and differentiation of
PTSD patients,” Human Brain Mapping, vol. 35, no. 4,
pp. 1761–1778, 2014.

[34] N. Wang, W. Zeng, Y. Shi, and H. Yan, “Brain functional plas-
ticity driven by career experience: a resting-state fMRI study of
the seafarer,” Frontiers in Psychology, vol. 8, p. 1786, 2017.

[35] D. L. Davies and D. W. Bouldin, “A cluster separation mea-
sure,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-1, no. 2, pp. 224–227, 1979.

[36] M. Rubinov and O. Sporns, “Complex network measures of
brain connectivity: uses and interpretations,” NeuroImage,
vol. 52, no. 3, pp. 1059–1069, 2010.

[37] R. Guimerà and L. A. Nunes Amaral, “Functional cartography
of complex metabolic networks,” Nature, vol. 433, no. 7028,
pp. 895–900, 2005.

[38] S. Achard and E. Bullmore, “Efficiency and cost of economical
brain functional networks,” PLoS Computational Biology,
vol. 3, no. 2, article e17, 2007.

[39] R. L. Buckner, J. Sepulcre, T. Talukdar et al., “Cortical hubs
revealed by intrinsic functional connectivity: mapping, assess-
ment of stability, and relation to Alzheimer’s disease,” The
Journal of Neuroscience, vol. 29, no. 6, pp. 1860–1873, 2009.

[40] J. D. Power, B. L. Schlaggar, C. N. Lessov-Schlaggar, and S. E.
Petersen, “Evidence for hubs in human functional brain net-
works,” Neuron, vol. 79, no. 4, pp. 798–813, 2013.

[41] T. Itahashi, T. Yamada, H. Watanabe et al., “Altered network
topologies and hub organization in adults with autism: a
resting-state fMRI study,” PLoS One, vol. 9, no. 4, article
e94115, 2014.

[42] M. Xia, J. Wang, and Y. He, “BrainNet viewer: a network visu-
alization tool for human brain connectomics,” PLoS One,
vol. 8, no. 7, article e68910, 2013.

[43] R. Peyron, M. Frot, F. Schneider et al., “Role of operculoinsular
cortices in human pain processing: converging evidence from
PET, fMRI, dipole modeling, and intracerebral recordings of
evoked potentials,” NeuroImage, vol. 17, no. 3, pp. 1336–
1346, 2002.

[44] R. D. Treede, D. R. Kenshalo, R. H. Gracely, and A. K. Jones,
“Cortical representation of pain,” Pain, vol. 15, no. 1, pp. 3–
5, 1992.

[45] G. N. Verne, M. E. Robinson, and D. D. Price, “Representa-
tions of pain in the brain,” Current Rheumatology Reports,
vol. 6, no. 4, pp. 261–265, 2004.

[46] A. Mouraux, A. Diukova, M. C. Lee, R. G. Wise, and G. D. Ian-
netti, “A multisensory investigation of the functional signifi-
cance of the "pain matrix",” NeuroImage, vol. 54, no. 3,
pp. 2237–2249, 2011.

[47] I. Tracey, “Nociceptive processing in the human brain,” Cur-
rent Opinion in Neurobiology, vol. 15, no. 4, pp. 478–487, 2005.

[48] K. Peng, S. C. Steele, L. Becerra, and D. Borsook, “Brodmann
area 10: collating, integrating and high level processing of
nociception and pain,” Progress in Neurobiology, vol. 161,
pp. 1–22, 2018.

[49] R. Peyron, B. Laurent, and L. García-Larrea, “Appreciation par
l'imagerie fonctionnelle des reponses cerebrales a la douleur.
Revue et meta-analyse,” Neurophysiologie Clinique/Clinical
Neurophysiology, vol. 30, no. 5, pp. 263–288, 2000.

[50] I. Tracey, “Neuroimaging of pain mechanisms,” Current Opin-
ion in Supportive and Palliative Care, vol. 1, no. 2, pp. 109–116,
2007.

[51] T. Xue, K. Yuan, P. Cheng et al., “Alterations of regional spon-
taneous neuronal activity and corresponding brain circuit
changes during resting-state in migraine without aura,” NMR
in Biomedicine, vol. 26, no. 9, pp. 1051–1058, 2013.

[52] J.-P. Lefaucheur, X. Drouot, P. Cunin et al., “Motor cortex
stimulation for the treatment of refractory peripheral neuro-
pathic pain,” Brain, vol. 132, no. 6, pp. 1463–1471, 2009.

[53] A. V. Apkarian, A. Darbar, B. R. Krauss, P. A. Gelnar, and
N. M. Szeverenyi, “Differentiating cortical areas related to pain
perception from stimulus identification: temporal analysis of
fMRI activity,” Journal of Neurophysiology, vol. 81, no. 6,
pp. 2956–2963, 1999.

[54] J. Zhang, J. Su, M. Wang et al., “Increased default mode net-
work connectivity and increased regional homogeneity in
migraineurs without aura,” The Journal of Headache and Pain,
vol. 17, no. 1, p. 98, 2016.

[55] Y. Chen, H. Liu, Z. Jin, G. Liu, and Q. Zhang, “Functional
activity mapping during anticipation of dental pain,” Hua Xi
Kou Qiang Yi Xue Za Zhi, vol. 24, no. 2, pp. 121–124, 2006.

[56] F. Le Pira, G. Zappalà, S. Giuffrida et al., “Memory distur-
bances in migraine with and without aura: a strategy prob-
lem?,” Cephalalgia, vol. 20, no. 5, pp. 475–478, 2000.

[57] S. Vale, “How migraines impact cognitive function: findings
from the Baltimore ECA,” Neurology, vol. 69, no. 8, pp. 810–
810, 2007.

13Computational and Mathematical Methods in Medicine



[58] M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in
brain activity observed with functional magnetic resonance
imaging,” Nature Reviews. Neuroscience, vol. 8, no. 9,
pp. 700–711, 2007.

[59] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers,
D. A. Gusnard, and G. L. Shulman, “A default mode of brain
function,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 98, no. 2, pp. 676–682, 2001.

[60] X. Liang, Q. Zou, Y. He, and Y. Yang, “Coupling of functional
connectivity and regional cerebral blood flow reveals a physio-
logical basis for network hubs of the human brain,” Proceed-
ings of the National Academy of Sciences of the United States
of America, vol. 110, no. 5, pp. 1929–1934, 2013.

[61] R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The
brain’s default network,” Annals of the New York Academy of
Sciences, vol. 1124, no. 1, pp. 1–38, 2008.

[62] D. A. Fair, A. L. Cohen, N. U. F. Dosenbach et al., “The matur-
ing architecture of the brain’s default network,” Proceedings of
the National Academy of Sciences of the United States of Amer-
ica, vol. 105, no. 10, pp. 4028–4032, 2008.

[63] M. E. Raichle and D. A. Gusnard, “Appraising the brain’s
energy budget,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 99, no. 16,
pp. 10237–10239, 2002.

[64] D. Zhang and M. E. Raichle, “Disease and the brain’s dark
energy,” Nature Reviews. Neurology, vol. 6, no. 1, pp. 15–28,
2010.

[65] D. K. Saha, E. Damaraju, B. Rashid, A. Abrol, S. Plis, and
V. Calhoun, “A classification-based approach to estimate the
number of resting functional magnetic resonance imaging
dynamic functional connectivity states,” Brain Connectivity,
vol. 11, no. 2, pp. 132–145, 2021.

[66] Q. Zhou, L. Zhang, J. Feng, and C. Z. Lo, “Tracking the main
states of dynamic functional connectivity in resting state,”
Frontiers in Neuroscience, vol. 13, p. 685, 2019.

14 Computational and Mathematical Methods in Medicine


	Extraction and Analysis of Dynamic Functional Connectome Patterns in Migraine Sufferers: A Resting-State fMRI Study
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition
	2.2. Data Preprocessing
	2.3. A-DFCM with Twice-Clustering
	2.4. Automatic Generation of WQCPs
	2.5. Identification of Specific/General DFCPs
	2.6. Analysis of Specific/General DFCPs

	3. Results
	3.1. Ratio Distribution of WQCP Samples under Resampling
	3.2. Specific DFCP
	3.3. General DFCPs and Intergroup Differences

	4. Discussion
	4.1. DFCP Specific to Migraine
	4.2. Similarities and Differences in General DFCPs
	4.3. Static FC and DFCP Specific to Migraine
	4.4. Different Dataset and Different Window Lengths
	4.5. Segmenting and Clustering
	4.6. Limitations and Future Directions

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

