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Diabetic nephropathy is a leading cause of end-stage renal disease, which is increasing in incidence worldwide, despite intensive
treatment approaches such as glycemic and blood pressure control in patients with diabetes mellitus. New therapeutic strategies
are needed to prevent the onset of diabetic nephropathy. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated
nuclear transcription factors that play important roles in lipid and glucose homeostases. These agents might prevent the
progression of diabetic nephropathy, since PPAR agonists improve dyslipidemia and insulin resistance. Furthermore, data from
murine models suggest that PPAR agonists also have independent renoprotective effects by suppressing inflammation, oxidative
stress, lipotoxicity, and activation of the renin-angiotensin system. This review summarizes data from clinical and experimental
studies regarding the relationship between PPARs and diabetic nephropathy. The therapeutic potential of PPAR agonists in the
treatment of diabetic nephropathy is also discussed.
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1. INTRODUCTION

The incidence and prevalence of type 2 diabetes mellitus
(DM) have been increasing worldwide since the 1980s,
and this rise is estimated to continue in the future [1, 2].
Diabetic nephropathy is a common complication of DM
and represents one of the major challenges for modern
nephrology as the most common cause of end-stage renal
disease, accounting for about 40% of new cases [3, 4]. The
increasing prevalence of DM and its complications including
diabetic nephropathy have therefore become a major health
problem worldwide, and new therapeutic strategies to pre-
vent diabetic nephropathy are urgently needed.

Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated transcription factors belonging to the
nuclear hormone receptor superfamily. They were originally
cloned from rodent liver while screening for molecular
mediators of peroxisome proliferation [5, 6]. Three isoforms
have been cloned (PPARα, PPARβ/δ, and PPARγ) and char-
acterized. Each has a unique expression pattern and ligand-
binding specificity, as well as distinct metabolic functions
[7]. PPARs regulate diverse cell functions, including fatty

acid metabolism, adipocyte differentiation, inflammation,
atherosclerosis, and cell cycle [8–11]. PPARα plays an impor-
tant role in lipid metabolism in several tissues including liver
and kidney [12]. PPARβ/δ is associated with cell survival
and colon carcinogenesis [13] and was recently implicated
as an important regulator of mitochondrial biogenesis and
subsequent lipid metabolism in skeletal muscle [14]. PPARγ
plays a pivotal role in adipogenesis, and its activation
by thiazolidinediones (TZDs) improves insulin sensitivity
via this role in adipocyte differentiation [15]. Accordingly,
TZDs are widely used as oral antidiabetic agents in patients
with type 2 diabetes [15, 16]. It is clear that substantial
experimental and clinical research is still needed to clarify
the role of PPARγ in the whole body physiology and the
pathophysiology of various diseases such as diabetes, obesity,
hypertension, atherosclerosis, and cancer.

In addition to the demonstrated physiological roles,
several clinical and experimental studies have implicated
PPARs in the pathogenesis of diabetic nephropathy. This
review summarizes these clinical and experimental data with
a particular focus on the therapeutic potential of PPAR
modulators in diabetic nephropathy.
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Figure 1: Structure and action of PPARs. (a) Domain structure of human PPARs. (b) Molecular mechanism of PPARs. After ligand binding,
PPARs undergo conformational change with RXR and cofactors.

2. STRUCTURE OF PPARs

PPAR was initially identified in a mouse cDNA library in
1990 [6], and since then three PPARs have been cloned:
PPARα, PPARβ/δ, and PPARγ (Figure 1(a)) [7]. PPARγ
mRNA has three splicing forms derived from a single gene
in human [17]. There are no splicing variants of PPARα
or PPARβ/δ mRNA. Two PPARγ protein isoforms result
from the translation of each of the three PPARγ mRNAs
to produce PPARγ1 and γ2 [18], with both PPARγ1 and
PPARγ3 mRNAs giving rise to the same protein, PPARγ1.
PPARγ2 is the larger of the two isoforms, with 30 additional
N-terminal amino acids. Due to different promoter usage,
PPARγ1 and PPARγ2 have different expression patterns [19].

All PPARs possess four domains similar to those found
in other nuclear hormone receptors [5, 20]: an NH2-
terminal ligand-independent transactivation domain (acti-
vation function-1 (AF-1)), which regulates PPAR activity
(A/B domain) [21, 22]; a DNA-binding domain of 70
amino acids (two zinc fingers) (DBD, C domain); a docking
domain for cofactors (D domain); a COOH-terminal region
containing the ligand-binding domain (LBD) and AF-2
domain (E/F domain). DBD and LBD are approximately
70% homologous among the three PPARs.

3. PPAR LIGANDS

PPARs are ligand-activated transcriptional factors belonging
to the nuclear hormone receptor superfamily, whereby

modulation of target gene transcription depends on the
binding of ligands to the receptor. PPARs form heterodimers
with the 9-cis retinoic acid receptor, retinoid X receptor
(RXRα). Activation of the PPAR:RXRα heterodimers by
PPAR ligands and/or RXR ligands triggers a conformational
change in the receptors. This in turn allows the heterodimers
to bind to PPAR responsible element containing the sequence
AGGTCANAGGTCA in the promoter region of the target
genes, and thus modulate gene transcription (Figure 1(b)).

Many ligands including natural and synthetic com-
pounds have been identified for each PPAR isoform in
both functional (cell-based transactivation efficiency) and in
vitro interaction assays [8, 23]. The different amino acids
sequences in the LBD of each PPAR provide the molecular
basis for ligand specificity. Each PPAR can accommodate
several structurally diverse ligands due to a large ligand-
binding pocket [24]. PPARα binds unsaturated fatty acids
with the highest affinity of the three isoforms [25–28].
Natural ligands for PPARγ also include several unsaturated
fatty acids such as oleate, linoleate, eicosapentaenori and
arachidonic acids, and 15dPGJ2 [8, 23, 29, 30]. TZD
compounds such as troglitazone (was the first agent of this
class on the market, but withdrawn due to liver toxicity),
ciglitazone, pioglitazone, and rosiglitazone act as synthetic
PPARγ ligands and promote adipocyte differentiation via
activation of the receptor [23, 31–35]. Termisaltan, an
angiotensin II type 1 receptor blocker (ARB), was recently
shown to bind PPARγ and reduce blood glucose levels [36,
37].
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4. DISTRIBUTION OF PPARs IN KIDNEY

Expression of the three PPAR isoforms has been examined
in many species including Xenopus, rat, mouse, rabbit, and
human. PPARα is mainly expressed in tissues exhibiting high
catabolic rates of fatty acids such as adipose tissue, liver,
heart, and skeletal muscle [38, 39]. PPARβ/δ is ubiquitously
expressed, while PPARγ is highly expressed in white and
brown adipose tissues that store large amounts of fatty acids,
and in other selected tissues at low levels such as heart, liver,
immune cells (monocytes and macrophages), placenta, and
colon [40–42].

All three PPARs are expressed in the kidney [38, 41–
43]. PPARγ mRNA has been demonstrated in the medullary
collecting ducts and pelvic urothelium of kidney [44], as well
as in isolated glomeruli and cultured mesangial cells [45, 46].
PPARα and γ1, but not γ2, protein was detected in kidney
tissue by immunoblot analysis, while immunohistochemical
analysis revealed PPARα and γ1 proteins in the nuclei of
mesangial cells and epithelial cells in glomeruli, proximal
and distal tubules, the loop of Henle, medullary collecting
ducts, and the intima/media of renal vasculatures [47]. Large
amounts of PPARα have also been detected in proximal
tubular cells, and renal lipid metabolism is highly regulated
by PPARα [48]. In contrast to PPARα, PPARγ protein is
highly expressed in the nephron segment, predominantly in
collecting ducts, implicating PPARγ in systemic water and
sodium retention [49, 50].

5. EXPERIMENTAL (ANIMAL) STUDIES

PPARγ is the best characterized of the PPAR isoforms in
diabetic animal models. The first evidence for a possible
renoprotective effect of PPARγ agonists came 15 years ago,
with the TZD compound troglitazone decreasing urinary
albumin excretion and reducing blood pressure in obese
Zucker rats [51]. Further studies since then also showed
the beneficial effects of TZD compounds on renal injury in
type 1 and type 2 diabetic animal models, as summarized in
Table 1 [50, 52–60]. Several experimental studies also showed
similar or superior protection against diabetic nephropathy
for PPARγ agonists such as TZD, with results comparable to
other renoprotective agents such as renin-angiotensin system
blockers.

PPARα is highly expressed in renal proximal tubules and
helps to maintain a sustained balance of energy production
and expenditure in the kidney [61]. The role of PPARα
in renal cortex lipid metabolism was demonstrated when
the activation of PPARα by clofibrates induced expression
of β-oxidation enzymes [62]. In db/db type 2 diabetic
mice [63] and Zucker diabetic rats [64], treatment with
PPARα activator, fenofibrate, improved urinary albumin
excretion rates and glomerular mesangial expansion. These
experimental studies suggest PPARα agonists as potentially
useful therapeutic agents for diabetic nephropathy.

6. HUMAN CLINICAL TRIALS

Several clinical trials of PPARγ agonists have been conducted
over the past decade that together confirm the renoprotective

action of PPARγ (Table 2) [65–79]. PPARγ agonist, TZD,
is an approved therapeutic agent for glycemic control in
patients with type 2 DM, and thus is effective in preventing
type 2 diabetic nephropathy. The beneficial effect of piogli-
tazone on urinary albumin excretion was also demonstrated
in large, multicenter intervention studies, which compared
the general efficacy and safety of TZD agents to other oral
antidiabetic agents in patients with type 2 DM over 1 year.
Either pioglitazone or the antidiabetic, metformin, was given
to 639-randomized patients already receiving a sulfonylurea
[72]. Although the two regimens had comparable effects on
glycemic control, urinary albumin excretion was reduced by
15% in the group receiving pioglitazone and increased by
2% in the metformin group. In another study from the same
group on drug-naive patients with type 2 DM, pioglitazone
significantly reduced urinary albumin excretion, whereas
metformin had no effect. A similar follow-up study showed
that administration of pioglitazone in those patients who
had previously received metformin therapy was associated
with a decreased urinary albumin excretion of 10%, whereas
another TZD compound, gliclazide, caused an increase of
6% [74]. Taken together, these data from both large and
small clinical studies showed that PPARγ agonists have a
beneficial effect on diabetic nephropathy compared to other
antidiabetic agents.

It should be noted that PPARγ agonists could potentially
cause heart failure due to the associated water retention.
Recent clinical trials in patients with impaired glucose tol-
erance (IGT) and/or impaired fasting glucose (IFG) showed
that rosiglitazone, which reduces the onset of diabetes,
also reduced the development of renal disease; however,
it increased the adverse risk of heart failure, compared to
ramipril [79]. Therefore, PPARγ agonists should be used
only with intensive monitoring of volume retention in
patients with cardiac risk factors.

Clinical evidence also suggests the beneficial effect of
PPARα ligands on diabetic nephropathy. Treatment of
type 2 diabetes-associated dyslipidemia with gemfibrozil,
an antidyslipidemic agent and PPARα activator, stabilized
urinary albumin excretion rates [80, 81]. In addition, a
large randomized controlled trial in 2005 determined that
long-term fenofibrate therapy significantly reduced the rate
of progression to albuminuria in patients with type 2 DM
[82]. Although not extensive, these clinical data suggest the
therapeutic efficacy of PPARγ agonists in preventing diabetic
nephropathy.

6.1. Effects of PPARγ ligands on diabetic nephropathy

6.1.1. Improving hyperglycemia

The Diabetes Control and Complications Trial (DCCT) and
the United Kingdom Prospective Diabetes Study (UKPDS)
suggested that the adverse effects of hyperglycemia on
metabolic pathways are the main causes of long-term
complications such as kidney disease in diabetes [83, 84].
TZDs are a new class of oral antidiabetic agents used
widely to improve insulin resistance, hyperinsulinemia, and
hyperglycemia in patients with type 2 diabetes [85–87].
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Table 1: Animal studies.

Authors TZD Animal model Duration Effect on UAE Effect on BP Other effects

Model of type 1 diabetes

Fujii et al. [54] Tro STZ-induced diabetic rats 12 weeks ↓ NS ND

Isshiki et al. [56] Tro STZ-induced diabetic rats 12 weeks ↓ ND Hyperfiltration ↓
Nicholas et al. [58] Tro STZ-induced diabetic rats 12 weeks ↓ NS ND

Yamashita et al. [60] Tro, pio STZ-induced diabetic
SHR rats

12 weeks ↓ NS
Loss of glomerular
basement membranes ↓

Model of type 2 diabetes

Yoshioka et al. [51] Tro Obese Zucker rats 4 and 8 weeks ↓ ↓ ND

Fujiwara et al. [55] Tro Wistar fatty rats 24 weeks ↓ ↓ ND

Yoshimoto et al. [50] Pio Diabetic Wistar fatty rats 13 weeks ↓ ↓
Glomerulosclerosis ↓
intrarenal
arteriolosclerosis ↓

Tanimoto et al. [59] Pio Diabetic KK/Ta mice 4 and 8 weeks ↓ NS Glomerular enlargement ↓

Buckingham et al. [53] Rosi Obese Zucker rats 4 and 9 months ↓ ↓ Glomerulosclerosis ↓
tubulointerstitial fibrosis ↓

Baylis et al. [52] Rosi Obese Zucker rats 6 months ↓ NS
Glomerulosclerosis ↓
tubulointerstitial fibrosis ↓

Khan et al. [57] Rosi Obese Zucker rats 12 weeks ↓ ↓ ND

TZD, thiazolidinedione; Tro, troglitazone; Pio, pioglitazone; Rosi, rosiglitazone; STZ, streptozotocin; SHR, spontaneously hypertensive rats; UAE, urinary
albumin excretion; BP, blood pressure; NS, no significant effects; ND: not determined; ↓, significant reductions.

Since the improvement of hyperglycemia in such patients
can prevent the development and progression of diabetic
nephropathy, TZDs are potential protective agents for
nephropathy in type 2 diabetes patients and animal models
by virtue of their insulin-sensitizing action [66].

6.1.2. Lowering blood pressure with or without
improved insulin resistance

Hypertension is commonly linked to obesity and insulin
resistance [88]. TZDs have a possible antihypertensive effect
through improvement of insulin resistance because insulin
sensitivity is related to blood pressure levels both in diabetic
animals and patients [50, 89–92]. On the other hand, PPARγ
ligands could directly affect vascular function because of
their expression in endothelial cells and vascular smooth
muscle cells (VSMCs) [93–95]. Indeed, pioglitazone lowered
the blood pressure in 5/6 nephrectomized hypertensive rats,
and the effect was not associated with insulin resistance
[96, 97]. The demonstrated antihypertensive effects of TZDs
could involve the release of vasodilators such as nitric
oxide and prostaglandins [98], the decrease in fatty acid
levels, and/or modification of vasoactive peptide synthesis
including endothelin-1 [47]. Recently, PPARγ downregu-
lated the expression of angiotensin II type 1 receptor and
in turn decreased vascular smooth muscle tone, thereby
reducing vascular contractility [99]. Although the underlying
functional mechanisms remain unclear, PPARγ expression
probably contributes to blood pressure regulation through
multiple mechanisms.

6.2. Renoprotective effects of PPARγ ligands
due to mechanisms other than changes in
blood glucose levels

TZD treatment ameliorated renal abnormalities in strep-
tozotocin- (STZ-) induced diabetic rats, a type 1 diabetic
model, without changing blood glucose levels [54, 56]. These
findings suggest that the protective effects of PPARγ ligands
on diabetes-induced renal dysfunction are independent of
its insulin-sensitizing property. Multiple biochemical mech-
anisms have been proposed to explain the adverse effects of
hyperglycemia in diabetes, and the effects of PPARγ ligands
on each of these mechanisms is discussed below.

6.2.1. Amelioration of DGK-DAG-PKC pathway activation

The diacylglycerol- (DAG-) protein kinase C- (PKC-) extra-
cellular signal-regulated kinase (ERK) pathway is enhanced
in mesangial cells cultured under high-glucose conditions
and in glomeruli isolated from streptozotocin- (STZ-)
induced diabetic rats [100–103]. In these animals, trogli-
tazone ameliorated the diabetes-associated increases in
glomerular filtration rate, urinary albumin excretion, and
mRNA expressions of extracellular matrix (ECM) proteins
(fibronectin and type IV collagen) and transforming growth
factor-β (TGF-β) without changing the blood glucose levels
[56]. These findings provided the first evidence that PPARγ
ligands can protect glomerular function independent of
their insulin-sensitizing action. In mesangial cells cultured
under high-glucose conditions and in isolated glomeruli
from diabetic rats, it was confirmed that TZDs inhibited
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Table 2: Human clinical studies.

Authors subjects
(Type 2 DM)

n regimens Duration Effect on UAE (%)
Effect on BP

(mmHg)

Sironi et al. [65] hyp 40 200 mg toroglitazone versus plb 8 weeks +11% −4/−3

Imano et al. [66] mA, hyp 30 400 mg toroglitazone versus
500 mg metformin

12 weeks −39%a −3/0

Nakamura et al. [67] mA or MA 32 400 mg toroglitazone versus
5 mg glibenclamide

12 months −67%ain mA 0% in MA −6c

Nakamura et al. [68] mA 45 30 mg Pio versus 5 mg
glibenclamide versus 0.6 mg Vog

3 months −66%a −6/−4

Nakamura et al. [69] mA 28 30 mg Pio versus plb 6 months −59%a −4c

Aljabri et al. [70] mA, hyp 62 30–45 mg Pio versus isophane
insulin

16 weeks −44% −8/−5

Yanagawa et al. [71] mA, hyp 40 Pio versus Met or glibenclamide 12 weeks −45%a NA

Hanefeld et al. [72] mA, hyp 639 15–45 mg Pio versus
850–2550 mg metformin

12 months −15%a NA

Schernthaner et al. [73] hyp 1199 15–45 mg Pio versus
850–2550 mg metformin

12 months −19%a NA

Matthews et al. [74] hyp 630 15–45 mg Pio versus 80–320 mg
glibenclamide

12 months −10%a NA

Agarwal et al. [75] MA, hyp 44 Pio versus Glip 4 months −7% +3.7/+2.2

Lebovitz et al. [76] mA, hyp 493 4 or 8 mg Rosi versus plb 26 weeks 4 mg group: −14% 8 mg
group: −22%a NA

Sarafidis et al. [77] hyp, mA 20 4 mg Rosi 6 months −35%a −5.4a/−4.1a

Pistrosch et al. [78] mA, hyp 19 non-mA patients: Rosi versus
Nat, mA patients: Rosi versus plb

12 weeks non-mA patients: +18%b,
mA patients: −66%a,b,

NA

aSignificant changes from baseline levels or other groups;
bchange versus the group compared;
cmean change for systolic BP versus baseline in patients treated with the TZD.
DM, diabetes mellitus; hyp, hypertension; mA, microalbuminuria; MA, macroalbuminuria; Glip, glipizide; Nat, nateglinide; plb, placebo; Pio, pioglitazone;
Vog, voglibose; UAE, urine albumin excretion; NA, changes in blood pressure levels not applicable.

the accumulation of DAG and its subsequent activation of
the PKC-ERK pathway. Furthermore, another TZD, pioglita-
zone, also prevented DAG-PKC-ERK pathway upregulation
in mesangial cells exposed to high glucose [56]. Finally,
TZDs and potent PPARγ ligand, 15dPGJ2, increased the
protein expression of DGK to block DAG-PKC signaling in
endothelial cells [103].

6.2.2. Attenuation of oxidative stress

Increased oxidative stress is observed in renal glomeruli and a
variety of vascular and nonvascular tissues exposed to hyper-
glycemia [104–106]. Troglitazone has potent antioxidant
effects, evident by it suppressing phosphoenolpyruvate gene
expression in vitro and scavenging reactive oxygen species in
vivo [107]. It also normalizes the decrease in plasma lipid
hydroperoxide concentration and increase of superoxide
dismutase activity in Otsuka Long-Evans Tokushima Fatty
rats, a type 2 diabetic animal model, and improves the
decreased skin blood flow in STZ-induced diabetic rats [98,
108, 109]. Pioglitazone also reduces oxidative stress in the
kidney of alloxan-induced diabetic rabbits [110, 111] and
reduces renal lipid peroxides, urinary isoprostane excretion,
and expression of p47 phox and gp91 phox in high-fat diet-
induced obese rats [112].

6.2.3. Suppression of inflammation

Hyperglycemia and the diabetic state can induce cytokine
production in some tissues. In diabetic nephropathy,
macrophages infiltrates appear in glomeruli and the inter-
stitial spaces between tubules [113, 114]. Both PPARα and
γ have potent anti-inflammatory effects in macrophages
[115, 116]. The endogenous and potent PPARγ ligand,
15dPGJ2, is a natural metabolite derived from prostaglandin
(PG)D2, the most abundant prostaglandin in normal tissues
with the highest binding affinity to PPARγ of the J-series
prostaglandins [117]. Several studies demonstrated that the
anti-inflammatory effect of 15dPGJ2 or TZDs seems to be
regulated through transcriptional inhibition by both PPARγ-
dependent [115, 116, 118] and PPARγ-independent mecha-
nisms [119–121]. Nuclear factor-κB (NF-κB), a well-known
inflammatory transcription factor, is repressed by 15dPGJ2
in a PPARγ-independent manner [122]. It was also reported
that 15dPGJ2 inhibits interleukin-1β- (IL-1β-) induced
cyclooxygenase-2 expression and PGE2 production indepen-
dently of PPARγ activation in mesangial cells, by suppressing
ERK and c-Jun NH2-terminal kinase (JNK) pathways and
AP-1 activation [123]. Another TZD agent, ciglitazone,
inhibited platelet-derived growth factor-induced mesangial
cell proliferation without changing ERK activation, through
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inhibiting the activation of serum response element directly
[124].

6.2.4. Modification of atherosclerotic changes

Renal atherosclerotic changes such as renovascular stenosis
and atheroemboli are common findings in elderly diabetic
patients and are known to accelerate renal dysfunction [125,
126]. PPARγ activation also may modify the progression
of atherosclerosis through multiple mechanisms including
foam cell differentiation, inflammatory reactions, and cell
proliferation [127]. The infiltrating monocytes take up
oxidized low-density lipoprotein (OxLDL) via scavenger
receptors, resulting in the accumulation of intracellular
lipids and generation of foam cells [127]. The OxLDL
scavenger receptor, CD36, is under direct control of PPARγ
[29, 30]. OxLDLs include natural PPARγ agonists such
as 9-hydroxyoctadecadienoic acid (HODE) and 13-HODE.
Furthermore, OxLDL induces the expression of PPARγ
[115], which has an anti-inflammatory effect in monocytes
by reducing proinflammatory cytokine production [115] via
inhibition of proinflammatory transcription factors such as
NFκB, AP-1, and STATs [116]. PPARγ has other effects on
atherosclerosis including induction of apoptosis in mono-
cytes [128], inhibition of VSMC proliferation [94, 129], and
suppression of matrix metalloproteinase-9 expression [130].

6.3. Effects of PPARγ ligands in tubular tissue

Patients with diabetic nephropathy frequently show a
nephrotic state, whereby large quantities of albumin enter
the renal tubular system and carry with it a heavy load of
fatty acids. Albumin-bound fatty acids can activate PPARγ
and induce apoptosis of proximal tubular cells. PPARγ
agonists might inhibit tubular cell proliferation, whereas
activation of albumin-bound fatty acids is accompanied
by increased proliferation [131]. In particular, pioglitazone
increases the tubular cell albumin uptake and reverses
the expression of inflammatory and profibrotic markers,
monocyte chemoattractant protein-1 (MCP-1) and TGF-β
[132].

7. INVOLVEMENT OF PPARα AND PPARβ/δ IN
DIABETIC NEPHROPATHY

PPARα agonists have renoprotective effects as mentioned
above. One possible mechanism underlying PPARα action
on mesangial matrix production may be related to hyper-
glycemia or TGFβ signaling [133]. Clofibrate directly inhib-
ited oxidative stress-induced TGFβ expression in mesangial
cells [133], while fenofibrate downregulated TGFβ and
TGFβ receptors type II expression and decreased type IV
collagen accumulation in diabetic glomeruli, and inhibited
the production of PAI-1 in diabetic animals [63, 64].

PPARβ/δ is expressed equally in the renal cortex and
medulla, although the role of PPARβ/δ in the kidney
remains poorly understood [41]. Overexpression of this
isoform protected cultured medullary interstitial cells from
hypertonicity-induced cell death, suggesting that PPARβ/δ is

an important survival factor under hypertonic conditions in
renal medulla [134]. However, there are no reports regarding
the effect of PPARβ/δ on diabetic nephropathy. Further
evidence from both clinical and experimental studies is
necessary to clarify the therapeutic potential of PPARβ/δ and
PPARα agonists in diabetic nephropathy.

Several recent studies suggested lipotoxicity from renal
lipid accumulation as a possible pathogenic mechanism
underlying certain forms of renal injury including diabetic
nephropathy [135–137]. PPARα regulates lipid metabolism
in the kidney [48], and PPARα knockout mice develop
severe interstitial lesions induced by fatty acid overload
[138]. PPARα agonists may, therefore, decrease lipotoxic-
ity and, consequently, inhibit the progression of diabetic
nephropathy. PPARβ/δ also regulates lipid metabolism and
particularly lipid oxidation in several tissues, although
its exact roles in the kidney remain unclear. Thus, both
PPARβ/δ and PPARα agonists could be implemented in
new therapeutic strategies designed to prevent diabetic
nephropathy by reducing renal lipotoxicity. Further studies
are required to prove this possibility.

8. CONCLUSION AND PERSPECTIVES

The increased incidence of diabetic nephropathy has become
a major health problem worldwide. As discussed in this
review, PPARs comprise a subfamily of nuclear recep-
tors and transcription factors that play critical roles in
modulating insulin resistance, hypertension, dyslipidemia,
obesity, hypertension, and inflammation. Given the close
relationship between PPAR activity and these metabolic
alterations, PPAR agonists are promising therapeutic agents
for diseases including type 2 diabetes, obesity, hypertension,
hyperlipidemia, and atherosclerosis. Fibrate PPARα agonists
and TZD PPARγ agonists are already used successfully as
clinically effective hypolipidemic drugs and insulin sensitiz-
ers. PPARβ/δ agonists may provide additional insulin and
lipid modulators via their effects on skeletal muscle. In
addition, there is an increasing evidence suggesting that all
three PPARs contribute to the metabolic control of renal
function and are involved in the pathogenesis of diabetic
nephropathy. PPARγ agonists are available as optional
therapeutic agents for nephropathy in type 2 diabetes. In the
near future, both PPARα and PPARβ/δ agonists might be
added to that strategy with further evidence that these agents
have a proven renoprotective effect in diabetic animals and
patients.
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