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Abstract
In a previous mouse study, social defeat stress-induced microglial activation released tumor necrosis factor-α (TNF-α),
leading to neuronal changes in the prefrontal cortex (PFC) and behavioral changes (anxiety). We aimed to investigate
the relationship between gray-matter (GM) structural networks and serum TNF-α in patients with major depression
disorder (MDD) using multivariate source-based morphometry (SBM). Forty-five first-episode and drug-naïve MDD
patients and 38 healthy subjects (HSs) were recruited. High-resolution T1-weighted imaging was performed and serum
TNF-α levels were measured in all MDD patients and HSs. After acquiring GM structural networks using SBM, we
compared the Z-transformed loading coefficients (Z-scores) between MDD patients and HSs, and investigated the
relationship between the Z-scores and the serum TNF-α levels in MDD patients. The serum TNF-α levels in MDD
patients were significantly higher than those in HSs. We extracted two independent GM structural networks (the
prefrontal network and the insula-temporal network) with significant differences between MDD patients and HSs
(−0.305 ± 0.85 and 0.253 ± 0.82; P= 0.03 in the prefrontal network, and −0.268 ± 0.86 and 0.467 ± 0.71; P < 0.01 in the
insula-temporal network). The serum TNF-α levels were significantly correlated with the Z-scores in the prefrontal
network after Bonferroni correction (r=−0.419, p < 0.01); however, the correlation in the insula-temporal network was
not significant (r=−0.290, p= 0.11). Elevated serum TNF-α levels in the early stage of MDD were associated with
alteration of the prefrontal network.

Introduction
Accumulating evidence suggests a role of inflammation

in the pathogenesis of major depressive disorder (MDD)1–3.
Tumor necrosis factor-α (TNF-α) is a proinflammatory
cytokine that is largely produced by macrophages4 and
which has been shown to have both neurotoxic and
neuroprotective effects5. Pathophysiologically, elevated

serum TNF-α may induce decreased neuronal synaptic
plasticity, reduced neurotrophic factors, and reduced
neurogenesis6. MDD patients have been reported to have
increased serum TNF-α levels, and antidepressant treat-
ment can reduce the TNF-α level7,8. Furthermore, anti-
TNF-α therapy can help relieve depressive symptoms and
repair cognitive impairment9. This evidence suggests that
TNF-α may affect the brain morphology in MDD patients
through processes related to neurodegeneration. A recent
study showed that stress-induced microglial activation in
mice released IL-1α and TNF-α in the prefrontal cortex
(PFC), leading to atrophy of the PFC neurons and beha-
vioral changes (social avoidance and anxiety)10. The
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TNF-α-induced neuronal changes in the PFC may
therefore play a pathophysiological role in MDD.
To our knowledge, only one previous study has eval-

uated the relationship between brain morphology and the
serum TNF-α levels in MDD patients11; however, the
authors failed to find any relationship between them on
voxel-based morphometry (VBM), which automatically
segments brain images into voxel-wise measures of gray-
matter (GM)12. The VBM approach is a univariate
approach. In contrast, the recently introduced technique
of source-based morphometry (SBM) is a multivariate
approach, which provides a way to pool information
across different voxels as well as identify unpredicted
patterns13. SBM applies an independent component
analysis (ICA) to a segmented image, arranges voxels into
sets that contain similar information13, and acquires
common morphological features of the GM concentration
among individuals at the network level. Thus, this method
is suitable for identifying novel networks.
In this study, to test the hypothesis that serum TNF-α

might be associated with brain networks in the prefrontal
area of MDD patients, we acquired GM structural net-
works using SBM. In addition, we recruited first-episode
and drug-naïve MDD patients because antidepressant
treatment affects brain morphometry14. Our purpose was
to evaluate the differences in the GM structural networks
of MDD patients and healthy subjects (HSs), and to
investigate the relationship between the GM structural
networks and the serum TNF-α levels in MDD patients.

Materials and methods
Participants
Human experiments were carried out in accordance

with guidelines provided and approved by the Institu-
tional Review Board of the University of Occupational and
Environmental Health School of Medicine, Japan
(approval number: H25-13). All of the participants pro-
vided their written informed consent to participate in
the study.
In the current study, first-episode and drug-naïve

patients with MDD were recruited. A psychiatrist (A.K.,
with 14 years of experience in psychiatry) diagnosed
patients with MDD using a fully Structured Clinical
Interview for the Diagnostic and Statistical Manual for
Mental Disorders, Fourth Edition, Text revision (DSM-IV-
TR) Research Version, Non-Patient Edition (SCID-I/NP).
To qualify for the study, the patients with MDD must not
have previously met the criteria for any DSM-IV-TR Axis I
disorder based on interviews performed by a psychiatrist.
In short, none of the MDD patients in this study had any
past episodes of mood disorder. Furthermore, patients
with mild cognitive impairment were excluded, mainly
based on information about their activities of daily living
from family members or caregivers. In addition, a brief

cognitive examination including a serial 7s test and an
assessment of the patient’s short-term memory was per-
formed by an experienced psychiatrist.
The severity of depression was evaluated using the 17-

item Hamilton Rating Scale for Depression (HAMD-17).
Only patients with a total HAMD-17 score of ≥14 were
eligible for inclusion in the study. Between March 2009
and June 2018, 57 consecutive patients with first-episode
and drug-naïve MDD were recruited. From this initial
sample, the psychiatrist excluded patients who met the
following criteria: (a) a history of cognitive impairment,
neurological disease, or the presence of either Axis I
(schizophrenia, other affective disorders, etc.) or Axis II
(personality disorders, mental retardation, etc.) psychia-
tric disorders (n= 6); (b) the presence of comorbid sub-
stance use disorders (n= 3); (c) unwillingness to provide
informed consent (n= 2); (d) brain abnormalities (a brain
tumor) on conventional magnetic resonance imaging
(MRI) data (including T2-weighted images) (n= 1). Thus,
a total of 45 right-handed, first-episode, drug-naïve
patients with MDD were included (Table 1). Forty of the
45 patients had participated in our previously published
studies11, which analyzed the brain volume and inflam-
mation in MDD.
Thirty-eight right-handed HSs were also recruited from

nearby communities via an interview conducted by the

Table 1 Demographic characteristics, brain volumes, and
values of TNF-α of participants.

Healthy

subjects

MDD patients

(n= 38) (n= 45) p-value

Age, years; mean,

(range, SD)

43.1 (22–65, 11.3) 47.2

(20–73, 14.3)

0.15

Female, numbers 12 22 0.12

Body mass index 21.1 (3.1)

Education years,

mean (SD)

13.2 (2.3)

Smokers (%) 18 (40)

HAMD-17, mean of total

scores (SD)

22.6 (5.9)

Inpatients (%) 30 (67)

History of suicide

attempt (%)

10 (22)

ICV, mean (SD) 1443 (153) ml 1401 (146) ml 0.20

TNF-α, mean;

pg/mL (SD)

1.270 (0.365) 1.602 (0.607) <0.01

SD standard deviation, ICV intracranial volume, MDD major depression disorders,
HAMD-17 17-item Hamilton Rating Scale for Depression, TNF tumor necrosis
factor.
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same psychiatrist using the full SCID-I/NP. None of the
HSs had a history of serious medical or neuropsychiatric
illness, or a family history of major psychiatric or neuro-
logical illness among their first-degree relatives (Table 1).
A radiologist (S.K., 22 years of experience in neuror-

adiology) who reviewed the conventional MRI data
(including T2-weighted images) reported no gross
abnormalities, such as infarcts, hemorrhaging, or brain
tumors, in any of the study participants.

Cytokine analyses
All human blood samples were assayed in singlicate

(due to limited sample volumes) using the V-PLEX
Human Proinflammatory Panel I (4-Plex), which is a
highly sensitive multiplex enzyme-linked immunosorbent
assay used to quantitatively measure TNF-α, from a single
small sample volume (25 μL) using an electro-
chemiluminescent detection method (MesoScale Dis-
covery, Gaithersburg, MD, USA). The mean intra-assay
coefficients, based on the standards run in duplicate for
each cytokine, were <8.5% for all cytokines. For the sta-
tistical analysis, any value that was below the lowest limit
of detection (LLOD) for the cytokine assay was replaced
with half of the LLOD of the assay. This imputation
method is robust and well established15.

MRI
MRI was performed using a 3T MR system (Signa

EXCITE 3T; GE Healthcare, Wankesha, WI, USA) with
an 8-channel brain phased-array coil. Original T1 images
were acquired by three-dimensional fast-spoiled gradient
recalled acquisition in the steady state. The acquisition
parameters were as follows: repetition time, 10 ms; echo
time, 4.1 ms; inversion time, 700ms; flip angle, 10; field-of
view, 24 cm; section thickness, 1.2 mm; and resolution,
0.9 × 0.9 × 1.2 mm. All images were corrected for image
distortion due to gradient non-linearity using the Grad
Warp software program16 and for intensity inhomo-
geneity with the “N3” function17.

Image processing for VBM
A fully automatic technique for the computational

analysis of differences in regional brain volume through-
out the brain was conducted using the SPM12 software
program (Statistical Parametric Mapping 12; Institute of
Neurology, London, UK)18,19. The 3D-FSPGR images in
native space were spatially normalized, segmented into
GM, white matter, and cerebrospinal fluid images, and
modulated using the Diffeomorphic Anatomical Regis-
tration Through Exponential Lie Algebra (DARTEL)
toolbox in SPM1220. The DARTEL was proposed by
Ashburner as an alternative method for normalization in
the SPM software package18. To preserve the gray and
white matter volumes within each voxel, we modulated

the images using the Jacobean determinants derived from
the spatial normalization by DARTEL. The resulting
modulated GM images were smoothed using an 8mm
full-width at half-maximum Gaussian kernel.

Image processing for SBM
SBM is a multivariate technique that takes advantage of

independent component analyses (ICAs)13. SBM takes into
account information across different voxels and identifies
unpredicted, naturally occurring patterns of covariance
across brain regions. The preprocessing of images is iden-
tical to the procedure adopted for classical VBM analyses.
For image processing, a SBM analysis was carried out

using the GIFT toolbox (http://icatb.sourceforge.net)13.
The minimum description length (MDL) principle was
used to estimate the number of independent components.
The MDL identified 17 reliable independent components
(GM structural networks). We performed ICAs using a
neural network algorithm (Infomax) that attempted to
minimize the mutual information of the network outputs
in order to identify naturally grouping and maximally
independent sources21. The ICAs were repeated 20 times
in ICASSO (http://research.ics.aalto.fi/ica/icasso/), and
the resulting components were clustered to ensure their
consistency and reliability.
Group comparisons between MDD and HCs used mean

Z-scores based on the same independent component (GM
structural network), which were extracted from the SBM
analysis. Therefore, according to methods in the previous
study13, we extracted independent components from the
83 subjects (38 HSs and 45 MDD patients). The pre-
processed images from these 83 subjects were arrayed
into one 83-row subject-by-GM data matrix. This matrix
comprised 83 rows (83 subjects), and each column indi-
cated a voxel. The 83-row subject-by-gray matter data
matrix was further decomposed into 2 matrices by the
ICA. The first matrix was named the “mixing matrix” and
comprised one subject per row and an independent
component per column. The mixing matrix involved
“loading coefficients” demonstrating how each structural
component contributed to the 83 subjects and thus con-
tained information about the relationship between each
subject and each component. The second matrix was
named the source matrix and specified the relationship
between the ICs and the voxels. For GM volume com-
ponent visualization, the source matrix was reshaped back
into a three-dimensional image, scaled to unit standard
deviations (Z maps), and thresholded at Z > 2.5.

Statistical analyses
All statistical analyses were performed using the R

software program (R 3.1.0, R Foundation for Statistical
Computing, Vienna, Austria). P values of <0.05 were
considered to indicate statistical significance.
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As the age and TNF-α levels exhibited Gaussian dis-
tributions, we used independent sample t-tests to assess
the differences between HSs (controls) and patients with
MDD (patients). Fisher’s exact test was used for sex
comparisons. In the VBM analysis, statistical analyses
were performed using the SPM12 software program. The
morphological changes in the GM were assessed accord-
ing to the diagnosis status using a two-sample t-test. Age,
sex, and total GM volume were included as covariates of
no interest in all analyses as confounding variables. The
differences in the GM volume between MDD patients and
HSs were assessed at the whole-brain level. This analysis
yielded statistical parametric maps (SPMs [t]) based on a
voxel-level height threshold of p < 0.001. We used cluster-
level family wise error (FWE) correction. FWE-corrected
p values of <0.05 were considered to indicate statistical
significance.
In the analysis of loading coefficients calculated from

SBM, we performed the following analyses: (a) a com-
parison of GM structural networks between MDD
patients and HSs; and (b) an analysis of the linear cor-
relation between GM structural networks and the TNF-α
levels. Each subject has a loading coefficient for each
component, such that for each component, the groups
were compared with the loading coefficients as inputs.
The loading coefficients were transformed to Z-scores
using Fisher’s z-transformation. The Z-scores in SBM
allow for the identification of sources that exhibit group
differences (MDD patients vs. HSs) or particular rela-
tionships with other variables of interest (e.g., the TNF-α
level). To compare the differences in GM structural
networks, we compared the loading coefficients (Z-
scores) in each component using a two-sample t-test.
Spearman’s rank correlation was applied to identify the
association between serum TNF-α levels and the loading
coefficients (Z-scores) from each subject. Bonferroni
correction for multiple comparisons was applied to the
tests by multiplying P values by the number of tests,
subject to a maximum of 1.0. All results were thre-
sholded at p < 0.05 with Bonferroni correction. Thus,
P values of <0.05 were assumed to indicate a statistically
significant difference in all analyses except for the
SPM12 analysis.

Results
Demographic data
The Table 1 shows the participants’ demographic data.

There were no significant differences in the age, gender,
or intracranial volume on MRI between HSs and patients.
The serum TNF-α levels of the patients were significantly
higher than in HSs. The serum TNF-α level was asso-
ciated with the total HAMD-17 score in the MDD
patients (r=−0.350, p= 0.01 by Spearman’s rank
correlation).

VBM analyses
The whole-brain analysis showed no significant differ-

ences in the regional GM volume between patients
and HSs.

SBM analyses
The ICA generated 17 independent components (GM

structural networks). Three of these components were
determined to be artifacts based on the criteria defined by
Xu et al. (2009): components containing several sharp
edges near the boundary of the brain or appearing pri-
marily in regions that do not contain GM13. Previously,
Williams reviewed the neural circuit taxonomy regarding
depression and anxiety based on published work, which
including various cerebral neural circuits, but not cere-
bellar circuits22. Based on that article, four independent
components, which mainly included cerebellar networks,
were excluded from the subsequent analysis. Thus, from
among 14 independent components, we extracted a total
of 10 independent components.
Of these 10 independent components, there were only 2

for which significant differences were observed between
MDD patients and HSs (P < 0.05, with Bonferroni cor-
rection applied by multiplying P values by the number of
tests [n= 10]). We called these MDD-specific compo-
nents “the prefrontal network” and “the insula-temporal
network” (Fig. 1). For the two components, the mean
Z-scores in MDD patients were significantly lower than
those in HCs after Bonferroni correction: (−0.305 ± 0.85
and 0.253 ± 0.82; nominal P < 0.01 and corrected P with
Bonferroni correction= 0.03 in the prefrontal network)
and (−0.268 ± 0.86 and 0.467 ± 0.71; nominal P < 0.01 and
corrected P with Bonferroni correction <0.01 in the
insula-temporal network).
To identify whether or not serum TNF-α affected the

two GM structural networks (the prefrontal and insula-
temporal networks), we assessed the correlation between
the Z-scores and the serum TNF-α levels. The serum
TNF-α levels were significantly correlated with the Z-
score of prefrontal network after Bonferroni correction
was applied by multiplying P values by the number of tests
[n= 2] (r=−0.419, nominal P < 0.01 and corrected
P with Bonferroni correction <0.01) (Fig. 2); however, the
correlation was not significant for the insula-temporal
network (r=−0.290, p= 0.11).
There was no significant linear correlation between the

Z-scores and total HAM-D score in the two components
(the prefrontal network and the insula-temporal network).

Discussion
In this study, the Z-scores of MDD patients in the

prefrontal network were significantly lower than those of
HSs, which may indicate the presence of abnormal GM
structural networks in patients with MDD. Furthermore,
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in the MDD patients, the Z-scores in the prefrontal net-
work showed significant negative correlations with the
serum TNF-α levels. Thus, our results suggest that neu-
roinflammation (indicated by an elevated serum TNF-α
level) in the early stage of MDD is associated with pre-
frontal network alterations. Inflammation (indicated by an
elevated serum TNF-α level) is considered to be a char-
acteristic of the pathophysiology of MDD7,8. We also
found that the serum TNF-α levels of MDD patients were
significantly higher than those of HSs. Many previous
studies have shown that elevated serum TNF-α levels can

have detrimental effects on the central nervous system23–25.
Yang et al.26 showed that serum TNF-α could affect the
brain structure via dendritic elimination, independent of
central inflammatory activity. In addition, some previous
studies using a preclinical mouse model revealed that
serum TNF-α is critical to the development of various
cortices27,28. These studies support our results.
Segall et al.29 investigated the correspondence between

GM structural networks using SBM and functional net-
works using resting-state fMRI and identified several
structural components that corresponded to resting-state
functional components. Alexander-Bloch et al.30 also
showed that the functional network identified using resting-
state fMRI was somewhat predictable by GM structural
networks. Scheinost et al. also assessed covariances in the
regional brain structure and function applied to structural
and functional MRI data in unmedicated MDD patients and
found a higher structure-to-function correlation in PFC in
the MDD group than the HSs31. In addition, both analyses
revealed alterations in multiple brain networks centered
around the PFC in MDD patients compared with HSs.
These results support our present findings, in which the
Z-scores of MDD patients in the prefrontal network were
significantly lower than those of HSs.
A meta-analysis on depression and anxiety showed

connectivity dysfunction within and between various
brain circuits, including the positive-affect circuit, the
default mode circuit, the attention circuit, and the cog-
nitive control circuit22. The PFC is considered to play key

Fig. 1 Sources discovered by SBM. Source-based morphometry revealed 10 structural networks (a–j). Regarding (a) the prefrontal network and (b)
insula-temporal network, the mean Z-scores of MDD patients were significantly lower than those of HCs after Bonferroni correction (−0.305 ± 0.85
and 0.253 ± 0.82; P= 0.03 in the prefrontal network, and −0.268 ± 0.86 and 0.467 ± 0.71; P < 0.01 in the insula-temporal network). The other structural
networks (c–j), which are generated from SBM analyses, showed no significant differences between MDD patients and HSs.

Fig. 2 Loading coefficients (Z-scores) in the prefrontal network
and serum TNF-α levels in MDD patients. The serum TNF-α levels
are significantly correlated with the Z-scores in the prefrontal network
after Bonferroni correction (r=−0.419, p < 0.01).
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roles in these circuits. The positive-affect circuit, which is
the reward-processing components of the affective cir-
cuits, is defined by the striatal nucleus accumbens and
ventral tegmental areas and their projections into the
orbitofrontal cortex and medial PFC32. Many previous
studies have suggested the presence of dysfunctional
positive-affect processing under conditions of depression
and anxiety33–35. The default mode circuit is defined by
the anterior medial PFC, the posterior cingulate cortex,
and the angular gyrus36. In a previous study, default-mode
hypoconnectivity was correlated with social anxiety37. The
frontoparietal attention circuit is defined by nodes in the
medial superior PFC, anterior insula, anterior inferior
parietal lobule, and precuneus38. Dysfunction of the
frontoparietal attention circuit has also been observed in
cases of social anxiety39. The cognitive control circuit is
composed of the dorsolateral PFC, anterior cingulate
cortex, dorsal parietal cortex, and precentral gyrus.
Notably, task-evoked dorsolateral PFC dysfunction in the
cognitive control circuit has been observed in unmedi-
cated MDD patients40.
In the current study, the voxel-based analysis demon-

strated no significant differences in the regional GM
volume between MDD patients and HSs. This may indi-
cate that the brain changes in the early stage of first-
episode MDD may be too subtle to be locally detectable
by VBM. However, previous studies using other imaging
techniques, such as surface-based morphometry41–43 and
functional MRI31, detected brain alterations in several
regions in the early stage of first-episode MDD. Thus, in
addition to surface-based morphometry and functional
MRI, SBM may also be suitable for studying early stage
MDD, since anatomical changes are likely to be dis-
tributed along networks of brain regions.
Network science has provided powerful analytical tools

for examining the complex interactions of cerebral orga-
nization. Several different methods for constructing
morphological brain networks have been established44–46.
In these studies, brain networks were constructed by
segmenting the brain into discrete regions (denoted as
nodes) based on the gyral-based anatomical atlas, such
as the Desikan–Killiany Atlas47, and then the coupling
relationship between two nodes (denoted as the edge)
was determined. However, the relationship between the
morphological anatomy based on the gyral-based ana-
tomical atlas and actual functional anatomy is unclear.
Our SBM is a multivariate technique that takes advan-
tage of ICAs. The SBM takes into account information
across different voxels and identifies unpredicted,
naturally occurring patterns of covariance across brain
regions. This data-driven, voxel-based method, which
examines the intrinsic connectivity of each voxel to
every other voxel in the brain, does not require prior
knowledge for selecting regions or networks of interest,

such as a gyral-based anatomical atlas. Therefore, we
believe that the SBM based on ICAs is more useful for
understanding the actual functional connectivity in the
human brain.
This study was limited by the small sample size, as SBM

is expected to show better performance with more data13.
For instance, the number of components that were able to
be extracted was proportional to the number of partici-
pants48. We therefore tried to include more participants
in our study. However, it was difficult to recruit and retain
drug-naïve patients with MDD during their first episode,
as many patients received antidepressants before they
underwent MRI. We focused on the cross-sectional
association based on one-time assessments of inflamma-
tory marker levels; however, these measurements cannot
reliably distinguish between chronic and acute inflam-
mation. The few previous studies that have assessed
chronic inflammation have revealed stronger associations
with mental health when inflammation is determined
using repeated measurements rather than a single
measurement49.
In conclusion, the serum TNF-α levels in patients with

MDD were significantly higher than in HSs. Importantly,
the elevated serum TNF-α levels in the early stage of
MDD were associated with GM structural network
alterations in the PFC. This result supports the findings of
a previous animal study, suggesting that TNF-α-induced
neuronal changes in the PFC have a pathophysiological
role in MDD10. The use of SBM based on ICAs allowed us
to identify the various brain networks that showed sig-
nificant differences between MDD patients and HSs. SBM
may contribute to neural circuit taxonomy for depression
and anxiety.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number 18K07654. In
addition, the analyses of brain VBM were supported by JSPS KAKENHI Grant
Number JP19K17214　and JP16H06280, Grant-in-Aid for Scientific Research on
Innovative Areas—Platforms for Advanced Technologies and Research
Resources “Advanced Bioimaging Support.”

Author details
1Department of Diagnostic Radiology, Hirosaki University Graduate School of
Medicine Radiology, Aomori, Japan. 2Department of Radiology, University of
Occupational and Environmental Health, Fukuoka, Japan. 3Department of
Psychiatry, University of Occupational and Environmental Health, Fukuoka,
Japan. 4Department of Radiology, Graduate School of Medicine, The University
of Tokyo, Tokyo, Japan

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 31 July 2019 Revised: 5 May 2020 Accepted: 14 May 2020

Kakeda et al. Translational Psychiatry          (2020) 10:187 Page 6 of 7



References
1. Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psy-

chiatry 67, 446–457 (2010).
2. Hiles, S. A., Baker, A. L., de Malmanche, T. & Attia, J. A meta-analysis of dif-

ferences in IL-6 and IL-10 between people with and without depression:
exploring the causes of heterogeneity. Brain Behav. Immun. 26, 1180–1188
(2012).

3. Howren, M. B., Lamkin, D. M. & Suls, J. Associations of depression with C-
reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186
(2009).

4. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell
Death Differ. 10, 45 (2003).

5. Sriram, K. & O’Callaghan, J. P. Divergent roles for tumor necrosis factor-α in the
brain. J. Neuroimmune Pharmacol. 2, 140–153 (2007).

6. Hashmi, A. M., Butt, Z. & Umair, M. Is depression an inflammatory condition? A
review of available evidence. J. Pak. Med Assoc. 63, 899–906 (2013).

7. Ma, K., Zhang, H. & Baloch, Z. Pathogenetic and therapeutic applications of
tumor necrosis factor-α (TNF-α) in major depressive disorder: a systematic
review. Int. J. Mol. Sci. 17, 733 (2016).

8. Hannestad, J., DellaGioia, N. & Bloch, M. The effect of antidepressant medi-
cation treatment on serum levels of inflammatory cytokines: a meta-analysis.
Neuropsychopharmacology 36, 2452–2459 (2011).

9. Bortolato, B., F Carvalho, A., K Soczynska, J., I Perini, G. & S McIntyre, R. The
involvement of TNF-α in cognitive dysfunction associated with major
depressive disorder: an opportunity for domain specific treatments. Curr.
Neuropharmacol. 13, 558–576 (2015).

10. Nie, X. et al. The innate immune receptors TLR2/4 mediate repeated social
defeat stress-induced social avoidance through prefrontal microglial activa-
tion. Neuron 99, 464–479. e467 (2018).

11. Kakeda, S. et al. Relationship between interleukin (IL)-6 and brain morphology
in drug-naïve, first-episode major depressive disorder using surface-based
morphometry. Sci. Rep. 8, 10054 (2018).

12. Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neu-
roimage 11, 805–821 (2000).

13. Xu, L., Groth, K. M., Pearlson, G., Schretlen, D. J. & Calhoun, V. D. Source‐based
morphometry: The use of independent component analysis to identify gray
matter differences with application to schizophrenia. Hum. Brain Mapp. 30,
711–724 (2009).

14. Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant
treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20,
9104–9110 (2000).

15. Vexler, A., Tao, G. & Chen, X. A toolkit for clinical statisticians to fix problems
based on biomarker measurements subject to instrumental limitations: from
repeated measurement techniques to a hybrid pooled-unpooled design. Adv
Protoc Oxid Stress III, 1208, 439–460 (2015).

16. Jovicich, J. et al. Reliability in multi-site structural MRI studies: effects of gradient
non-linearity correction on phantom and human data. NeuroImage 30,
436–443 (2006).

17. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for auto-
matic correction of intensity nonuniformity in MRI data. IEEE Trans. Med.
Imaging 17, 87–97 (1998).

18. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage
38, 95–113 (2007).

19. Ashburner, J. SPM: a history. Neuroimage 62, 791–800 (2012).
20. Ashburner, J. Computational anatomy with the SPM software. Magn. Reson.

Imaging 27, 1163–1174 (2009).
21. Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind

separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).
22. Williams, L. M. Precision psychiatry: a neural circuit taxonomy for depression

and anxiety. Lancet Psychiatry 3, 472–480 (2016).
23. Miller, A. H., Maletic, V. & Raison, C. L. Inflammation and its discontents: the role

of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65,
732–741 (2009).

24. Eyre, H. & Baune, B. T. Neuroplastic changes in depression: a role for the
immune system. Psychoneuroendocrinology 37, 1397–1416 (2012).

25. Kubera, M., Obuchowicz, E., Goehler, L., Brzeszcz, J. & Maes, M. In animal
models, psychosocial stress-induced (neuro) inflammation, apoptosis and
reduced neurogenesis are associated to the onset of depression. Prog. Neuro-
Psychopharmacol. Biol. Psychiatry 35, 744–759 (2011).

26. Yang, G., Parkhurst, C. N., Hayes, S. & Gan, W.-B. Peripheral elevation of TNF-α
leads to early synaptic abnormalities in the mouse somatosensory cortex in
experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. 110,
10306–10311 (2013).

27. Yang, S., Zhang, L. S., Gibboni, R., Weiner, B. & Bao, S. Impaired development
and competitive refinement of the cortical frequency map in tumor necrosis
factor-α-deficient mice. Cereb. Cortex 24, 1956–1965 (2013).

28. Kaneko, M., Stellwagen, D., Malenka, R. C. & Stryker, M. P. Tumor necrosis factor-
α mediates one component of competitive, experience-dependent plasticity
in developing visual cortex. Neuron 58, 673–680 (2008).

29. Segall, J. M. et al. Correspondence between structure and function in the
human brain at rest. Front. Neuroinformatics 6, 10 (2012).

30. Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of
maturational change and structural covariance in human cortical networks. J.
Neurosci. 33, 2889–2899 (2013).

31. Scheinost, D. et al. Multimodal investigation of network level effects using
intrinsic functional connectivity, anatomical covariance, and structure-to-
function correlations in unmedicated major depressive disorder. Neu-
ropsychopharmacology 43, 1119–1127 (2018).

32. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and
human imaging. Neuropsychopharmacology 35, 4 (2010).

33. Treadway, M. T. & Zald, D. H. Reconsidering anhedonia in depression: lessons
from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).

34. Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J. & Phillips, M. L. The
neural correlates of anhedonia in major depressive disorder. Biol. Psychiatry 58,
843–853 (2005).

35. Williams, L. M. et al. Amygdala Reactivity to Emotional Faces in the Prediction
of General and Medication-Specific Responses to Antidepressant Treatment in
the Randomized iSPOT-D Trial. Neuropsychopharmacology 40, 2398–2408
(2015).

36. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in
the resting brain: a network analysis of the default mode hypothesis. Proc. Natl
Acad. Sci. USA 100, 253–258 (2003).

37. Qiu, C. et al. Regional homogeneity changes in social anxiety disorder: a
resting-state fMRI study. Psychiatry Res. 194, 47–53 (2011).

38. Fornito, A., Harrison, B. J., Zalesky, A. & Simons, J. S. Competitive and coop-
erative dynamics of large-scale brain functional networks supporting recol-
lection. Proc. Natl Acad. Sci. USA 109, 12788–12793 (2012).

39. Arnold Anteraper, S. et al. Hyper-connectivity of subcortical resting-state
networks in social anxiety disorder. Brain Connect. 4, 81–90 (2014).

40. Matsuo, K. et al. Prefrontal hyperactivation during working memory task in
untreated individuals with major depressive disorder. Mol. Psychiatry 12,
158–166 (2007).

41. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with
major depression based on brain scans from 20 cohorts worldwide in
the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry
22, 900–909 (2017).

42. Qiu, L. et al. Regional increases of cortical thickness in untreated, first-episode
major depressive disorder. Transl. Psychiatry 4, e378–e378 (2014).

43. Zhao, K. et al. Altered patterns of association between cortical thickness and
subcortical volume in patients with first episode major depressive disorder: a
structural MRI study. Psychiatry Res. Neuroimaging 260, 16–22 (2017).

44. He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human
brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419
(2007).

45. Seidlitz, J. et al. Morphometric similarity networks detect microscale cortical
organization and predict inter-individual cognitive variation. Neuron 97,
231–247. e237 (2018).

46. Wang, H., Jin, X., Zhang, Y. & Wang, J. Single‐subject morphological brain
networks: connectivity mapping, topological characterization and test–retest
reliability. Brain Behav. 6, e00448 (2016).

47. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980 (2006).

48. Li, Y. O., Adali, T. & Calhoun, V. D. Estimating the number of independent
components for functional magnetic resonance imaging data. Hum. Brain
Mapp. 28, 1251–1266 (2007).

49. Kivimaki, M. et al. Long-term inflammation increases risk of common mental
disorder: a cohort study. Mol. Psychiatry 19, 149–150 (2014).

Kakeda et al. Translational Psychiatry          (2020) 10:187 Page 7 of 7


	An independent component analysis reveals brain structural networks related to TNF-&#x003B1; in drug-na&#x000EF;ve, first-episode major depressive disorder: a source-based morphometric study
	Introduction
	Materials and methods
	Participants
	Cytokine analyses
	MRI
	Image processing for VBM
	Image processing for SBM
	Statistical analyses

	Results
	Demographic data
	VBM analyses
	SBM analyses

	Discussion
	Acknowledgements




