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Abstract: Phyllanthus emblica is an edible nutraceutical and functional food in the Asia area with
medicinal and nutritive importance. The fruit extract of P. emblica is currently considered to be
one of the effective functional foods for flesh maintenance and disease treatments because of its
antioxidative and immunomodulatory properties. We examined the antioxidant abilities of the fruit
extract powder by carrying out 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, iron
reducing power, and metal chelating activity analysis and showed excellent antioxidative results.
In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the result showed that
the samples had no cytotoxic effect on RAW 264.7 cells even at a high concentration of 2 mg/mL.
To investigate its immunomodulatory function, our estimation was to treat it with lipopolysaccharide
(LPS) in RAW 264.7 cells to present anti-inflammatory capacities. The extract decreased reactive
oxygen species (ROS) production levels in a dose-dependent manner measured by flow cytometry.
We also examined various inflammatory mRNAs and proteins, including nuclear factor-κB (NF-κB),
inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). In quantitative reverse
transcription polymerase chain reaction (qRT-PCR) and western blotting assay, all three targets were
decreased by the extract, also in a dose-dependent manner. In conclusion, P. emblica fruit extract
powder not only lessened antioxidative stress damages, but also inhibited inflammatory reactions.
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1. Introduction

Innate immune response, also called nonspecific immune response, is the first barrier to stop
detrimental materials invading our bodies and granulocytes, macrophages, and inflammatory
biomolecules are involved. Inflammation, a common but complex reaction after the immune system
recognizes external pathogens or damaged cells, occurs in all types of human tissues and usually
presents a protective effect. Thus, a normal inflammatory response has been regarded as a guard
to protect the human body from extrinsic pathogens and intrinsic injury [1]. Vital physiological
symptoms, for example, increased blood flow, vasodilation, elevated cellular metabolism, a release of
proinflammatory mediators, cellular influx, and an accumulation of fluid are hallmarks of inflammatory
responses. Generally, an inflammatory reaction is good for humans. However, abnormal inflammation
has been reported to be related to several human chronic diseases, including rheumatoid arthritis,
atherosclerosis, and diabetes [2,3]. To heal immoderate inflammation, proinflammatory mediators are
aimed as targets because inflammatory cells recruit these materials to the scene site.

Proinflammatory mediators such as nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and
inducible nitric oxide synthase (iNOS) are pivotal to the evaluation of inflammation levels. Incorrect
regulation of NF-κB has been reported to be linked to cancers, inflammatory and autoimmune
diseases, viral and bacterial infections, and improper immune responses [4]. Because there is a
variety of proinflammatory gene expressions induced by NF-κB and the regulation of inflammation,
down-regulating of NF-κB activation contributes to various inflammatory diseases [5]. NF-κB also
participates in the transcription of another inflammatory association enzyme, iNOS. Dependent
activation of the iNOS promoter supports an inflammation-mediated stimulation of this transcript.
Nitric oxide (NO) is a critical signaling molecule as a retrograde neurotransmitter which is associated
with neural development, immune response, angiogenesis, and one vital feature of inflammation,
i.e., vasodilation [6]. NO is mediated in humans by three major types of nitric oxide synthases (NOS)
(i.e., endothelial NOS (eNOS), neuronal NOS (nNOS), and iNOS) [7]. When iNOS is activated by
cytokines, NO is released. NO is an activating factor of cyclooxygenase (COX), which forms a five
coordination with the COX structure, causing a conformational change in COX. COX is officially called
prostaglandin endoperoxide synthase, and it is responsible for the biosynthesis of prostanoid, such as
thromboxane and prostaglandins, from arachidonic acid. In humans, one of two cyclooxygenases,
COX-2, responds by mediating inflammatory reactions [8]. Therefore, COX-2 inhibitors are often used
as anti-inflammatory drugs.

Phyllanthus emblica fruit, an Indian traditional medicine and an effective functional food, has been
used to test its anti-inflammatory activity for centuries, and provides potential therapeutics for a variety
of maladies [9]. P. emblica fruit contains high levels of vitamin C, tannins, polyphenols (gallic acid
and ellagic acid), minerals, fibers, and so on [10]. Recently, several hydrolysable tannins, flavonoids,
and alkaloids have been identified in P. emblica fruit. Not surprisingly, vitamin C, gallic acid, and
ellagic acid, which are present in P. emblica fruit, are known to be potent antioxidants, flavonoids, and
other biofunctional constitutes that assist inflammation reduction [11]. Although some materials have
been proven to improve the symptoms of the inflammation, the mechanism of P. emblica fruit on its
anti-inflammation activity is still not well known. As an edible food or food additive, P. emblica fruit
extract powder can be used as an antioxidant and anti-inflammatory diet, and its fruit may help us to
deal with these related diseases.
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2. Materials and Methods

2.1. Materials

The testing sample, P. emblica fruit extract powder, was obtained from SHENG GUO Biotech
Co., Ltd, Miaoli, Taiwan. Dimethyl sulfoxide (DMSO); lipopolysaccharide (LPS) (Escherichia coli
055: B5); vitamin C; 2,2-diphenyl-1-picrylhydrazyl (DPPH); ethylenediaminetetraacetic acid
(EDTA); 3-tert-butyl-4-hydroxyanisole (BHA); potassium ferricyanide [K3Fe(CN)6] trichloroacetic
acid, FeCl3, FeCl2·4H2O, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT);
2,7-dichlorofluorescein diacetate (DCFDA, D6883); and bicinchoninic acid (BCA) were purchased from
Sigma-Aldrich Corp., USA. Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS),
penicillin, streptomycin, and amphotericin B (PSA) were purchased from GIBCO BRL (Gaithersburg,
MD, USA).

2.2. P. emblica Fruit Powder Extracts Preparation

The extraction of P. emblica fruit was carried out using a custom freeze-drying procedure using a
freeze dryer (FD-1, CHIANG DING Technology co., ltd., Taiwan) to make the P. emblica fruit at −35 ◦C
for 10–12 h, and then dried at 60 ◦C ± 5% for 35 h. In order to freeze and dry the water in the fruit of
P. emblica and make it into a powder, after the fruit was freeze dried, the moisture inside the fruit had
to be less than 5%, and this was detected using a moisture analyzer (ML-50, A&D Technology, Inc.,
Japan). The dried fruits were extracted with 85–95 ◦C hot water at 5 liters per kilogram of fruit to make
a liquid extract with 5% soluble content. The extract was filtered through a 10 microns polypropylene
filter bag to remove insoluble materials. After vacuum concentration, the concentration was increased
to 10% w/v. Maltodextrin was used as the carrier, which was added at a 1:1 ratio (10% P. emblica soluble
content, 10% maltodextrin, w/v). The concentrate was frozen at −35 ◦C followed by freeze drying for
72 h (0–50 h at 0 ◦C, and then by a temperature ramp for 50–72 h to 45 ◦C) and pulverized to gain
testing samples using a 1HPTable Type Pulverizing Machine (Product ID: RT-34).

2.3. Free Radical Scavenging Activity

The DPPH reagent which accepts an electron or hydrogen radical becomes a stable molecule
to detect oxidative activities. When DPPH reacts with antioxidant agents, hydrogen is supplied,
reducing the amount of DPPH and decreasing its absorbance, the optical density (OD) values at
517 nm [12,13]. Compared to other antioxidants, vitamin C (100 µM) is a great positive control because
of its prominent antioxidant capacity. We added 1 µL at different concentrations of P. emblica fruit
extracts and primary-filtered water to 99 µL DPPH (0.1 mg/mL). The absorbance was measured
using the spectrophotometer and the remaining DPPH amount was plotted to determine the initial
concentration of DPPH reduced by the antioxidant. Various sample amounts were dissolved in
methanol for each well, and the final working volume was 100 µL. The clearance capacity (%) is
calculated as follows:

Clearance capacity (%) =

(
Ablank −Asample

)
Ablank

× 100%

2.4. Ferric Reducing Antioxidant Power (FRAP) Assay

We carried out the reducing power assay analysis to examine the reductive ability of P. emblica
fruit extract samples. The samples were dissolved in DMSO at a suitable concentration mix of 85 µL,
phosphate buffer (0.2 M, pH 4.4) and 20% potassium ferricyanide (2.5 µL). The mixture was kept at 50
◦C for 20 min, and then 160 µL of 10% trichloroacetic acid (TCA) was added. Subsequently, the solution
was centrifuged at 3000× g for 10 min collecting supernatant (75 µL), and 25 µL FeCl3 (2%) was added
to the supernatant. After a 10 min reaction, the absorbance of the solution was measured at OD700
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nm [14,15]. BHA was used as a positive control at 100 µM. A higher absorbance value means a better
reduction activity.

2.5. Metal Chelating Ability Test

The chelation of ferrous ions in our sample was estimated by our previously published method [13].
Briefly, 10 µL of 2 mM FeCl2·4H2O was added to 1 µL of various concentrations (0.5–50 mg/mL) of
samples, and the reaction was initiated by the addition of 20 µL of 5 mM ferrozine. This assay is based
on the complexes of ferrous ions and ferrozine that change color at 562 nm, and the lower absorbance
means the better metal chelating activity. EDTA at 100 µM acted as a positive control, and the chelating
power activity is calculated by:

Metal chelating activity (%) =

(
Acontrol −Asample

)
Acontrol

× 100%

2.6. Cell Culture and Treatment

Mouse macrophage cell lines, RAW 264.7, were purchased from Bioresource Collection and
Research Center (BCRC number: 60001) and cultured in DMEM containing 10% FBS and 1% PSA.
Cells were incubated at 37 ◦C in a humidified incubator with 5% CO2 atmosphere [16]. Samples were
dissolved in DMSO and then diluted by using DMEM medium (0.25, 0.5, 1, and 2 mg/mL). The cells
were pretreated with testing samples for 1 h and stimulated with LPS (5 µg/mL) for 6 h, and untreated
cells served as a blank control [17,18].

2.7. Cell Viability Assay

RAW 264.7 cell viability was evaluated using MTT colorimetric assay [19,20]. The cells were
cultured in DMEM containing 10% FBS and 1% PSA at 37 ◦C in 5% CO2. All of the cells were seeded in
96-well microplates. After seeding the cells for 24 h, samples with concentration ranges from 0.005 to
10 mg/mL were added. After another 24 h, cells were treated with MTT solution (0.5 mg/mL) for 2 h,
followed by incubation at 37 ◦C. After 2 h of MTT treatment, the medium was removed, and 100 µL
of DMSO was added in each well to dissolve the purple formazan crystals. The dishes were gently
shaken for 20 min in the dark to ensure maximal dissolutions of formazan crystals, and OD values of
the supernatant were measured at 595 nm. The cell viability was presented as the percentage of live
cells in each well, and was calculated according to the following formula:

Cell viability (%) =

(
Asample −Ablank

)
(Acontrol −Ablank)

× 100%

2.8. Measurement of Intracellular ROS Level

The ROS-sensitive fluorescent dye, DCFDA, was used to determine LPS-upregulated intracellular
ROS level in RAW 264.7 cells. DCFDA is generally non-fluorescent, but in the presence of ROS
(when this reagent is oxidized) it turns into green fluorescent. For an observation of intracellular ROS
product through the oxidation of DCFDA, cells were pretreated with or without P. emblica samples
(0.5–2.0 mg/mL) for 1 h, and stimulated with LPS (5 µg/mL) for 6 h. Afterward, we rinsed them with
warm phosphate-buffered saline (PBS) buffer, and incubated them in PBS containing 20 µM DCFDA at
37 ◦C, 5% CO2 for 30 min. PBS containing DCFDA was removed and replaced with fresh cell medium.
The cells were washed at least 3 times with PBS and detached with trypsin/ EDTA. The fluorescence
intensity of the cells was analyzed using a Guava®easyCyte Flow Cytometers (Merck KGaA, Darmstadt,
Germany) at 485 nm excitation and 530 nm emission for 2,7-dichlorofluorescein (DCF) [21].
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2.9. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

For the qRT-PCR, a 10 µL reaction contained a 3 mixture of two reverse transcriptases: 10 µL
of 2 × AceQ qPCR SYBR Green Master Mix (Vazyme Biotech Co.,Ltd, Nanjing, China) with the hot
start Taq polymerase, 0.5 µL of primers, and 0.5 µL (20 ng/mL) of template. The primer sequences are
listed in Table 1. The StepOnePlus™ System (Version 2.3) was used for all real-time PCR assays [22].
The reaction activated the AceTaq®DNA polymerase at 95 ◦C for 5 min. This was then amplified for
40 cycles at 95 ◦C for 3 s for denaturation, annealing, and acquisition at 60 ◦C for 40 s. It was finally
elongated at 95 ◦C for 15 s. Fluorescence was measured after the annealing phase. With an Applied
Biosystems™ MicroAmp™ (N8010560) Fast Optical 96-Well Reaction Plate, 10 µL of the reaction
mix was added, as well as the 96-SYBR-Green assays on the StepOnePlus™ Real Time System [23].
To prepare the assay, all of the reagents were kept either on a cooling block or on ice. The ∆∆Ct method
was used in calculations. For each sample, three independent qPCR experiments were performed.
Each experiment involved three replicates for each gene. An expression of GAPDH was used as an
internal control. Duplicate SGPERT reactions were performed on each lysate sample. Using qPCR
software and instruments, an ABI 7300 with its threshold determined manually and a LightCycler®480
with its maximum second derivative method generated the cycle of quantification (Cq) values. Using
the same software for both instruments, the melting peaks were also automatically calculated.

Table 1. Primers used for quantitative reverse transcription polymerase chain reaction for the analysis
of inflammatory gene expressions.

NF-κB

Forward: 5′-TATGTGTGTGAAGGCCCATCA-3′

Reverse: 5′-ACCAACTGAACGATAACCTTTGC-3′

iNOS
Forward: 5′-CGAGACGGATAGGCAGAGATTG-3′

Reverse: 5′-CTCTTCAAGCACCTCCAGGAA-3′

COX-2
Forward: 5′-CCAGCACTTCACCCATCAGTTT-3′

Reverse: 5′-TCTGTCCAGAGTTTCACCATAAATG-3′

2.10. Western Blotting

A total of 105 cells were treated with sample groups or the blank vehicle control for one day,
respectively. The RAW 264.7 cells were harvested and lysed with the lysis buffer (Thermo Scientific Pierce
RIPA Buffer, 1 mM EDTA, 10% glycerol, 1% Nonidet P-40, 2 µM leupeptin, 50 mM Tris-HCl, 137 mM
sodium chloride, 50 mM sodium fluoride, 10 mM sodium pyrophosphate, 20 mM β-glycerophosphate,
1 mM phenylmethylsulfonyl fluoride, 0.1 mM sodium orthovanadate, and 2 µg/mL aprotinin; pH 7.5).
Afterwards, the lysate was cleaved on ice for 30 min, then centrifuged at 12,000 × g for 30 min, and then
placed in an incubator for 30 min. The protein quantitation in the supernatant was measured by a BCA
protein assay kit. The amounts of protein were taken in equal quantities and separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) on 10% gel, and electrotransferred to
a polyvinylidene difluoride (PVDF) nitrocellulose membrane (PALL Life Science, Ann Arbor, MI, USA).
The transfer film was gently removed from the wet transfer tank, then closed the PVDF membrane with
5% skim milk for 1 h. After this, a mild rinse of 1 × TBS-T was carried out to eliminate any traces of skim
milk. In each case, the membrane was incubated with a corresponding anti-mouse primary antibody.
In each case, the membrane was incubated with a corresponding anti-mouse and anti-rabbit primary
antibody. We used antibodies, including anti-β-actin (St John’s Laboratory, STJ97040), anti-NF-κB
(Cell signaling, C22B4), anti-COX-2 (Elabscience, E-AB-27666), and anti-iNOS (Thermo Fisher Corp.,
PA1-036). We added descriptions of the multiple dilutions of the various primary antibodies as
follows: anti-β-actin 1:5000, anti-NF-κB 1:1000, anti-COX-2 1:1000, and anti-iNOS 1:500. Washed
at least three times with TBST buffer (TBS containing 0.1% Tween 20) and dipped in horseradish
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peroxidase-conjugated secondary antibodies against the corresponding primary antibody. Then treated
with enhanced chemiluminescence (ECL) detection reagents (PerkinElmer, ECL1:ECL2 = 1:1) and
exposed to a Mini Size Chemiluminescent Imaging System from Life Science to specify the time
intervals for detecting the protein bands and visualizing the stained blots [24].

2.11. Statistical Analysis

All the experiments in each platform were carried out in triplicate and presented as mean± standard
error. For statistical analysis, all data were analyzed by Student’s t-test for multiple comparisons. A
significant difference (*) was defined as p < 0.05.

3. Results

3.1. Antioxidant Activity of P. emblica Fruit Extracts Powder

As a functional food, antioxidant properties of P. emblica samples were assessed using various
biochemical assays with different objectives, namely, DPPH, power reducing, and metal chelating
activity. The first oxidation inhibitory assay was the DPPH radical scavenging test. This is a simple
and economical experimental platform, in which antioxidants act to prevent oxidation products.
Antioxidants change the color of the stable radical DPPH reagent from purple to the light yellow of
diphenyl-picrylhydrazine. As shown in Table 2, P. emblica exhibited excellent radical scavenging ability
and scavenged 88.7 ± 0.3% of the DPPH free radical, and vitamin C scavenged 89.9 ± 0.17%. In the
power reducing assay, the color of the testing solutions changed from yellow to different shades of
green and blue depending upon the reducing power of these antioxidants. The presence of antioxidant
substance induces the reduction of the Fe3+/ferricyanide complex to the ferrous form. As shown in
Table 2, BHA at 100 µM has a reducing power value of 0.6 ± 0.002%, and P. emblica at 50 mg/mL has a
reducing power value of 2.31 ± 0.05% as compared with BHA. The ferrous ion-chelating activities of
P. emblica samples are shown in Table 2, and ferrozine could form complexes with Fe2+ quantitatively.
With the presence of chelating agents, the complex construction was disrupted, resulting in a lightening
of the red color of the complex. Compared with EDTA, although the testing samples showed a lower
level of Fe2+ scavenging ability, its antioxidant activity still showed an increasing trend. P. emblica
at the concentration of 50 mg/mL presented 16.9% ± 0.11% inhibition. The positive control, EDTA,
had approximately 94.4 ± 0.21% ion-chelating capacities at 100 µM.

Table 2. The effect of antioxidative activity assays on Phyllanthus emblica at different concentrations.

Concentration
(mg/mL)

DPPH Free Radical
Scavenging Activity (%)

Reducing Power
(OD700)

Metal Chelating
Activity (%)

0 0 ± 0 0.105 ± 0.001 0 ± 0
0.5 3.92 ± 0.07 0.151 ± 0.001 5.66 ± 0.20
1 7.04 ± 0.10 0.180 ± 0.002 7.72 ± 0.69
2 16.43 ± 0.25 0.205 ± 0.002 11.63 ± 0.66
5 42.43 ± 0.51 0.436 ± 0.006 15.06 ± 0.13
10 67.03 ± 0.07 0.796 ± 0.023 16.12 ± 0.25
50 88.71 ± 0.30 2.311 ± 0.054 16.92 ± 0.11

Vitamin C a 89.97 ± 0.17 - -
BHA b - 0.604 ± 0.002 -
EDTA c - - 94.43 ± 0.21

a Vitamin C is the positive control of DPPH radical scavenging capacity assay with the concentration of 100 µM;
b BHA is the positive control of reducing power assay with the concentration of 100 µM; c EDTA is the positive
control of metal chelating activity assay with the concentration of 100 µM.

3.2. Cell Viability Effect of P. emblica Fruit Extract Treatment

As a potent food additive, the component should be harmless, without undesirable cytotoxic side
effects. To evaluate the optimal dose of P. emblica fruit extract samples, the cytotoxicity of its varying
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concentrations (0.005–10 mg/mL) were applied to RAW 264.7 cells for 24 h. It was initially determined
using MTT assay (Figure 1). The results showed that the low concentrations of the testing samples
contributed to proliferations on the RAW 264.7 cells, and had cellular survival rates of 66.7 ± 0.9% and
52.7 ± 2.6% even at high concentrations of 5 and 10 mg/mL, respectively. It proved that the extract of
P. emblica fruit did not affect the cell viability in RAW 264.7 cells. At 2 mg/mL, the samples had no
severe cytotoxic effect on the RAW 264.7 cells, and thus the dosage was optimally deliberated in all the
following experiments.
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3.3. ROS Scavenge by P. emblica Fruit Extract Powder

To determine whether P. emblica fruit extract powder treatment induces cellular oxidative statuses,
we investigated ROS generation in RAW 264.7 cells. The intracellular H2O2 results of the DCFDA
staining, which is often quantified to measure the oxidative stress, can be defined as the presence of
oxidation. Typically, DCFDA is introduced into target cells through a small amount of aqueous solution,
and then rapidly diffuses through the cell membrane as a colorless probe. Once the two acetate groups
are cleaved by esterases within the cell, the DCFDA fluorescence is detectable. A valuable property of
DCFDA is that it cannot be exited within the cell once it has been cleaved in the cell. This increases
the period of time, and DCFDA can be used as a cellular indicator. As shown in Figure 2, increases
of P. emblica sample concentrations gradually decreased oxidative stresses. DCF fluorescent intensity
was reduced to 69.8 ± 0.5% at 0.25 mg/mL, indicating that the treatment of the samples reduced the
production of cellular ROS.

3.4. Quantitative Reverse Transcription Polymerase Chain Reaction Analysis for NF-κB, iNOS, and COX-2

To observe the effect of P. emblica fruit extract powder on cytokine expression in RAW 264.7 cells,
the cells were pretreated with proper concentrations (0.25–2 mg/mL) for 1 h and then stimulated with
LPS (5µg/mL) for 6 h. When the cells are traumatized or infected by gram-negative bacteria, the bacterial
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cell wall component, LPS, induces the activation of NF-κB triggering inflammatory cytokines. During
an inflammation, LPS primarily actuates the reaction of proinflammatory genes, including iNOS and
COX-2, producing significant amounts of NO. The inflammatory mediator gene, NF-κB, also plays
an important role in inflammation-related diseases, which is related to the above gene modulation
expressions. The expressions of iNOS and COX-2 lead to an increased production of proinflammatory
bio-molecules, which eventually lead to the progression of inflammatory cytokines. Transcriptional
changes in NF-κB, COX-2, and iNOS were confirmed by qRT-PCR, as shown in Figure 3. When
cells were stimulated with LPS for 6 h, gene expressions of NF-κB, COX-2, and iNOS were increased.
After different concentrations of the extract were incubated with LPS, we observed that the levels of
NF-κB, COX-,2 and iNOS were reduced to 14.8 ± 0.6%, 25.6 ± 0.4%, and 44.1 ± 0.1%, respectively.
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cells were pretreated with P. emblica samples (0.125–2 mg/mL) for 1 h, and then stimulated with LPS
(5 µg/mL) for 6 h. The data represented mean ± S.D of three independent experiments performed.
* p < 0.05, ** p < 0.01.

3.5. Western Blotting Analyses for NF-κB, iNOS, and COX-2

We carried out western blotting to analyze the inhibitory effects of P. emblica fruit extract powder
on expressions of NF-κB, iNOS, and COX-2. The RAW 264.7 cells were treated at fitting sample
concentrations, and then stimulated with LPS (5 µg/mL) for 6 h. The inflammatory mediators, NF-κB,
iNOS, and COX-2, reflect the states of inflammations and are often used to estimate the severities
of the inflammation. The stimulations with LPS led the expressions of three proteins upregulating,
as shown in Figure 4A. As we predicted, their levels were down-regulated by P. emblica fruit extract
to 1.16 ± 0.2%, 1.74 ± 0.06%, and 1.51 ± 0.03%, respectively. Quantifications of the western blotting
are shown in Figure 4B1–B3. These results suggest that the extract plays an anti-inflammatory role in
LPS-stimulated macrophage RAW 264.7 cells.



Antioxidants 2019, 8, 270 9 of 13
Antioxidants 2019, 8, x FOR PEER REVIEW 9 of 14 

 
Figure 3. The inflammation-related mRNA expressions in RAW 264.7 cells. RNA expression levels 
of NF-κB, iNOS, COX-2 in RAW 264.7 cells treated with different concentrations of P. emblica 
samples (0.25–2 mg/mL) were evaluated by qRT-PCR and normalized to the GAPDH gene. The data 
represented mean ± S.D of three independent experiments performed. *p < 0.05, **p < 0.01. 

3.5. Western Blotting Analyses for NF-κB, iNOS, and COX-2  

We carried out western blotting to analyze the inhibitory effects of P. emblica fruit extract 
powder on expressions of NF-κB, iNOS, and COX-2. The RAW 264.7 cells were treated at fitting 
sample concentrations, and then stimulated with LPS (5 μg/mL) for 6 h. The inflammatory 
mediators, NF-κB, iNOS, and COX-2, reflect the states of inflammations and are often used to 
estimate the severities of the inflammation. The stimulations with LPS led the expressions of three 
proteins upregulating, as shown in Figure 4A. As we predicted, their levels were down-regulated 
by P. emblica fruit extract to 1.16 ± 0.2%, 1.74 ± 0.06%, and 1.51 ± 0.03%, respectively. Quantifications 
of the western blotting are shown in Figure 4B1–B3. These results suggest that the extract plays an 
anti-inflammatory role in LPS-stimulated macrophage RAW 264.7 cells. 

Figure 3. The inflammation-related mRNA expressions in RAW 264.7 cells. RNA expression levels
of NF-κB, iNOS, COX-2 in RAW 264.7 cells treated with different concentrations of P. emblica samples
(0.25–2 mg/mL) were evaluated by qRT-PCR and normalized to the GAPDH gene. The data represented
mean ± S.D of three independent experiments performed. * p < 0.05, ** p < 0.01.Antioxidants 2019, 8, x FOR PEER REVIEW 10 of 14 

 
Figure 4. The inflammation-related protein expressions. (A) NF-κB, iNOS, and COX-2 expressions in 
RAW 264.7 cells were pretreated with P. emblica samples (0.25–2 mg/mL) for 1 h, and then were 
stimulated with LPS (5 μg/mL) for 6 h. (B1) Protein quantification of NF-κB (B2) iNOS (B3) COX-2 
in western blotting. β-Actin was viewed as an internal control. *p < 0.05, **p < 0.01. 

4. Discussion 

Flavonoids naturally have excellent antioxidant capacity, and tannins are known for their anti-
inflammation and antioxidant activities. According to one study, several tannins are considered to 
be potential cytotoxic and anti-inflammatory agents [25]. P. emblica fruit in nature is an edible that 
contains flavonoids, tannins, and other compounds which have excellent antioxidative capacities. 
Therefore, it can be used in general food for ingestion and as a supplementary food to enhance 
human health [8]. In view of this, we are interested in the role of P. emblica fruit due to the existence 
of all the above-mentioned important classes of bioactive properties. The main components of the 
fruit of P. emblica include phenolic constituents, flavonoids, polysaccharides, sterols, fatty acids, 
vitamins, proteins, amino acids, trace elements, anthraquinone, and alkaloids, etc [10]. These main 
ingredients all have antioxidative potentials. It can be explained that P. emblica extract repairs the 
LPS-induced oxidative damage and inflammatory symptom of RAW 264.7 cells [13]. 

Free radicals are substances produced by the metabolism of oxygen in the body. They are 
extremely active and can react strongly with any substance. In physiological conditions, when 
bacteria, mold, viruses, etc., invade the body, the defense system will notify the immune cells to 

Figure 4. The inflammation-related protein expressions. (A) NF-κB, iNOS, and COX-2 expressions
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stimulated with LPS (5 µg/mL) for 6 h. (B1) Protein quantification of NF-κB (B2) iNOS (B3) COX-2 in
western blotting. β-Actin was viewed as an internal control. * p < 0.05, ** p < 0.01.
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4. Discussion

Flavonoids naturally have excellent antioxidant capacity, and tannins are known for their
anti-inflammation and antioxidant activities. According to one study, several tannins are considered to
be potential cytotoxic and anti-inflammatory agents [25]. P. emblica fruit in nature is an edible that
contains flavonoids, tannins, and other compounds which have excellent antioxidative capacities.
Therefore, it can be used in general food for ingestion and as a supplementary food to enhance human
health [8]. In view of this, we are interested in the role of P. emblica fruit due to the existence of all
the above-mentioned important classes of bioactive properties. The main components of the fruit
of P. emblica include phenolic constituents, flavonoids, polysaccharides, sterols, fatty acids, vitamins,
proteins, amino acids, trace elements, anthraquinone, and alkaloids, etc [10]. These main ingredients
all have antioxidative potentials. It can be explained that P. emblica extract repairs the LPS-induced
oxidative damage and inflammatory symptom of RAW 264.7 cells [13].

Free radicals are substances produced by the metabolism of oxygen in the body. They are extremely
active and can react strongly with any substance. In physiological conditions, when bacteria, mold,
viruses, etc., invade the body, the defense system will notify the immune cells to prepare for the battle
in the body [19]. Thus, the immune cells are catalyzed by the enzymes to produce superoxide anion
radicals to remove bacteria and infected cells. In other words, the body needs some free radicals as a
weapon to prevent disease. Once the free radicals in the body exceeds the normal range, a free radical
chain reaction will occur, which will promote the oxidation of proteins, carbohydrates, lipids and other
basic constituent substances into new free radicals. In the continuous circulation, the functions of the
human body will be corrupted. Antioxidants are chemicals that do not only reduce the rate of oxidation
of cells and biomolecules, but also protect the body from free radicals. Adding antioxidant-rich foods
can prevent free radical damage. In order to maintain a healthy body we should not only eat a variety
of fruits and vegetables in a balanced manner, but also supplementary antioxidants-rich foods [19].
Antioxidant studies showed that P. emblica fruit extract has the capacity to either inhibiting free radical
ability or to be a free radical scavenger. In this study, we analyzed the DPPH, metal chelating activity,
reducing power, and cellular ROS to estimate the free radical scavenging ability of the extract in
various concentrations and also carried out qRT-PCR experiments on different inflammatory genes.
We confirmed that P. emblica fruit extract powder is an effective antioxidant which also has the ability
to regulate inflammatory genes.

Once a human gets damaged by foreign objects, the body produces a protective response which
is the inflammation. A controlled inflammatory response is beneficial to the body and provides
protection against the site of infection. However, once the inflammatory response is dysregulated,
it may become harmful. Therefore, the inflammation may evolve into an adaptive response to restore
homeostasis. In order to resolve the inflammatory response in the body, the main site of infection
promotes the aggregation and mediated of macrophages and T cells which repairs the inflamed parts.
The inflammatory response consists of a many media that form a complex regulatory network [26].
Chronic inflammation is also associated with many death-related diseases. Various interconnecting
signaling pathways are related to the development of inflammation.

NF-κB is an extremely important molecule in the inflammatory reaction. When the cells receive
stimulation from the outside of the cell, NF-κB in the cytoplasm is released and activated by the
original IκB inhibition. NF-κB is also involved in the transcription of iNOS. When iNOS is activated by
cytokines, NO will be released, and NO is an activator of COX [7,8]. Almost all mammal cell types have
NF-κB, which consists of a family of transcription factors and is associated with inflammatory cytokine
production, cell survival, activation, and differentiation of innate immune cells and inflammatory T
helper cells. It regulates a large array of genes which takes part in the immune and inflammatory
responses [27]. NF-κB is involved in several cellular responses to stimuli such as stress, free radicals,
heavy metals, ultraviolet irradiation, oxidized LDL, and pathogens like bacterial or viral antigens.
iNOS produces multitudinous amounts of NO that can activate immune cells in inflamed tissue, and
thus speed up pathological changes [28]. The proinflammatory cytokines, prostaglandins, and NO
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are produced by activated macrophages which play decisive roles in inflammatory diseases such as
Parkinson’s disease and Alzheimer’s disease. Compared to the critical calcium-calmodulin dependent
regulation isoenzymes (nNOS and eNOS), iNOS has been reported as calcium insensitive, maybe
due to its tight noncovalent interaction with the calcium-calmodulin complex. iNOS produces larger
quantities of NO than eNOS and nNOS upon stimulation, such as by proinflammatory cytokines.
iNOS binds calmodulin at physiologically relevant concentrations to synthesize a free radical with an
unpaired electron to present an immune defense mechanism. The high iNOS activity typically occurs
in an oxidative environmental stimulation, and the overexpressive levels of NO by proinflammatory
cytokines have the opportunity to interact with superoxide leading to cell toxicity and peroxynitrite
production [27]. These properties may define the roles of iNOS in human immune response, especially
the stimulation of inflammation caused by macrophages [8]. Related to the generation of prostaglandin,
the major effect which COX-2 causes in inflammation is the generation of pain. Prostaglandin controls
the role of vasodilation and inhibits the aggregation of blood plates. In inflammation, these roles have
an influence on the accession of blood flow, such as regulating the contraction of smooth muscle tissue
and preventing needless clot formation. Thus, COX-2 indirectly increases the sensitization of peripheral
nociceptors and generation of hypersensitivity pain. In pathology, several pharmaceutical inhibitions
of COX have been used so that they can provide relief caused by the symptoms of inflammation and
pain, such as aspirin and ibuprofen [29]. Therefore, the inhibition of proinflammatory cytokines or
iNOS and COX-2 expressions in inflammatory cells provides a novel therapeutic method for treatment
of inflammation. We used LPS to irritate macrophages as an in vitro model of inflammation. The
P. emblica sample treatments extenuated LPS-induced inflammation. This study illustrated that iNOS,
COX-2, and NF-κB levels increase significantly in LPS-induced cells, whereas, they were evidently
decreased by treatment with P. emblica fruit extract powder. It means that P. emblica fruit samples
protect the cell and prevent inflammation symptoms via decreasing the expressions of iNOS, COX-2,
and NF-κB at the transcriptional levels and protein expressions, as shown in Figure 5.
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5. Conclusions

This study is about antioxidative properties and anti-inflammatory effects from P. emblica fruit
extracts induced by LPS and provides evidence of the possible beneficial health advantages of this
native Taiwan fruit. On the basis of the results from the antioxidant experiments, we found that
P. emblica fruit extracts showed excellent antioxidative activity, that immune cells could be regulated
via P. emblica substances, and that, at low concentration, the fruit extract powder increased RAW 264.7
cell proliferations. LPS stimulation in RAW 264.7 cells enhanced the immunological activity on the
accumulation of intracellular ROS and upregulations of inflammatory related genes (NF-κB, iNOS,
and COX-2). P. emblica samples reduced the cellular ROS productions in a dose dependent manner
from 0.125 to 2 mg/mL and decreased the above genes and proteins. P. emblica samples showed good
antioxidant activities and anti-inflammation properties to be useful as a functional food additive.

Author Contributions: H.M.-D.W., L.F., W.-H.L., and P.C.L. conceived and designed the experiments; L.F., C.C.C.,
and M.Y.L. performed the experiments; H.M.-D.W., L.F., C.C.C., R.G., H.L.S., T.H.N., and L.P.H. analyzed the data;
H.M.-D.W., L.F., C.C.C., and N.E.B. wrote the paper.

Acknowledgments: This work was supported by grants from the Ministry of Science and Technology
(MOST107-2221-E-005-063); we also thank the Research Center for Sustainable Energy and Nanotechnology,
NCHU 107S0203B, and Cheng Ching Hospital, CH10700222B.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Huang, S.-Y.; Feng, C.-W.; Hung, H.-C.; Chakraborty, C.; Chen, C.-H.; Chen, W.-F.; Jean, Y.-H.; Wang, H.-M.D.;
Sung, C.-S.; Sun, Y.-M.; et al. A novel zebrafish model to provide mechanistic insights into the inflammatory
events in carrageenan-induced abdominal edema. PLoS ONE 2014, 9, e104414. [CrossRef]

2. Du, C.; Bhatia, M.; Tang, S.C.W.; Zhang, M.; Steiner, T. Mediators of inflammation: Inflammation in cancer,
chronic diseases, and wound healing. Mediat. Inflamm. 2015, 2015, 1–2. [CrossRef] [PubMed]

3. Tamura, Y.; Harada, Y.; Nishikawa, S.-I.; Yamano, K.; Kamiya, M.; Shiota, T.; Kuroda, T.; Kuge, O.; Sesaki, H.;
Imai, K.; et al. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria.
Cell Metab. 2013, 17, 709–718. [CrossRef]

4. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target Ther. 2017,
2, 17023. [CrossRef] [PubMed]

5. Liu, P.-L.; Chong, I.-W.; Lee, Y.-C.; Tsai, J.-R.; Wang, H.-M.; Hsieh, C.-C.; Kuo, H.-F.; Liu, W.-L.; Chen, Y.-H.;
Chen, H.-L. Anti-inflammatory effects of resveratrol on hypoxia/reoxygenation-induced alveolar epithelial
cell dysfunction. J. Agric. Food Chem. 2015, 63, 9480–9487. [CrossRef] [PubMed]

6. Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.;
Cappello, A.R. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L.
(licorice) leaf phytocomplexes: Identification of Licoflavanone as a modulator of NF-κB/MAPK pathway.
Antioxidants 2019, 8, 186. [CrossRef]

7. Rao, T.P.; Okamoto, T.; Akita, N.; Hayashi, T.; Kato-Yasuda, N.; Suzuki, K. Amla (Emblica officinalis Gaertn.)
extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular
endothelial cells. Br. J. Nutr. 2013, 110, 2201–2206.

8. Shih, C.-C.; Hwang, H.-R.; Chang, C.-I.; Su, H.-M.; Chen, P.-C.; Kuo, H.-M.; Li, P.-J.; Wang, H.-M.D.;
Tsui, K.-H.; Lin, Y.-C.; et al. Anti-inflammatory and antinociceptive effects of ethyl acetate fraction of an
edible red macroalgae Sarcodia ceylanica. Int. J. Mol. Sci. 2017, 18, 2437. [CrossRef]

9. Gaire, B.P.; Subedi, L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn.
Chin. J. Integr. Med. 2014, 1–8. [CrossRef]

10. Khanna, S.; Das, A.; Spieldenner, J.; Rink, C.; Roy, S. Supplementation of a standardized Extract from
Phyllanthus emblica improves cardiovascular risk factors and platelet aggregation in overweight/class-1
obese adults. J. Med. Food 2015, 18, 415–420. [CrossRef]

11. Wang, F.; Pan, T.; Yuan, R.; Li, C.; Li, K. Optimization of extraction process of flavonoids in Phyllanthus
emblica L. by response surface methodology and content determination. Indian J. Tradit. knowl. 2015, 14,
213–219.

http://dx.doi.org/10.1371/journal.pone.0104414
http://dx.doi.org/10.1155/2015/570653
http://www.ncbi.nlm.nih.gov/pubmed/26549940
http://dx.doi.org/10.1016/j.cmet.2013.03.018
http://dx.doi.org/10.1038/sigtrans.2017.23
http://www.ncbi.nlm.nih.gov/pubmed/29158945
http://dx.doi.org/10.1021/acs.jafc.5b01168
http://www.ncbi.nlm.nih.gov/pubmed/26466890
http://dx.doi.org/10.3390/antiox8060186
http://dx.doi.org/10.3390/ijms18112437
http://dx.doi.org/10.1007/s11655-014-1984-2
http://dx.doi.org/10.1089/jmf.2014.0178


Antioxidants 2019, 8, 270 13 of 13

12. Wu, P.-F.; Wang, H.-M.D.; Chen, C.-Y. Isophilippinolide A arrests cell cycle progression and induces apoptosis
for anticancer inhibitory agents in human melanoma cells. J. Agric. Food Chem. 2014, 62, 1057–1065.

13. Li, P.-H.; Chiu, Y.-P.; Shih, C.-C.; Wen, Z.-H.; Ibeto, L.K.; Huang, S.-H.; Chiu, C.-C.; Ma, D.-L.; Leung, C.-H.;
Chang, Y.-N.; et al. Biofunctional activities of Equisetum ramosissimum extract: Protective effects against
oxidation, melanoma, and melanogenesis. Oxidative Med. Cell. Longev. 2016, 2016, 1–9.

14. Chen, Y.; Huang, J.-Y.; Lin, Y.; Lin, I.-F.; Lu, Y.-R.; Liu, L.-H.; Wang, H.-M.D. Antioxidative and antimelanoma
effects of various tea extracts via a green extraction method. J. Food Qual. 2018, 2018, 1–6. [CrossRef]

15. Zhao, C.-N.; Tang, G.-Y.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Liu, Q.; Mao, Q.-Q.; Shang, A.; Li, H.-B. Phenolic
profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark Teas.
Antioxidants 2019, 8, 215. [CrossRef]

16. Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Testa, G.; Sottero, B.; Poli, G.; Zeppa, G.; Biasi, F. A dietary mixture of
oxysterols induces in vitro intestinal inflammation through TLR2/4 activation: The protective effect of cocoa
bean shells. Antioxidants 2019, 8, 151. [CrossRef]

17. Wang, H.-M.; Chiu, C.-C.; Wu, P.-F.; Chen, C.-Y. Subamolide E from Cinnamomum subavenium induces
sub-G1 cell-cycle arrest and caspase-dependent apoptosis and reduces the migration ability of human
melanoma cells. J. Agric. Food Chem. 2011, 59, 8187–8192. [CrossRef]

18. Wang, S.; Suh, J.H.; Hung, W.-L.; Zheng, X.; Wang, Y.; Ho, C.-T. Use of UHPLC-TripleQ with synthetic
standards to profile anti-inflammatory hydroxycinnamic acid amides in root barks and leaves of Lycium
barbarum. J. Food Drug Anal. 2018, 26, 572–582. [CrossRef]

19. Lin, C.Y.; Lee, C.H.; Chang, Y.W.; Wang, H.M.; Chen, C.Y.; Chen, Y.H. Pheophytin a inhibits inflammation via
suppression of LPS-induced nitric oxide synthase-2, prostaglandin E2, and interleukin-1beta of macrophages.
Int. J. Mol. Sci. 2014, 15, 22819–22834. [CrossRef]

20. Wang, C.C.; Huang, S.Y.; Huang, S.H.; Wen, Z.H.; Huang, J.Y.; Liu, W.S.; Wang, H.M.D. A synthetic biological
secondary metabolite, LycogenTM, produced and extracted from Rhodobacter sphaeroides WL-APD911 in
an optimizatioal scale-up strategy. Food Sci. Hum. Wellness 2017, 6, 195–201. [CrossRef]

21. Li, P.-H.; Liu, L.-H.; Chang, C.-C.; Gao, R.; Leung, C.-H.; Ma, D.-L.; Wang, H.-M.D. Silencing stem cell factor
gene in fibroblasts to regulate paracrine factor productions and enhance c-Kit expression in melanocytes on
melanogenesis. Int. J. Mol. Sci. 2018, 19, 1475. [CrossRef] [PubMed]

22. Chen, Y.-T.; Kao, C.-J.; Huang, H.-Y.; Huang, S.-Y.; Chen, C.-Y.; Lin, Y.-S.; Wen, Z.-H.; Wang, H.-M.D.
Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of
in vitro and in vivo models in melanoma. J. Funct. Foods 2017, 31, 20–31. [CrossRef]

23. Galletti, E.; Bonilauri, P.; Bardasi, L.; Fontana, M.C.; Ramini, M.; Renzi, M.; Dosa, G.; Merialdi, G.
Development of a minor groove binding probe based real-time PCR for the diagnosis and quantification of
Leishmania infantum in dog specimens. Res. Vet. Sci. 2011, 91, 243–245. [CrossRef] [PubMed]

24. Lin, L.-C.; Chen, C.-Y.; Kuo, C.-H.; Lin, Y.-S.; Hwang, B.H.; Wang, T.K.; Kuo, Y.-H.; Wang, H.-M.D. 36H:
A novel potent inhibitor for antimelanogenesis. Oxidative Med. Cell. Longev. 2018, 2018, 1–12. [CrossRef]
[PubMed]

25. Parveen, R.; Shamsi, T.N.; Singh, G.; Athar, T.; Fatima, S. Phytochemical analysis and in-vitro biochemical
characterization of aqueous and methanolic extract of Triphala, a conventional herbal remedy. Biotechnol. Rep.
2018, 17, 126–136. [CrossRef] [PubMed]

26. Medzhitov, R. Origin and physiological roles of inflammation. Nat. 2008, 454, 428–435. [CrossRef] [PubMed]
27. Huang, S.-H.; Wu, S.-H.; Lee, S.-S.; Chang, K.-P.; Chai, C.-Y.; Yeh, J.-L.; Lin, S.-D.; Kwan, A.-L.; Wang, H.-M.D.;

Lai, C.-S. Fat grafting in burn scar alleviates neuropathic pain via anti-inflammation effect in scar and spinal
cord. PLoS ONE 2015, 10, e0137563. [CrossRef] [PubMed]

28. Wang, R.; Yang, Z.; Zhang, J.; Mu, J.; Zhou, X.; Zhao, X. Liver injury induced by carbon tetrachloride in mice
is prevented by the antioxidant capacity of Anji white tea polyphenols. Antioxidants 2019, 8, 64. [CrossRef]
[PubMed]

29. Ning, C.; Wang, H.-M.D.; Gao, R.; Chang, Y.-C.; Hu, F.; Meng, X.; Huang, S.-Y. Marine-derived protein kinase
inhibitors for neuroinflammatory diseases. Biomed. Eng. Online 2018, 17, 46. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2018/5156073
http://dx.doi.org/10.3390/antiox8070215
http://dx.doi.org/10.3390/antiox8060151
http://dx.doi.org/10.1021/jf2018929
http://dx.doi.org/10.1016/j.jfda.2017.06.002
http://dx.doi.org/10.3390/ijms151222819
http://dx.doi.org/10.1016/j.fshw.2017.10.001
http://dx.doi.org/10.3390/ijms19051475
http://www.ncbi.nlm.nih.gov/pubmed/29772675
http://dx.doi.org/10.1016/j.jff.2017.01.005
http://dx.doi.org/10.1016/j.rvsc.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21310448
http://dx.doi.org/10.1155/2018/6354972
http://www.ncbi.nlm.nih.gov/pubmed/29507652
http://dx.doi.org/10.1016/j.btre.2018.02.003
http://www.ncbi.nlm.nih.gov/pubmed/29619331
http://dx.doi.org/10.1038/nature07201
http://www.ncbi.nlm.nih.gov/pubmed/18650913
http://dx.doi.org/10.1371/journal.pone.0137563
http://www.ncbi.nlm.nih.gov/pubmed/26368011
http://dx.doi.org/10.3390/antiox8030064
http://www.ncbi.nlm.nih.gov/pubmed/30875793
http://dx.doi.org/10.1186/s12938-018-0477-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	P. emblica Fruit Powder Extracts Preparation 
	Free Radical Scavenging Activity 
	Ferric Reducing Antioxidant Power (FRAP) Assay 
	Metal Chelating Ability Test 
	Cell Culture and Treatment 
	Cell Viability Assay 
	Measurement of Intracellular ROS Level 
	Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) 
	Western Blotting 
	Statistical Analysis 

	Results 
	Antioxidant Activity of P. emblica Fruit Extracts Powder 
	Cell Viability Effect of P. emblica Fruit Extract Treatment 
	ROS Scavenge by P. emblica Fruit Extract Powder 
	Quantitative Reverse Transcription Polymerase Chain Reaction Analysis for NF-B, iNOS, and COX-2 
	Western Blotting Analyses for NF-B, iNOS, and COX-2 

	Discussion 
	Conclusions 
	References

