
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16395  | https://doi.org/10.1038/s41598-021-95616-0

www.nature.com/scientificreports

Deep learning and citizen science 
enable automated plant trait 
predictions from photographs
Christopher Schiller1, Sebastian Schmidtlein1, Coline Boonman2, Alvaro Moreno‑Martínez3 & 
Teja Kattenborn4*

Plant functional traits (‘traits’) are essential for assessing biodiversity and ecosystem processes, 
but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted 
through visible morphological features by coupling heterogeneous photographs from citizen science 
(iNaturalist) with trait observations (TRY database) through Convolutional Neural Networks (CNN). 
Our results show that image features suffice to predict several traits representing the main axes of 
plant functioning. The accuracy is enhanced when using CNN ensembles and incorporating prior 
knowledge on trait plasticity and climate. Our results suggest that these models generalise across 
growth forms, taxa and biomes around the globe. We highlight the applicability of this approach by 
producing global trait maps that reflect known macroecological patterns. These findings demonstrate 
the potential of Big Data derived from professional and citizen science in concert with CNN as 
powerful tools for an efficient and automated assessment of Earth’s plant functional diversity.

Global change driven by global warming, land-cover conversion and landscape fragmentation imposes a threat 
on global biodiversity1. The loss of biodiversity inevitably leads to a loss of ecosystem functioning and processes1, 
which are essential to human well-being2. Ecosystem functioning, in turn, can be assessed using plant func-
tional traits (hereafter: ’traits’), since it results from the trait composition of the species that compose a plant 
community3. Therefore, the impacts of environmental changes on ecosystem functioning can most simply be 
assessed on species level using traits4–7. These traits can, for instance, be related to plant size, e.g. leaf area or 
growth height, or tissue constituents, e.g. leaf nitrogen concentration or stem specific density. Such traits, though, 
have in common a high measurement effort. Thus, an effective trait measurement tool would greatly facilitate 
rapid ecosystem monitoring1, which is urgently needed in light of expected trait shifts around the globe8.

Convolutional Neural Networks (CNN), a deep learning-oriented computer vision technique, are evolv-
ing as promising tools for ecological research9,10, e.g. in plant community identification on unmanned aerial 
vehicle (UAV) images11 or species identification by harnessing plant photograph databases12. Particularly, the 
fundamental innovation of CNN is their efficiency in target-oriented learning of image features from raw input 
data. Hence, CNN may also enable to infer trait expressions from plant photographs by means of directly related 
morphological plant features or covariance with indirect causal links13 among visible and non-visible plant fea-
tures. For instance, features such as the shape and thickness of plant leaves might be indicative of traits such as 
leaf nitrogen concentration and therefore be predictable by CNN.

Currently, this approach is hampered by the lack of a dataset comprising plant photographs with matching 
trait measurements that cover the global plant functional spectrum. In recent years, however, global data initia-
tives and citizen science projects have emerged as a strongly growing data source, which builds upon the collec-
tive effort of the scientific community14,15. Consequently, we employ a weakly supervised learning approach that 
combines the independent data sources of (1) the iNaturalist database providing a worldwide record of millions 
of plant photographs including taxa and geolocations16 and (2) the TRY database containing more than 11 mil-
lion trait measurements across more than 270,000 taxa7.

With this setup, we test if it is possible to infer plant traits from simple RGB photographs using CNN (setup 
1, Fig. 1). As intra-specific trait variability can be substantial along environmental gradients17–19, we used spe-
cies-specific trait distributions rather than mean trait values in the CNN training in a second step (setup 2). 
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Moreover, contextual cues might foster CNN predictive performance10. Consequently, bioclimatic variables were 
incorporated into the CNN due to their link to trait expressions (setup 3)8,20,21. Fourthly, we assessed the effect 
on predictive performance of an ensemble approach combining different CNN models (setup 4)22.

In addition to a statistical evaluation on independent observations, we assessed the plausibility of the trained 
CNN by global trait maps derived by applying each trait model on approx. 185,000 iNaturalist observations 
that were not included in the training process. This highlighted both a potential future application in light of an 
exponential growth of the iNaturalist database providing new plant photographs day by day, and the practical 
value of the presented approach. Therefore, we consider this study an important pioneering work to pave the 
way for rapid and efficient trait assessments.

Results
We built datasets with image-trait couples for leaf area (LA), growth height (GH), specific leaf area (SLA), leaf 
nitrogen concentration (LNC), seed mass (SM) and stem specific density (SSD; for details see Supplementary 
Table 1). Some of these traits, such as LA and GH, could be readily visible by the computer vision models, whereas 
the others might be indirectly visible on account of the strong covariances between the traits investigated in this 
study13. Moreover, traits such as SLA and LNC might be predictable in photographs on account of the thick-
ness, color intensity or shape of the plant’s leaves. We restricted the number of images per species to prevent the 
model from learning species-specific trait expressions. Simultaneously, we maximized the number of species 
in the dataset to achieve a wide range of trait expressions and a sufficiently large dataset. We applied a stratified 
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Figure 1.   Conceptual diagram of the analyses, from data collection to evaluation. Data collection included 
linking plant functional trait records from the TRY database and plant photographs from the iNaturalist 
database via species names. The Convolutional Neural Networks were trained in four setups, which enabled trait 
predictions. The evaluation included analyses of predictive performance, generalisability and applicability. CNN, 
Convolutional Neural Networks.
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sampling design (each species being a stratum) allowing up to eight images per species to acquire a sufficient 
amount of training data  while balancing the taxonomic evenness (Table 1).

Implementation of trait plasticity, bioclimatic data and ensembles.  The prediction of the basic 
CNN (’Baseline’ setup) yielded normalised mean absolute errors (NMAE) between 13.6% (SSD) and 11.6% (GH; 
Fig. 2, Supplementary Table 2). The explained variance of the linear fit did not exceed 5% for SSD and LNC, 
but reached up to 47% for GH. Accounting for the intra-specific variability of traits by providing a distribution 
of trait values instead of a single mean value for each species (‘Plasticity’ setup) generally improved predictive 
performance with the exception of SM, increasing the explained variance by up to 3.79%-points (GH). Adding 
knowledge on the local climate of a photograph’s location (’Worldclim’ setup) generally increased the predictive 
performance. Its effect on R2 was higher on LA, SLA and SSD (between approx. +8 and +16%-points) than on 
GH, LNC and SM (between approx. +3 and +5%-points). Furthermore, the ’Ensemble’ setup, in which we aver-
aged the predictions of three common CNN architectures, generally increased R2 , yielding a rise of more than 
4%-points in explained variance for LA and LNC.

The results of a threefold cross-validation based on the ensemble models revealed that the traits characterizing 
leaf form or habitus - GH and LA - demonstrated the lowest NMAE (9.91% and 9.92%; for prediction errors in 
original unit see Supplementary Table 3) and highest R2 (.58 and .45; Fig. 3), whereas the traits related to tissue 
constituents, LNC and SSD, ranked lowest (11.71% and 11.98%; .16 and .2).

Model performance vs. data heterogeneity.  The assessment of the predictive performance by visual 
interpretation of 200 independent images per trait regarding the distance of the photographer to the target spe-
cies (‘image-target distance’) showed that images with the longest distance attained 7.6%, whereas most images 
showed the shortest distance (63.5%; Fig. 4). Additionally, the vast majority of the images (92.9%) expressed a 

Table 1.   Summary of plant functional trait datasets. Information on the maximum number of images per 
species, total number of species ( Nspecies ), number of images with woody ( Nwoody ) and non-woody species 
( Nnon−woody ), number of observations with non-zero standard deviations for Plasticity setup ( NTA ), number 
of images in training ( Ntraining ), validation ( Nvalidation ) and test ( Ntest ) dataset as well as total number of images 
( Ntotal ) in each trait dataset. LA, leaf area; GH, growth height; SLA, specific leaf area; LNC, leaf nitrogen 
concentration; SM, seed mass; SSD, stem specific density.

Trait Max. images per species Nspecies Nwoody Nnon−woody NTA Ntraining Nvalidation Ntest Ntotal

LA 8 1361 3937 6096 7773 7216 1804 1013 10,033

GH 2 8161 6862 8897 11,040 11,348 2836 1575 15,759

SLA 3 4615 7099 6041 9351 9461 2365 1314 13,140

LNC 3 4339 7103 5261 8254 8903 2225 1236 12,364

SM 1 9725 3903 5822 5404 7003 1750 972 9725

SSD 5 2455 10078 685 7176 7750 1937 1076 10,763
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Figure 2.   Results of the four model setups. Normalised mean absolute error (a) and R2 (b) for the basic CNN 
model setup (’Baseline’), the setup including trait variability (’Plasticity’), the setup including bioclimatic data 
(’Worldclim’) and the ensemble setup (’Ensemble’). Mean absolute error was normalised by the respective 
test dataset’s range to enable a comparison between the predictive performance of the six traits. R2 shows the 
explained variance of the linear fit of test predictions versus test targets. 23. LA, leaf area; GH, growth height; 
SLA, specific leaf area; LNC, leaf nitrogen concentration; SM, seed mass; SSD, stem specific density.
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Figure 3.   Distributions of predictions and targets of 3-fold cross-validation. a-f, All target-reference pairs (N 
= 3 × Ntest ) of Ensemble setup of 3-fold cross-validation for the six plant functional traits leaf area (a), growth 
height (b), specific leaf area (c), leaf nitrogen concentration (d), seed mass (e) and stem specific density (f). 
Dashed grey lines indicate the one-to-one line for reference. Contour lines indicate the bivariate occurrence 
probabilities (50% and 95%) computed by kernel density estimation using R23 package ’ks’ (version 1.11.7)24.
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Figure 4.   Model evaluation results. (a-c) Mean absolute errors across different image qualities (a), growth 
forms (b) and image-target distances (c) concerning 200 images per plant functional trait ( N = 1200 images). 
None of the images of the evaluation dataset were used in the training phase. The percentage of images falling 
in a category is indicated below each box plot. Red dots and the number linked to them are the mean absolute 
errors for each category. None of the groups differ significantly on p < .05 (Supplementary Table 4). 23.
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high image quality, meaning that all plant organs appearing in the image were clearly recognisable. The assess-
ment of the growth form (woody vs. non-woody) of the images’ target species revealed that the share of woody 
and non-woody species was approximately equal. None of the groups in Fig. 4 differed significantly on p < .05 
(Supplementary Table 4).

Global trait distribution maps and their validation.  Global trait distribution maps (GTDM) derived 
from model predictions on more than 185,000 independent plant photographs, which were not used for model 
training, expressed a unimodal latitudinal distribution peaking around the equator for LA, GH and SM (Fig. 5). 
SLA and LNC expressed their highest values around northern temperate and polar zones as well as the equator. 
SSD showed a bimodal distribution with peaks in the subtropics. All trait expressions were similar along the 
equator. A gradient from high to low LA and SLA was found from the east of North America towards the west, 
while an opposite trend was observed for LNC and SSD. A quantitative comparison with published GTDM 
revealed significant correlations with Pearson’s r > .5 concerning GH26, SM6 and SSD6,26, whereas insignificant 
or small correlations were found between all of the four GTDM concerning LNC26–28 (Supplementary Fig. 1). 
For SLA, our GTDM correlated significantly to ref.6,26 ( r > .5 ), whereas correlations were negative or insignifi-
cant between the former and ref.27,28.

Figure 5.   Global trait distribution maps. Global maps of mean plant functional traits produced by inverse-
distance weighted interpolation on ensemble predictions for leaf area (a), growth height (b), specific leaf area 
(c), leaf nitrogen concentration (d), seed mass (e), stem specific density (f) including latitudinal distribution. 
Values of leaf area and seed mass were log10-transformed for improved visualisation.
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Discussion
Our results suggest that certain plant functional traits can be retrieved from simple RGB photographs. The key 
for this trait retrieval are deep learning-based Convolutional Neural Networks in concert with Big Data derived 
from open and citizen science projects. Although these models are subject to some noise, there is a wealth of 
applications for this approach, such as global trait maps, monitoring of trait shifts in time and the identification 
of large-scale ecological gradients. This way, the problem of limited data that still impedes us to picture global 
gradients7 could be alleviated by harnessing the exponentially growing iNaturalist database16. The performance 
of the CNN models across traits varied strongly, but revealed a clear trend: As expected, the more a trait referred 
to morphological features, the more accurate the predictions were. The models of the Baseline setup explained a 
substantial amount of the variance for LA and GH, whereas traits that are partly related to morphological features, 
SLA and SM, show moderate R2 values. The predictions of LNC and SSD explain almost none of the variance, 
suggesting that tissue constituents are not directly expressed or related to visible features. It also indicates that 
the strong covariance among these traits13 does not suffice in supporting their predictions from photographs. 
If the RGB images do not contain relevant information, the model will minimise the prediction errors by the 
regression-to-the-mean bias seen in Fig. 3 (especially lower panels).

The value of informing the model on the known trait variability through an augmentation of the target val-
ues (Plasticity setup) depended on the results of the Baseline setup of the trait. That is, the better the predictive 
performance of the Baseline setup, the more the trait seemed to profit from the Plasticity setup, rendering it inef-
fective for SSD, LNC and SM (Fig. 3). Refraining to cling to species mean values by considering within-species 
trait variation has been applied before using conventional methods26, but to our knowledge has never been tried 
in CNN models, yet. We expected that providing a distribution of trait values rather than a single mean for each 
species can convey to the CNN that different trait realisations can be expected from the same species. Obviously, 
this idea can only work if a distribution rather than a single value is available for each species. The SM dataset, for 
instance, contained only one image per species (Table 1). In this case, the Plasticity setup reduced the predictive 
performance compared to the Baseline setup, possibly by increasing the discrepancy to the true trait value. Since 
the traits with more accurate predictions profited most from the Plasticity setup, we assume that it supports the 
model in learning to predict the trait expressions themselves rather than extracting them indirectly through 
taxa-specific morphological features. Given that we restricted the number of images per species to a maximum 
of 8, while successful deep learning-based plant species identification usually requires thousands of images12,22, 
it seems very unlikely that the models inferred traits from species-specific plant features visible in the imagery. 
The latter was underpinned by our finding that the predictions of most traits are void of phylogenetic autocor-
relation (Supplementary Information 1 and Supplementary Table 5), indicating that taxonomic relationships 
were insignificant for the trait predictions. The absence of phylogenetic autocorrelation of the prediction errors 
underlines that the models did not learn species-specific features for most traits, as this would imply similar 
trait predictions for related species.

On the contrary, the SSD model predictions express a phylogenetic signal (Supplementary Information 1 
and Supplementary Table 5). Trait expressions are generally clustered under similar climatic conditions29–31. 
Simultaneously, climatic conditions constrain the geographic distribution of species and growth forms29–32. The 
SSD dataset is biased towards woody species (Table 1), which confines it to a smaller taxonomic range. Hence, 
the phylogenetic signal of SSD might result from its phylogenetic clustering and predominant dependence on 
bioclimatic information rather than on RGB imagery (Fig. 2).

Nevertheless, the benefit of including climate information on temperature, precipitation and their 
seasonality8,20,21,26 on predicting trait expressions was confirmed for all traits in this study, which underlines 
the value of contextual constraints in CNN models10 (see below for a discussion of the relevance of climate vs. 
image data). This also highlights the general flexibility of deep learning frameworks in adapting to variable input 
data from different scales and sensors10, which makes them a promising tool for ecological research. Our results 
particularly revealed this effect for SSD, SLA and LA, whereas it was smaller for GH, LNC and SM (Fig. 2). For 
the latter traits, other physical constraints such as disturbance33,34, seasonal variation35,36 and soil conditions6,26,28 
come into consideration. As the focus of the Worldclim setup was to show that contextual cues can improve the 
trait retrieval from photographs rather than identifying the best set of auxiliary data, we confined the analysis 
to the most promising20,26 data source (WorldClim37).

In the Worldclim setup, a single model accumulated knowledge about the trait learning task. Combined 
predictions of different CNN models, however, have shown to surpass the predictive performance of single 
CNN, e.g. in plant species identification tasks22. Each of the CNN models is prone to literally ‘look’ at different 
aspects of the learning task by focusing on different image features. Previous research also showed increased 
model performance in a trait prediction task in case of ensembles of regression and machine learning models26. 
Accordingly, and as demonstrated by our results, an ensemble approach seems promising to further enhance 
predictive performance of CNN models concerning trait prediction.

The predictive performance of these Ensembles has shown to be reproducible with different sets of training 
images (cp. Figs. 2, 3, Supplementary Fig. 2). In our heterogeneous dataset, model performance was not affected 
by different growth forms, image qualities and image-target distances (Fig. 4). Different growth forms and plant 
functional types show their own characteristic trait spectrum13. Possibly, contextual cues within the image might 
have supported the CNN in inferring the plant functional type of a species, e.g. by a long-distance image being 
indicative of a tree species. Yet, since the majority of the images only shows single plant organs on close-up pho-
tographs (Fig. 4), we assume that the trait predictions are not confounded by the identification of growth forms. 
Furthermore, the absence of a phylogenetic signal in the prediction errors for most traits highlights the model’s 
ability to generalise by extracting trait information independent of taxonomic relationships, meaning that the 
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models (except for SSD) did not learn species-specific mean trait expressions (see Supplementary Information 
1 and Supplementary Table 5).

Additionally, we disclosed the high generalisability of these results by investigating the datasets’ underlying 
distributions both spatially (Supplementary Fig. 3) and across biomes (Supplementary Fig. 4). Although some 
regions such as Central Europe and North America show higher data coverage, the datasets used for this study 
contain data across all biomes and regions on Earth. Therefore and despite this clustering, we expect the models 
to be applicable for all biomes around the globe. This was highlighted by an additional analysis showing that the 
predictive performance of the models is reasonably constant across biomes (Supplementary Fig. 5). As suggested 
by refs.38,39, we tolerated a certain spatial bias in favor of larger datasets. Although the SSD dataset predominantly 
contained woody species, neither of the six datasets expressed an exclusion of either growth form (Table 1, Fig. 4).

The application of our models to global gradients of traits revealed that our GTDM indeed cover macro-
ecological patterns and trends known from other publications: The latitudinal distributions could roughly be 
confirmed for GH26, LNC26,27 and SM6,8 (Fig. 5). Predicted trends for maximum leaf size hint at the applicability 
of our GTDM of LA40. The trait gradients for North America were confirmed for SLA6,8,26–28, SM6,8, LNC27 and 
SSD6 alike. Although based on different input data and modelling methods, the major global latitudinal gradients 
found in previous studies could be reproduced by our GTDM, which indicates the plausibility of the latter6,8,26,27.

We further validated the GTDM quantitatively by means of correlations with other GTDM. Regarding SSD, 
the detected high correlations might be due to method similarity, as our GTDM product of SSD primarily builds 
upon climate data (see above), just as ref.6,26. For GH, SLA and SM, however, the high correlations are unlikely 
to result from climate data exclusively, as the explained variances of the RGB imagery ( R2 of Plasticity setup) are 
higher than the additional contributions of the Worldclim setup (approx. 94%, 70% and 79% share of imagery 
on total explained variance, respectively; Supplementary Table 2). We decoupled the GTDM products from 
bioclimatic information in an additional analysis (Supplementary Fig. 6). Remarkably, the macroecological pat-
terns could roughly be reproduced when the GTDM were based exclusively on RGB imagery, which shows that 
the bioclimatic information merely serves to smooth the macroecological trait patterns for most of the traits.

Despite of all GTDM being at least partly build upon climate data and using trait data from the same source 
(TRY database), some GTDM of SLA and all GTDM of LNC vary strongly in their correlations (Supplementary 
Fig. 1). On the one hand, this might indicate that LNC varies at a different scale, e.g. on account of its seasonal 
and within-species variation35,36. On the other hand, other GTDM products are based on mean trait values 
weighted by abundances of plant functional types27,28 rather than single trait predictions, which might explain 
negative or non-significant correlations as well.

Hence, a potential pitfall of the presented approach is that it is prone to express an observation bias, e.g. by 
citizen scientists only taking pictures of the most striking species. The sampling design underlying the GTDM 
does not account for plant community composition, meaning that we cannot tell if plant photographs at a certain 
location represent the actual community structure. Since many images contain more than one individual plant 
and different species, the CNN model predictions, however, might be based on more than one species, thereby 
partly resembling trait expressions of the community. The representativeness of trait data for plant communities, 
though, remains an ubiquitous problem of global trait maps, including those fully based on trait data from the 
TRY database7, since every available dataset is far from representing the actual plant community composition7. 
Hence, at present our GTDM have to be considered a plausibility check of the model predictions rather than 
an application-ready trait map product, not least because the sampling of images might not be representative of 
the respective plant community.

Nevertheless, our results indicate that exploiting a Big Data approach is viable to reveal macroecological trait 
patterns, maybe because the most striking species of an ecosystem are likely to suffice in describing its func-
tional footprint5. Since the strong growth of the iNaturalist database leads to a steadily increasing geographic 
coverage, the representativeness of these data is likely to grow as well. A recent study investigating the records 
of FloraIncognita12, a citizen-science and deep learning-based application for identifying plant species from 
photographs, suggested that such crowd-sourced data can reproduce primary dimensions in plant community 
composition41. This underlines the future potential of harnessing citizen science databases for identifying these 
patterns. Here, we demonstrated the practical value and applicability of the CNN models by producing GTDM 
that were able to reproduce known macroecological trait patterns while displaying one anticipated application 
of this method. Additionally, in these GTDM we bypass the issue of spatial error analysis that is challenging 
for most GTDM products26 by obtaining a potentially arbitrary number of observations in light of the strongly 
increasing number of observations in iNaturalist, almost rendering an extrapolation obsolete. Our GTDM are 
based on individual trait measurements rather than estimated on behalf of a small set of covariates, which is typi-
cal for climate-based GTDM26. Since plant traits vary strongly within species17–19, these measurements express 
a high practical relevance. As the iNaturalist plant photograph database is witnessing an exponential growth of 
data inputs, the potential of exploiting this data source for plant trait predictions is growing rapidly. It is worth 
mentioning that this approach also led to the first publication of a GTDM of mean LA (available for download 
under https://​doi.​org/​10.​6084/​m9.​figsh​are.​13312​040), since former publications were limited to modelling upper 
limits of LA based on climatic constraints40.

Future studies building on our work, which benefit from the ever-growing data accumulation of both the 
iNaturalist and TRY database, might not face restrictions of dataset size as we did in our study. This might allow 
for more representative samples in future studies, e.g. enabling to stratify training data by species while simulta-
neously balancing the trait distribution. This might support a reduction of the regression-to-the-mean bias seen 
in all of the results (Fig. 3) by avoiding to overrepresent common trait expressions. Another possible approach 
would be to select only species with particularly low variability for model training, since it decreases the chance 
of incorporating images showing plants with an extreme trait expression that differ strongly from the chosen 

https://doi.org/10.6084/m9.figshare.13312040
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mean trait values from TRY. By that, we might be able to derive more reliable and accurate predictions in the 
context of weakly supervised learning by reducing noise in the training data.

Although weakly supervised learning approaches generally have shown to be an effective way of compensat-
ing a shortage of individually labeled data42,43, an image dataset including in-field trait measurements under 
natural conditions representing the global trait spectrum would be necessary for a conclusive validation. In our 
study, it even remains unclear to what extent the trait values actually refer to the individual plant shown in an 
image, particularly as the images sometimes show more than one individual plant and more than one species 
(Supplementary Fig. 7). This may hinder the model from predicting a trait value corresponding to the domi-
nant species in the image (but might also partly resemble the community composition, see above). Although 
we attempted to compensate the lack of a dataset that enables a conclusive validation by eliminating possible 
biases concerning image settings (Fig. 4), growth forms (Fig. 4), phylogenetic autocorrelation (Supplementary 
Information 1, Supplementary Table 5), predictions based only on climate data (Supplementary Fig. 6), predictive 
performance across biomes (Supplementary Fig. 5), a training dataset subject to limited geographic or climatic 
coverage (Supplementary Figs. 3, 4) and effects of a specific set of training data (Supplementary Fig. 2), we can-
not conclusively prove that the model predictions are based on causal relationships. Our model results suggest 
that the trait predictions reflect the feature space of natural trait expressions (Fig. 3), but an in-depth analysis of 
the image features the models learned for inferring the respective traits will be necessary to rule out any possible 
biases in future studies. An explicit analysis might involve investigating which plant organs are relevant for the 
trait predictions by means of feature attribution techniques and could ultimately provide clear evidence. This 
may not only enable to build trust in such artificial intelligence (AI) models, but also to generate new knowledge 
from them in order to deepen our understanding of plant morphology and trait covariance.

Nevertheless, this study can only be considered a pioneering work testing the feasibility of the approach, as 
application-ready models require a conclusive and explicit validation. A dataset enabling this has to incorpo-
rate image-trait pairs measured and photographed on the same individuals. One possible solution would be to 
generate a database of plant traits including respective photographs, which then can serve as a benchmark for 
future studies.

Conclusion and outlook
Following the urgently needed transition of ecology towards a data-sharing scientific discipline15,44 and the call for 
integration of powerful datasets in ecology44, we built upon this revolution of Big Data provided by professional 
and citizen science alike. Therefore, we exploited the potential of Convolutional Neural Networks44 to produce 
generic models generalising across all biomes and regions around the globe to extract a set of plant functional 
traits from simple RGB photographs. Thus, the burden of limited geographical coverage of trait databases might 
be lifted by the worldwide coverage of the iNaturalist plant photograph database. The traits referring to the models 
with the highest predictive performance cover the primary axes of plant form and function 13, which are plant and 
organ size (GH, LA) as well as the leaf economics spectrum (SLA). Despite of the disputable model performance 
for some traits, our results highlight the potential of this approach to facilitate non-invasive, cost-efficient and 
automated assessments of functional gradients in future real-world applications. In order to achieve application-
ready models, however, a conclusive validation is mandatory and has to incorporate image-trait pairs derived 
from the same individual plants. Once this is done, future applications of this approach might be next generation 
global trait maps33,34 as input for modelling and monitoring ecosystem processes and biochemical cycles, trait 
monitoring on time series data from PhenoCam images45 on local scales, or assessments of ecosystem functions 
on landscape-scale through high resolution imagery from drones11. Each of those applications might empower 
researchers to further close the gap between actual and intended spatio-temporal coverage, which ecology has 
been falling short of for decades46.

Methods
Data acquisition and preparation.  We acquired trait records of the six plant functional traits leaf area 
(LA), growth height (GH), specific leaf area (SLA), leaf nitrogen concentration (LNC), seed mass (SM) and stem 
specific density (SSD) from the TRY database7 (see Supplementary Table 1 for details). These traits explain most 
of the global trait variation in plants13 since they directly relate to plant’s nutrient economics and competitive 
abilities3,4,13. Accordingly, these traits are among those with the highest data coverage in the TRY database7. The 
traits LA and GH could be readily visible by computer vision, whereas traits such as SLA and LNC might be 
predictable through visible plant features such as thickness, color intensity or shape of leaves. Moreover there is a 
strong covariance between all of these traits, for instance a high GH usually implying a high SSD3,13. We utilised 
the standardized values given in the TRY database, which have been converted to uniform units. Observations 
with a difference to the trait mean value of greater than 4 were removed as recommended in the TRY release 
notes, since these observations are considered outliers. Next, the mean and standard deviation was computed for 
the six plant traits for each species over all observations.

Plant photographs together with their geolocation were downloaded from the iNaturalist database (Research-
grade Observations) via the Global Biodiversity Information Facility (GBIF)47. The observations containing 
presumed wrong species names and geospatial issues such as missing coordinates and a coordinate uncertainty 
of more than 100 km were removed from analysis. Next, the geolocations from the photographs’ metadata were 
used to extract bioclimatic variables from the Worldclim database with a resolution of 0◦ 10’ 0”37. We chose the 
following bioclimatic variables: Annual Mean Temperature (BIO1), Temperature Seasonality (BIO4), Tempera-
ture Annual Range (BIO7), Annual Precipitation (BIO12) and Precipitation Seasonality (BIO15). Additionally, 
we computed the Precipitation Annual Range (BIO13-14) by subtracting Precipitation of Wettest Month (BIO13) 
by Precipitation of Driest Month (BIO14). BIO1 and BIO12 are known predictors of plant traits6,17,20,21. Similarly, 
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climate variables referring to range and seasonality have shown to coincide with plant traits8,26. Therefore, we 
selected the other four climate variables (BIO4, BIO7, BIO13-14, BIO15) to characterize annual variation of 
climatic conditions of the respective site. Photographs that could not be linked to climate data, e.g. because of 
geolocations off the land surface, were removed from the analysis.

Sampling and pre‑processing.  Based on the species names, we linked the trait observations obtained 
from the TRY database (species-specific mean and standard deviation) with the plant photographs (iNaturalist) 
already linked to bioclimatic variables (Wordclim). For the purpose of balancing the dataset, i.e. avoiding over-
represented species, while maximizing the overall dataset size, we included at least one but at maximum eight 
observations per species (Table 1). We sampled a wide range of species rather than focusing on an equal distribu-
tion of trait expressions, since we wanted to prevent the model from learning species-specific trait expressions. 
Therefore, the number of images per species was kept as low as possible, and the number of species in the dataset 
as high as possible, while attempting to achieve a sufficiently large dataset of at least 10,000 images. Next, we 
extracted a random sample of 10% of the dataset of each trait before model training. This ‘test dataset’ was not 
involved in the training process and exclusively served for the independent evaluation of the trained models. 
The remaining data was split into ’training dataset’ and ’validation dataset’ by a ratio of 4:1 (Table 1). The train-
ing dataset was employed to train the weights of the CNN model, whereas the validation dataset indicated the 
training progress after each full training cycle (’epoch’).

We clipped the images to be quadratic by removing the spare margins and down-sampled the resulting image 
to a resolution of 512 × 512 pixels. Further pre-processing included log10-transformation of the reference trait 
data (‘targets’) due to skewed distributions and removing outliers exceeding three standard deviations above or 
below the mean. Afterwards, we normalised all targets (training, validation and test datasets) by the minimum 
and maximum values of the training dataset according to

target denoting the log10-transformed target value, and mintrain and maxtrain being the minimum and maximum 
of the log10-transformed training dataset. Note that the minimum and maximum values used for normalising the 
targets were derived from the training dataset exclusively, preventing a leakage of information of the validation 
and test datasets to the training process. As a result, the final target values ranged exactly (for validation and test 
datasets: approximately) between 0 and 1. The same normalisation scheme was undergone for the bioclimatic 
variables.

Convolutional neural network setups.  CNN, a sub-group of deep learning models for image analysis, 
are designed to harness the spatial context of image pixels for a specific modelling problem. The basic structure 
of CNNs includes a cascade of convolutions, i.e. optimizable filter operations, for extracting activation maps 
and down-sampling (’pooling’) operations, which enable to perform these operations at multiple spatial scales. 
Hence, the feature maps derived this way can contain both low- (e.g. edges) and high-level features (e.g. leaf 
shapes) of the image. Depending on the target value, the CNN learns which features are relevant and aggregates 
this information to a specific prediction in the last layer. In general, CNNs are computationally efficient and do 
not require a manual feature design process, making them readily adaptable to many image interpretation tasks. 
Former studies revealed their applicability in vegetation science tasks such as plant species identification using 
plant images12,22,48 and identification of plant communities utilising imagery from unmanned aerial vehicles 
(UAV)11. In view of our research objectives, we tested the potential of CNN for plant trait retrieval with four 
different setups (Fig. 1): 

(1)	 As a baseline, a state-of-the-art CNN architecture called Inception-Resnet-v249 was used (’Baseline’ in 
Fig. 2, setup 1 in Fig. 1).

(2)	 In order to test if prior knowledge on within-species variability can improve the weakly supervised learn-
ing process, ’Plasticity’ (or ’target augmentation’, TA) was implemented with exactly the same model con-
figuration as in setup 1) (’Plasticitiy’ in Fig. 2, setup 2 in Fig. 1). Plasticity was realised by harnessing the 
standard deviations obtained from TRY database regarding every trait and species (for information on 
data availability, see Table 1). The target values were altered within a Gaussian distribution truncated by 
one standard deviation of the trait values using R package ’truncnorm’ (version 1.0–8)50, thereby leaving a 
small deviation from the mean value more likely than a large one. To avoid negative as well as overly large 
values, the targets were clipped to the range between 0 and 1 after normalisation.

(3)	 As a contextual constraint, bioclimatic data (see above) was fed into the CNN with the same model and 
data configuration including Plasticity in a mixed data approach (‘Worldclim’ in Fig. 2, setup 3 in Fig. 1). 
4) We tested an Ensemble approach, in which two more state-of-the-art model architectures, namely 
Xception51 and MobileNetV2, the latter with halved number of trainable parameters52, were trained on the 
configuration of setup 3, and their predictions were subsequently averaged (’Ensemble’ in Fig. 2, setup 4 in 
Fig. 1). These models differed strongly in their number of trainable weights, resulting in a different depth. 
The final model performance was assessed using a 3-fold cross-validation, with three different training, 
validation and test splits. To enable a comparison of model performance across traits, the resulting mean 
absolute error (MAE) was normalised by division over the range of the target values of the respective test 
dataset (’normalised mean absolute error’, NMAE).

(1)targetnorm =

target −mintrain

maxtrain −mintrain
,
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Training process and hyperparameters.  In order to build upon a pre-existing knowledge base, we 
employed ’transfer learning’ by using pre-trained layer weights (the storage of the model’s knowledge) from 
a classification task on a dataset on www.​image-​net.​org38 for all CNN models used in this study. The regressor 
following the basic CNN consisted of a global average pooling layer followed by two dense layers with 512 and 1 
output units. The latter forces the CNN to output exactly one prediction (trait) value. In case of the mixed data 
model (setups (3) and (4)), the CNN consisted of parallel branches to incorporate the different input data types. 
The branch processing the bioclimatic data consisted of three dense layers with 64, 32 and 4 output units, and 
the last layer of the CNN regressor contained 4 output units. After concatenating the two branches (image and 
bioclimatic branch), the regressor contained four dense layers with 8, 8, 4 and 1 output units. The last dense layer 
of each branch and the final layer of the model were linearly activated, whereas for all other dense layers, a ’relu’ 
activation function was utilised. The latter enables the model to use non-linear separation boundaries of the 
feature space. We determined this configuration by its model performance in preliminary runs.

We increased the robustness and transferability of the model predictions by means of ’image augmentation’ 
(also: ’data augmentation’), which works independent of the choice of the specific CNN architecture53. The 
image augmentation procedure serves to inflate the amount of training data, while simultaneously assisting the 
CNN to learn spatial features independent of the data acquisition, e.g. camera settings. Therefore, the images of 
the training data were subjected to horizontal and vertical flipping as well as adjusting the contrast, saturation 
and brightness (between factors of .9 and 1.1 each) of the images. After these adjustments, the pixel values were 
clipped to a range between 0 and 1 in order to prevent the value range from being enlarged.

For the training process, a batch size of 20 images and an RMSprop optimiser with a learning rate of 0.001 and 
a learning rate decay of 0.0001 was used. The chosen loss function was mean squared error, while the prediction 
accuracy was quantified by the MAE of the respective dataset. The MAE of the validation dataset was computed 
after each epoch. Models were trained until the validation MAE did not further improve compared to the preced-
ing epochs and diverged from the training MAE (’overfit’). The trained model was then applied to the test dataset.

All CNN were implemented using the Keras API version (2.3.0.0)54 and the TensorFlow backend (version 
2.2.0)55 in R (version 3.6.3)23. Model training was undergone on a workstation with two CUDA-compatible 
NVIDIA GPUs (GeForce RTX 2080 Ti, CUDA version 11.0).

Evaluation.  We tested the robustness of the CNN models in view of the heterogeneous dataset on 200 
images per trait retained before training. Therefore, we extracted three criteria for each image: 1) We allocated 
the growth form (woody vs. non-woody) to the image using information from the TRY database. 2) The first 
author assessed the image quality in three categories (low, medium and high) as well as 3) the distance of the 
photographer to the target species in the image (’image-target distance’, categories: < 1m , 1–5m and > 5m ) 
by visual interpretation (see Supplementary Information 2 for details and Supplementary Fig. 7 for example 
images). We predicted the respective trait values for these images using the trained Ensemble models and tested 
for significant differences of the MAEs across the three criteria above.

Global trait distribution maps.  We acquired further images including geolocations from the iNaturalist 
database via GBIF (see above) with a stratified sampling design, attempting to get the most even distribution 
possible by countries on Earth. Pre-processing, including bioclimatic data, was undergone as described above. 
We removed duplicates with the training and validation datasets of the respective trait in order to ensure that 
all of the images were unknown to the CNN model to avoid artefacts from the training process. This resulted 
in 188,156 (LA), 188,318 (GH), 186,873 (SLA), 187,115 (LNC), 188,523 (SM) and 185,688 (SSD) images. Next, 
we employed the trained Ensemble models to predict each of the six traits. Afterwards, we re-transformed the 
predictions to yield the traits in their original unit by reconverting Eq. (1). Then, we applied an inverse-distance 
weighting interpolation for each trait on all of the predictions using their geolocations. The result was averaged 
for each cell of a grid with a resolution of 0◦ 30’ 0” that was superimposed on the world map in WGS84 coordi-
nate reference system using the R package ’raster’ (version 3.3-13)56. To minimize uncertainties associated with 
extensive extrapolations26, we masked the interpolation output with a buffer of 100 km around each observation. 
Additionally, we excluded all grid cells that did not fall within the Earth’s landmass. For the same grid cells, the 
.9 and .1 quantile was computed and their difference was mapped as the quantile range for reference (see Sup-
plementary Fig. 8). All trait maps were produced with R package ’rasterVis’ (version 0.49)25.

Quantitative plausibility check of global trait distribution maps.  We obtained the GTDM from 
ref.6,26–28 in order to check the plausibility of our GTDM. All maps had the same coordinate reference system 
(WGS84), but were resampled to the same grid as our maps by bilinear interpolation using R package ’raster’ 
(version 3.3-13)56. The Pearson correlation coefficients and their significance value was computed for all avail-
able GTDM combinations and plotted using the R package ’corrplot’ (version 0.84)57.

Data availability
The image data (Fig. 5 and Supplementary Fig. 8) and all CNN models of the Ensemble setup supporting the 
findings of this study are available in ’figshare’ with the identifier https://​doi.​org/​10.​6084/​m9.​figsh​are.​13312​
040. Additionally, the raw data tables containing the download links for the plant images as well as the mean 
trait values that were the basis for further processing are available on figshare (https://​doi.​org/​10.​6084/​m9.​figsh​
are.​14410​379). The raw image dataset can be obtained from iNaturalist database via https://​doi.​org/​10.​15468/​
ab3s5x47. Raw trait data are available upon request from the TRY database (https://​www.​try-​db.​org/)7.

http://www.image-net.org
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Code availability
The code supporting this manuscript is available online at https://​github.​com/​ChrSc​hiller/​cnn_​traits.
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