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Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide

(NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7)

in the human sirtuin family, among which SIRT1 is the most conserved and characterized.

SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating

systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also

been found to mediate beneficial effects in neurological diseases. In this review, we will

first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian

synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the

context of cerebral ischemia and neurodegenerative disorders.

Keywords: Sirt1, obesity, type 2 diabetes mellitus, circadian rhythms, cerebral ischemia, Alzheimer’s disease,

Parkinson’s disease

INTRODUCTION

Sirtuins are homologs of yeast silent information regulator 2 (Sir2). Sir2 has attracted the
attention of researchers given its involvement in longevity (1). The mammalian sirtuins (SIRT1-7)
have different subcellular localizations. SIRT1, SIRT6, and SIRT7 are mainly localized in the
nucleus, whereas SIRT1 is also reported to translocate in the cytoplasm. SIRT2 is predominantly
cytoplasmic and shuttles to the nucleus transiently. The mitochondrial sirtuins are SIRT3,
SIRT4, and SIRT5 (2). In terms of enzymatic activities, sirtuins share a conserved nicotinamide
adenine dinucleotide (NAD+) binding site and remove acetyl groups from target proteins
in an NAD+-dependent manner. Additionally, some sirtuins have been reported to exhibit
demyristoylase (SIRT2), ADP-ribosyltransferase (SIRT4 and SIRT6), and demanlonylase and
desuccinylase (SIRT5) activities (2).

The Role of SIRT1 as a Metabolic Sensor
Among all sirtuins, SIRT1 is the most extensively studied and well-characterized. As mentioned
above, SIRT1 is an NAD+ dependent deacetylase that removes the acetyl groups from protein
substrates to add to the ADP-ribose, a product from the cleavage of NAD+. NAD+ is a dinucleotide
with one nucleotide contains an adenine and the other contains nicotinamide (3). In addition to
be the rate-limiting co-substrate for NAD+ dependent enzymes, NAD+ can be used a coenzyme
in the metabolic redox reactions. NAD+ exists in two forms, the oxidized form as NAD+, and the
reduced form as NADH. NAD+/NADH plays a critical role in glycolysis and cellular respiration
for ATP production. In glycolysis, NAD+ is reduced to NADH. In oxidative phosphorylation
and cellular respiration, NADH is oxidized to NAD+ by electron transport chain (ETC) (1).
As such, NAD+ concentrations fluctuate with cellular metabolic status and nutrient availability.
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NAD+ levels increased during the energetic crisis, such as calorie
restriction and decreased under conditions of high-energy load,
such as high-fat diets. The fact that Sirt1 enzymatic activity
depends upon NAD+ levels allows Sirt1 to act as a metabolic
sensor that couples cellular metabolic status to regulatory
responses (1).

SIRT1 in Metabolism
SIRT1 is widely distributed in the body and plays diverse roles in
metabolism in different organs including liver, pancreas, muscle,
and adipose tissue (4–6). One of the important aspects associated
with increased SIRT1 activity is the caloric restriction (CR) (7, 8).
CR has been extensively studied, where it has been demonstrated
that SIRT1 plays a central role in CR-induced longevity (8–
11). As mentioned, it has been suggested that SIRT1, as a
metabolic sensor, coordinates the transcriptional networks with
the restricted metabolic status (8, 12, 13). During times of energy
reduction, NAD+ concentrations increase, thereby enhancing
the NAD+ deacetylase activity of SIRT1. The SIRT1 mediates
deacetylation of a broad range of protein substrates. Proteins
that regulate mitochondrial biogenesis, glucose homeostasis,
inflammation, and apoptosis have been identified as SIRT1
substrates (14–16). These biological functions are linked to
energy homeostasis and eventually extend lifespan.

SIRT1 in the Brain
SIRT1 is widely expressed in the adult brain. Most of the SIRT1 is
localized in the neuronal nuclei. However, SIRT1 is also found
in the glial cells of post-mortem human brains, and in neural
stem cells, microglia, and astrocytes in culture (17). In the
hypothalamus, the control center for homeostasis, SIRT1 mRNA
is highly expressed in the arcuate, ventromedial, dorsomedial
and paraventricular nuclei of the hypothalamus, which suggests
an important role for brain SIRT1 in regulating metabolic
status (18). Another function of brain SIRT1 is the regulation
of the central circadian clock in the suprachiasmatic nucleus
(SCN) of the hypothalamus. In the SCN of the hypothalamus,
SIRT1 regulates circadian clock gene expressions by mediating
the acetylation status of circadian genes (19). Besides the
physiological functions of SIRT1 in the hypothalamus, SIRT1 is
reported to exert neuroprotection in neurological dysfunctions
(20). In this review, we will focus on the roles of SIRT1 in the
brain in metabolism, circadian rhythm, and SIRT1 function in
the context of cerebral ischemia and neurodegenerative disorders
(Figure 1).

SIRT1 AND MITOCHONDRIAL FUNCTIONS

Mitochondrial is one of the most important sources for cellular
energy in eukaryotes, producing up to 95% of the ATP through
oxidative phosphorylation (21). This provides great significance
into the roles of the mitochondrial in the brain, where it is
estimated to take up to 20% of the total oxygen consumption
of the body energy (22). As such, this dysfunction could affect
metabolic efficiency, thus linking to a common pathology ranging
from metabolic disorders to neurological diseases (21).

SIRT1 can regulate the transcription of mitochondrial genes
encoded in the nucleus that are involved in vital mitochondrial
processes related to longevity and aging. While SIRT1 is mainly
localized in the nucleus, levels have also been detected in the
mitochondrion where it may interact with different substrates
(23). In this section, we will discuss SIRT1’s involvement
in important mitochondrial functions including mitochondrial
biogenesis, mitophagy, and energy metabolism.

Regulation of Insulin Secretion by SIRT1
Via UCP2
Uncoupling protein 2 (UCP2) is an inner mitochondrial
membrane protein that can uncouple oxidative phosphorylation
from respiration/ATP production. This is done via dissipation
of the proton gradient, in which protons are returned to the
mitochondrial matrix. UCP2 is found in many different tissues,
including the brain, and has been shown to be involved in energy
balance (24), homeostasis, and longevity (25). SIRT1 has been
found to positively regulate insulin production by means of
repressing UCP2 (26–28). As a result, cells express higher ATP
levels after glucose stimulation, which is essential for inducing
insulin secretion (26). In this manner, levels of insulin are
regulated commensurate to levels of food intake and if impaired
may contribute to obesity-induced diabetes (26). In this respect,
SIRT1 can respond to nutrients available in the environment
and promote transcriptional changes that may enhance energy
metabolism.

PGC-1α and SIRT1 Interact to Induce
Mitochondrial Biogenesis and Metabolic
Processes
Peroxisome proliferator-activated receptor γ (PPARγ)
coactivator-1α (PGC-1α) is a transcriptional coactivator
and major regulator of mitochondrial biogenesis and several
metabolic processes (29). Studies have shown that SIRT1
interacts with PGC-1α to induce its transcriptional activity via
deacetylation (16, 30–32). PGC-1α may activate a wide array
of transcription factors (TFs) that include both DNA-binding
TFs, such as nuclear respiratory factor 1 (NRF-1), and nuclear
hormone receptors, such as PPARγ, thyroid hormone receptors,
retinoic acid receptors, glucocorticoid receptors, and estrogen
receptors (33, 34).

NRF-1, specifically, can regulate the activation of the
nuclear-encoded mitochondrial transcription factor A (TFAM),
which can bind to mtDNA and stimulate mitochondrial DNA
replication and increase the expression of mitochondrial genes
(35). As a result, NRF-1 induces the expression of mitochondrial
transporters, components of oxidative phosphorylation, and
ribosomal proteins (36). Aquilano et al. found that SIRT1 and
PGC-1α also interact with TFAM within the mitochondria
(23). In either case, the subsequent increased expression of
mitochondrial genes promotes mitochondrial biogenesis—an
essential process important for maintaining oxidative capacity
and levels of energy production. In some instances, SIRT1 activity
is required to stimulate mitochondrial biogenesis, as reported in
pulmonary arteriolar smooth muscle cells (37); however, whether
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FIGURE 1 | An overview of brain SIRT1 in metabolic and neurological disorders. Brain SIRT1 activity is dependent on NAD+ levels, which increases under energy

crisis, and decline with high energy load. Any dysregulation of brain SIRT1 activity can have devastating consequences in terms of mitochondrial function, metabolic

homeostasis, circadian synchronization, and neurological function. A proper function of brain SIRT1 is protective against obesity, diabetes, circadian dysregulation. In

addition, brain SIRT1 exerts neuroprotection against ischemic injury and neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),

and Huntington’s disease (HD). T2DM, type 2 diabetes, NAD+, nicotinamide adenine dinucleotide.

SIRT1 is necessary for mitochondrial biogenesis to occur has
recently become controversial (38).

The increase of mitochondrial gene expression also stimulates
several metabolic processes depending on the tissue type (33,
36). In the brain and heart, PGC-1α functions as an important
regulator of the metabolism of reactive oxygen species (ROS)
under normal physiological conditions and certain states of
oxidative stress (36). In conditional liver-specific SIRT1 KO
mice, PPARα signaling activated by PGC-1α was impaired (39).
This lead to a decrease in fatty acid oxidation and ketogenesis,
suggesting a vital role for SIRT1 in regulating hepatic lipid
homeostasis (39). Dysregulation of any of these processes may
contribute to both aging and age-associated metabolic diseases.

SIRT1 and Mitophagy
Maintaining quality mitochondrial pools is essential for cell
health and viability. Mitochondrial components are typically
damaged by the accumulation of ROS—a byproduct of the
mitochondrial electron transport chain—which typically occurs
during conditions of stress. Due to its close proximity,
ROS overproduction damages mtDNA that may ultimately
contribute to neurodegenerative disorders, stroke, cancer, and
age-related diseases (40–42). Constant mitochondrial turnover
is important to maintain a healthy mitochondrial population.
Thus, a quality control mechanism is required to eliminate and
replace dysfunctional mitochondria with new and more efficient
mitochondria. To achieve this specialized form of homeostasis
in response to stress, cells utilize a process known as mitophagy
for the selective degradation of mitochondrial components. This
elimination process is balanced with mitochondrial biogenesis.
While the exact mechanism for mitophagy has yet to be
elucidated, some studies indicate PINK1/PARKIN as the key
pathway involved (43, 44). As discussed above, SIRT1 is essential
for promotingmitochondrial biogenesis; however, it also plays an
important role in autophagy.

Several studies have shown that SIRT1 interacts with
components of the autophagy machinery including Forkhead

box O3 (FOXO3)—a transcription factor heavily associated
with autophagy induction (45–47). In the aged kidney, the
mitochondrial damage was associated with deficiencies in SIRT1,
and under hypoxic conditions, SIRT1 was able to promote
cell adaptation by deacetylation of FOXO3 (46). Another
study demonstrated that SIRT1 is essential for fully activating
autophagy under conditions of starvation (48). Additionally,
SIRT1 deficient embryos and neonatal mice displayed an
accumulation of abnormal organelles, especially mitochondria,
and impaired autophagy (48). PGC-1α is also involved in
mitophagy as it regulates the expression of transcription factor
EB (TFEB)—a well-known master regulator of autophagy and
lysosomal biogenesis (49). It may be possible that SIRT1 may
also influence mitophagy given its interaction with PGC-1α.
Taken together, SIRT1 is involved in diverse mechanisms for the
regulation of mitochondrial functions (Figure 2). The regulation
of SIRT1 in mitochondrial functions may underlie its importance
in regulating energy metabolism and in so doing, may be part of
its neuroprotective role.

BRAIN SIRT1 AND OBESITY

The hypothalamus is the control center for homeostasis. In the
arcuate nucleus of the hypothalamus, the proopiomelanocortin
(POMC) neurons suppress appetite while the activation of
agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons
stimulate appetite (50). The ventromedial nucleus (VMN) is
another nucleus involved in satiety as VMN lesions lead
to an increase in food intake and obesity (51). In recent
years, a substantial number of studies demonstrated that the
hypothalamic SIRT1 is crucially important for the central
regulation of food intake and energy expenditure.

SIRT1 in the POMC neurons is required to protect
against high calorie-induced obesity. When challenged with a
hypercaloric diet, POMC-SIRT1 mutant mice showed reduced
energy expenditure and increased bodyweight (52). Interestingly,
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FIGURE 2 | A simplified overview of mitochondrial functions mediated by SIRT1 activity. SIRT1 may interact with transcription factors or mitochondrial proteins to

induce different effects related to mitochondrial function—a select few of these proteins are highlighted. SIRT1 can suppress Uncoupling protein 2 (UCP-2) in the inner

mitochondrial membrane to increase levels of ATP, which is important for energy metabolism. SIRT1 may also deacetylate Peroxisome proliferator-activated receptor γ

(PPARγ) coactivator-1α (PGC-1α) to induce its activation and augment mitochondrial biogenesis by increasing mitochondrial gene expression via Nuclear respiratory

factor 1 (NRF-1) and Nuclear-encoded mitochondrial transcription factor A (TFAM). PGC-1α itself can regulate different metabolic processes and may potentially play a

role in mitophagy.

these metabolic changes were not due to hypoactivity, as the
mutant mice showed unaltered levels of daily activities compared
to their control counterparts (52). The reduction in energy
expenditure could be explained by a reduction in sympathetic
nerve activity in the adipose tissue of the mutant mice (52).
Conversely, mice with overexpressed SIRT1 in the POMC
neurons exhibited a leaner phenotype compared to their wild-
type littermates (53). Age-related weight gain was absent in the
POMC-SIRT1 overexpressed mice. The leaner phenotype was
attributed to increased sympathetic activity in the adipose tissue
with consequently enhanced energy expenditure (53).

Another mechanism in which SIRT1 modulates systemic
homeostasis is through deacetylation of Forkhead box protein
O1 (FoxO1). FoxO1 is a downstream transcription factor in
the insulin signaling pathway. Hypothalamic FoxO1 activation
or overexpression inhibits the anorexigenic effects of insulin
(54), increases adiposity, and leads to weight gain (55). The
overexpression of SIRT1 in POMC neurons was able to
rescue FoxO1 activation induced obesity (55). These effects
occurred through decreased acetylation and expression of
FoxO1 by POMC-SIRT1 overexpression (55). Similarly, FoxO1
mediated hyperphagia was blunted by hypothalamic SIRT1
overexpression (56).

Hypothalamic SIRT1 is also implicated in the leptin-
mediated regulation of metabolism. Leptin is a hormone
secreted by the adipose tissue that suppresses body weight. In
the hypothalamus, leptin binds to its receptor (Ob-Rb) and
activates the signal transducer and activator of transcription

3 (STAT3), which further regulates gene expressions to affect
energy homeostasis. The leptin-induced protective mechanisms
against obesity are dependent on SIRT1 in the POMC neurons.
In POMC-SIRT1 deficientmice, leptin-mediated activation of the
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling
pathway and the suppression of food intake were disrupted (52).
In addition, when SIRT1 is overexpressed in the hypothalamus,
either in POMC or AgRP neurons, non-obese mice exhibited
increased sensitivity to leptin, as demonstrated by increased
phosphorylation of STAT3 as well as reduced food intake (53).
Interestingly, these phenotypes were blunted in mice consuming
a high-fat diet, due to decreased expression of SIRT1 and NAD+

levels in the hypothalamus, suggesting that the metabolic status
could influence the function of hypothalamic SIRT1 (53). In
support of this, the hypothalamic SIRT1 expression is induced
upon feeding in the standard fed mice, whereas diet-induced
obesity abrogated this induction (56). In addition to the arcuate
nucleus, SIRT1 in steroidogenic factor 1 (SF1) neurons of the
VMN also contributes to the physiological function of leptin. The
lack of SIRT1 in the SF1 neurons predisposed mice to dietary-
induced obesity. SF1-SIRT1 mutant mice exhibited diminished
energy expenditure and impaired leptin sensitivity (57). In
contrast, SIRT1 overexpression in the SF1 neurons restored
oxygen consumption, increased leptin sensitivity and protected
mice against high-calorie diet induced weight gain (57).

In the aforementioned studies, the activation of hypothalamic
SIRT1 negatively regulated energy balance and protected
against obesity. Contrary to these findings, studies also
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reported a positive energy regulation by brain SIRT1. Apart
from leptin, ghrelin is another peptide released peripherally
and acts on the central nervous system (CNS) to regulate
metabolism. Ghrelin is produced by the stomach and activates
AMPK in the hypothalamus to increase appetite. In rodents,
the intracerebroventricular (ICV) infusion of the SIRT1
inhibitor, EX-527, blunted the ghrelin-induced food intake, thus
demonstrating that ghrelin is dependent on hypothalamic SIRT1
to stimulate appetite (58, 59). Similar beneficial metabolic effects
were seen in two other studies that blocked brain SIRT1 by the
ICV infusion of EX-527. One study showed that the inhibition of
brain SIRT1 in fasted rats could reduce food intake and decrease
weight gain (60). The other study compared the effects of brain
SIRT1 inhibition in obese and lean rats. The authors observed
a significant decrease in body weight and an increase in energy
expenditure in diet-induced obese rats, but not in rats fed normal
chow upon brain SIRT1 inhibition (61). The mechanisms were
attributed to increased activity of the hypothalamic-pituitary-
thyroid axis, resulting in enhanced energy expenditure (61). The
discrepancy between the hypophagia and hyperphagia effects
by SIRT1 activation may be due to the different animal models
used in these studies (i.e., ICV infusion of EX-527 and genetic
deletion of SIRT1 in a specific population of neurons). Despite
the controversies, these studies demonstrated a crucial role for
brain SIRT1 in the systematic regulation of energy homeostasis
(Figure 3).

BRAIN SIRT1 AND TYPE 2 DIABETES

Obesity is a leading risk factor for type 2 diabetes (T2DM). The
accumulation of fat, especially visceral fat, progressively enhances
insulin resistance and eventually leads to T2DM (62, 63). Given
the crucial role of SIRT1 in obesity, it is no surprise that emerging
evidence suggests SIRT1 within the brain controls the systematic
regulation of glucose/insulin homeostasis. Mentioned briefly
above, SIRT1 in SF1 neurons is required for the defense against
dietary-induced obesity. In addition to this, insulin activated
PI3K signaling was blunted in the skeletal muscle of SF1-neuron-
SIRT1 deleted mice. Conversely, SIRT1 overexpression in SF1
neurons enhanced skeletal muscle insulin sensitivity in these
mice (57).

Resveratrol is a potent SIRT1 activator that improves glucose
homeostasis. Studies demonstrate that brain SIRT1 at least
partially contributes to the resveratrol-mediated glucose balance
(64). ICV infusion of resveratrol rescued the hyperglycemia
phenotype in diet-induced obese and diabetic mice (64).
In support of the former data, hypothalamic or systemic
administration of resveratrol increased hepatic insulin sensitivity,
which was blunted by the inhibition of SIRT1 in the
hypothalamus (65). Collectively, these data suggest SIRT1
activation within the brain is likely to improve insulin resistance
and combat against diabetes. In such cases, brain SIRT1
activation leads to suppressed peripheral glucose production.

Two studies that investigated the cell type-specific role of
neuronal SIRT1 in glucose metabolism suggested a different
regulatory mechanism. Neuronal SIRT1-deficient mice exhibited

higher insulin sensitivity in the hypothalamus and peripheral
tissue. It was suggested that SIRT1 deacetylates and represses
Insulin receptor substrate 1 (IRS-1) and the insulin signaling
pathway. In this case, central PI3K signaling was enhanced
in neuronal SIRT1 deficient mice (66). Another study
demonstrated that neuronal SIRT1 mediates glycolysis in
the brain. Pharmacological inhibition or genetic mutation of
neuronal SIRT1 caused glycolysis deficits in vitro and in vivo,
whereas resveratrol treatment increased the glycolysis rate in
primary neurons (67). It is reported that, in peripheral tissues,
SIRT1 inhibits glycolysis to reduce glucose consumption (68).
For example, in liver, under metabolic stress, SIRT1 deacetylates
and activates PGC-1α to suppresses glycolysis and promote
gluconeogenesis. These data demonstrate that SIRT1 regulates
glucose metabolism in a tissue-specific and cell type-specific
manner (16).

BRAIN SIRT1 AND CIRCADIAN RHYTHM

The circadian rhythm is a 24 h endogenous cycle that allows
organisms to synchronize their physiology and behavior to the
daily cycle of daylight and darkness (69, 70). The circadian clock
is entrainable by internal and external zeitgebers “time givers.”
In mammals, the circadian clock is found across different tissues,
yet the central clock is found in the SCN of the hypothalamus
from which it entrains peripheral clocks to regulate oscillatory
functions, such as metabolism and the sleep/wakefulness cycle
(69, 70).

The molecular mechanism of the circadian rhythm consists
of a set of transcriptional activators and repressors involved in
positive and negative autoregulatory feedback loops (69, 71).
In mammals, the core clock genes are the acetyltransferase
CLOCK (Circadian Locomotor Output Cycles Kaput) and its
heterodimer BMAL1 (Brain and muscle Arnt-like protein-1).
When dimerized, the CLOCK-BMAL1 complex translocates to
the nucleus and induces the expression of several downstream
genes. Among these genes are their own negative regulators
period (PER1, PER2, PER3) and cryptochrome (CRY1 and
CRY2) proteins (69, 70). Over the course of the day, PER and
CRY start to accumulate and together with the casein kinase 1δ
(CK1δ) and CK1ε translocate to the nucleus to repress their own
transcription (70). As repression progresses, PER and CRY levels
decline and transcription by CLOCK-BMAL1 re-initiates a new
cycle (70). PER and CRY are also eliminated by post-translational
modifications and degradation (69, 70). The CLOCK-BMAL1
complex also regulates the downstream retinoic acid-related
orphan receptors (RORα, RORβ) and the nuclear receptors (Rev-
Erbα, Rev-Erbβ), which compete for the regulation of the BMAL1
promoter and reinforce the oscillation (70).

SIRT1 in the Peripheral Clocks
SIRT1 has been shown to be an important regulator of the
circadian clock genes in both the central and peripheral clocks
(Figure 4). In 2008, two independent studies using peripheral
tissues were the first to link SIRT1 to the regulation of the
clock genes. Using mouse hepatocytes and cultured fibroblasts,
it was shown that the protein levels of SIRT1 cycle in a
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FIGURE 3 | Regulative mechanisms of brain SIRT1 in metabolic homeostasis. Brain SIRT1 increases energy expenditure via the hypothalamic pituitary thyroid axis

and increased sympathetic nerve activity in the adipose tissue. In addition, hormones, such as leptin, insulin, and ghrelin through brain SIRT1 to balance energy

expenditure and energy intake. For example, SIRT1 in POMC neurons deacetylate Forkhead box protein O1 (FOXO1) to increase the insulin signal pathway.

circadian manner, in turn, is required to promote the circadian
transcription of Bmal1, Rorγ, Per2, and Cry1 (19). This study
also showed that the binding of SIRT1 to the CLOCK-BMAL1
complex is rhythmic and promotes the deacetylation and
degradation of the PER2 protein (19). In the second study using
fibroblasts and liver tissues, SIRT1 was reported to be a negative
regulator of the CLOCK-BMAL1 complex (72). By antagonizing
the acetyltransferase activity of CLOCK, SIRT1 removes acetyl-
marks from histone H3 and BMAL1, preventing the CLOCK-
BMAL1 heterodimer from activating circadian promoters. This
study also revealed that SIRT1’s activity rather than levels is
regulated in a circadian manner (72). Subsequent studies then
revealed that the rhythmic activity of SIRT1 is due to the
oscillatory patterns of NAD+ levels regulated by its rate-limiting
enzyme NAMPT, which is positively regulated by the core
clock genes CLOCK-BMAL1 (73, 74). The activation of SIRT1
through this NAMPT-mediated NAD+ biosynthetic pathway, in
turn, inhibits the activity of CLOCK-BMAL1, thus forming a
negative feedback loop (73, 74). These studies revealed a crucial

role for SIRT1 in coupling metabolism to the circadian cycle
through its reliance on NAD+ as a cofactor. Supporting this
observation, studies have shown that high-fat diets can disrupt
the rhythmicity of circadian clock genes in several tissues and

that the administration of SIRT1 activators such resveratrol, can
reverse these effects and restore the rhythmicity to the circadian
genes (75, 76). Additionally, several other studies have attributed
different functions to SIRT1 in the regulation of the circadian
clock genes in peripheral tissues thus adding additional levels of
complexity to its function (77–79).

SIRT1 in the Central Clock
In the SCN of the hypothalamus, SIRT1 was reported to
activate the transcription of the circadian genes BMAL1 and
CLOCK through PGC-1α (80) (Figure 4). Interestingly, this
study also showed that aging reduces the levels of SIRT1 in
the SCN, which coincided with reduced BMAL1 and PER2
levels. This, in turn, leads to a longer intrinsic period and
disruption in the activity patterns and entrainment of mice to
the light schedule. Furthermore, the knockout of Sirt1 from
young mice brains was able to phenocopy these age-dependent
disruptions in the circadian cycle, while its overexpression
protected old mice from the age-dependent effects (80). Thus,
this study revealed a crucial role for SIRT1 in the activation
of the central pacemaker and maintenance of robust circadian
control in young animals. It also suggested that the age-
dependent reduction in SIRT1 led to the observed disruptions
in the circadian cycle with aging (80). Another interesting
study showed that SIRT1 from the ventromedial hypothalamus
(VMH) sends nutrient-time information to the central clock
through efferent signals to synchronize the central clock to
feeding cues (81). SIRT1 ablation from the SF1 neurons of
the VMH disrupted the connection between food intake and
circadian rhythm as revealed by deregulated activity behaviors
and circadian gene expression in the SCN (81). This study
strongly supports the role of SIRT1 as a nutrient sensor that
couples metabolism to the circadian rhythm of the central
clock.

The regulation of the circadian genes by SIRT1 in the
central clock has also been reported to be disrupted in a
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FIGURE 4 | The regulation of central and peripheral clock genes by SIRT1. When dimerized, the core clock genes CLOCK and BMAL1 promote the expression of

several downstream genes including their own negative regulators periods (PER) and cryptochromes (CRY). PER and CRY accumulate during the day and together

with casein kinase 1 (CK1) then repress their own transcription. The CLOCK-BMAL1 complex also regulates the retinoic acid-related orphan receptors (ROR) and the

nuclear receptors (Rev-Erb), which compete for the regulation of the BMAL1 promoter. In the peripheral clocks, SIRT1 regulates the circadian genes at different levels.

SIRT1 protein levels cycle in a circadian manner, and through its rhythmic binding to the CLOCK-BMAL1 complex SIRT1 promotes the circadian transcription of

Bmal1, Rorγ, Per2, and Cry1. SIRT1 also promotes the deacetylation and degradation of the PER2 protein. SIRT1 activity has also been reported to cycle in a

circadian manner owing to the rhythmic expression of NAMPT, a crucial enzyme for NAD+ biosynthesis, by the CLOCK-BMAL1 complex. In turn, SIRT1 also acts as a

negative regulator of the CLOCK-BMAL1 complex thus preventing the activation of circadian promoters. In the suprachiasmatic nucleus (SCN), SIRT1 activates the

transcription of the circadian genes BMAL1 and CLOCK through PGC-1α.

number of neurological diseases (Figure 5). It was shown
that Apolipoprotein E knockout (ApoE−/−) mice, a model
of Alzheimer’s disease, exhibit disruptions in the circadian
locomotor activity under dim light and constant darkness
along with impairments in re-entrainment to phase change
schedules (82). These mice also exhibit an alteration in the
expression of SIRT1 and circadian clock genes in the SCN (82).
Interestingly, the supplementation with fat or ketone bodies or
the intraperitoneal administration of nicotinamide can rescue
the circadian clock in these mice by restoring their locomotor
rhythmicity and circadian expression of SIRT1 and clock genes
(82). Additionally, in triple transgenic Alzheimer’s disease (3 ×

Tg-AD) mice, the patterns of expression of circadian clock genes
were also reported to be disrupted in the SCN in response to
daylight and darkness. Consistently, these mice also exhibited
significantly higher levels of SIRT1 in the SCN compared to
non-transgenic after a 12 h exposure to darkness (83). Thus,
these studies combined suggest that SIRT1 may be a relevant
therapeutic target for the restoration of the circadian rhythm
in the SCN, which is disrupted in both aging and neurological
disorders.

SIRT1 AND CEREBRAL ISCHEMIA

Researchers have established different roles for brain SIRT1
in different neurological diseases. Evidence from preclinical
studies established a neuroprotective role for SIRT1 in ischemic
injury. SIRT1 deficient mice, compared to their wild-type
littermates, exhibited significantly larger infarct volume and
increased impairment of neurological functions after permanent
middle cerebral artery occlusion (pMCAO) (84). In a similar
line of evidence, pharmacological blockade of SIRT1 activity by
SIRT1 inhibitor sirtinol increased the infarct volume following
pMCAO (84). In contrast, SIRT1-overexpression protected the
brain from cerebral ischemic injury. In a bilateral common
carotid artery stenosis (BCAS) model that causes chronic
cerebral hypoperfusion, wild-type mice displayed white matter
deficits and spatial memory impairments following BCAS
(85). Conversely, SIRT1 overexpressed mice showed preserved
histological outcome of the corpus callosum and restored spatial
working memory (85). Additionally, increased SIRT1 activity by
Activator 3, a specific SIRT1 activator, reduced infarct volume in
mice (84).
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FIGURE 5 | SIRT1 levels in the suprachiasmatic nucleus (SCN) are disrupted

by aging and Alzheimer’s disease. The rhythmic expression of SIRT1 in the

SCN has been reported to be disrupted in animal models of aging and

Alzheimer’s disease. This, in turn, disrupts the circadian expression of clock

genes causing a disruption in the activity patterns of mice and their

entrainment to light. The overexpression of SIRT1 protected mice from these

age-dependent effects. Similarly, the administration of fat, ketone bodies, or

nicotinamide rescued the circadian expression of clock genes in Alzheimer’s

disease mouse models and restored their locomotor rhythmicity.

The neuroprotection against cerebral ischemia by SIRT1 is
achieved through multiple mechanisms. Following ischemia,
stressors, such as DNA damage and oxidative stress activate
the tumor suppressor gene, p53, which mediates apoptosis (86).
Ischemia-induced activation of p53 triggers the mitochondrial
apoptotic pathway and facilitates neuronal cell death (86, 87).
Inhibition of p53 blocks apoptosis, promotes a survival signaling
pathway, and protects neurons against ischemic-induced cell
death (88, 89). Genetic deletion or pharmacological inhibition
of SIRT1 increased the acetylation of p53 in the peri-infarct area
(84). In contrast, SIRT1 activation deacetylated p53 and reduced
p53-dependent neuronal apoptosis (90).

SIRT1 dependent endothelial nitric oxide synthase (eNOS)
modulation is another beneficial mechanism. Nitric oxide (NO)
is a vasodilatory factor that is produced by endothelial nitric
oxide synthase (eNOS) in endothelial cells. Acetylated eNOS
was significantly increased at 2 h after BCAS in wild-type mice,
whereas in SIRT1-Tg mice, the acetylation of eNOS was not
observed (85). Increased deacetylation of eNOS is suggested
to increase NO production, regulating the vascular tone of
blood vessels, and helping to maintain cerebral blood flow
during chronic hypoperfusion (85). Consistent with this, in a
global cerebral ischemia model of bilateral common carotid
artery occlusion (BCAO), SIRT1-Tg mice showed significantly
preserved cerebral blood flow during BCAO, which was
absent in their wild-type littermates. Similar to the former,
pharmacological activation of SIRT1 by resveratrol treatment
1 h after MCAO increased plasma NO and decreased infarction
volumes in an eNOS dependent manner (91).

As briefly mentioned above, SIRT1 can also mediate
protection by retaining the integrity of white matter (85). White
matter lesions are commonly seen in elderly people. One study,
which enrolled 1,077 subjects, revealed only 5% were completely
free of white matter lesions (92). The prevalence of white matter
lesions increased with aging and is associated with cognitive
defects. Moreover, the cerebral white matter is highly vulnerable
to ischemic injuries (93, 94). Of note, evidence also showed that
the degree of white matter lesions relates to infarct volumes and
predicts future ischemic incidence after the first stroke attack
in patients (95). Supporting the white matter protection by
SIRT1 in ischemic stroke, studies in other neurological models
demonstrate a similar SIRT1 mediated benefit. In neonatal brain
injury, SIRT1 regulates glial progenitor cells to promote white
matter regeneration (96). Similarly, SIRT1 mediates neuronal
protection in an autoimmune model of white matter injury (97).

Importantly, Sirt1 is required in the neuroprotection
elicited by ischemic preconditioning (IPC) or resveratrol
preconditioning (RPC) (1, 17, 67). IPC develops when a brief
period of sublethal ischemia is followed by a period of recovery. It
exerts a neuroprotective state against lethal ischemia in different
organs of the body including the brain. Furthermore, IPC has
shown promising prophylactic potential in diminishing cerebral
ischemic injury as shown in recent translational research studies
(98, 99). Similar to IPC, resveratrol treatment is able to protect
the brain from a following cerebral ischemic attack (1, 17, 67).
Collectively, the evidence gathered here demonstrates the pivotal
role SIRT1 plays against cerebral ischemia (Figure 6).

SIRT1 AND NEURODEGENERATIVE
DISORDERS

In addition to providing neuroprotection against cerebral
ischemia, the activation of SIRT1 has been shown to confer
protection against neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Huntington’s disease (HD) (20, 100). These diseases are
substantial burdens to society and can be debilitating to afflicted
individuals, making it imperative to investigate potential
therapeutic factors, like SIRT1.

The benefits of SIRT1 in neurodegenerative diseases was
first reported by Graff et al. in a CR model (101). Graff
et al. studied an inducible neurodegenerative mouse model,
called CK-p25. These mice exhibited a substantial neuronal loss,
deficits in synaptic density and plasticity, as well as learning
and memory impairments under the induction of doxycycline.
CK-p25 mice underwent 3 months of CR and after the sixth
week of CR the neurodegeneration was induced. The CR
group showed preserved synaptic density, synaptic plasticity,
and memory capacities. CR neuroprotection was mediated by
SIRT1 activation, shown by the deacetylation of p53, in the
CR but not control group. Furthermore, the use of a small
SIRT1 activator, as well as SIRT1 overexpression, recapitulated
the CR neuroprotection (101). This evidence shows SIRT1’s
neuroprotective capacity against neurodegenerative effects on
synaptic function and memory capacities. In this way, SIRT1
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FIGURE 6 | SIRT1 protects against cerebral ischemic injury in multiple mechanisms. SIRT1 deacetylate p53 to block the p53-induced apoptotic pathway, thus,

promoting neuronal survival. SIRT1 deacetylates endothelial nitric oxide synthase (eNOS) to regulate vascular tone and maintain brain blood flow. SIRT1protects

against white matter injury in ischemic injury, possible via promoting the oligodendrocyte regeneration. Finally, SIRT1 is required for ischemic preconditioning (IPC) and

resveratrol preconditioning (RPC) induced ischemic neuroprotection. Arg, L-arginine, NO, nitric oxide.

activation, or perhaps overexpression, may protect against
synaptic dysfunction in common forms of neurodegeneration.

Alzheimer’s Disease and the Therapeutic
Potential of SIRT1
AD is a neurodegenerative disease that can be either early-
onset or late-onset. Early-onset is associated with a genetic
contribution to the disease’s etiology, while the late onset etiology
is more complicated and likely multifactorial (102). In the
more common, late-onset form of the disease, neuritic senile
plaques (NSP) and neurofibrillary tangles (NFT) contribute to
neuronal toxicity and death. NSPs originate from the buildup
of a protein called β-amyloid (Aβ). β-secretase and γ-secretase
are enzymes that cleaves the amyloid precursor protein (APP)
to produce Aβ, which is then secreted into the extracellular
space, eventually forming toxic aggregates. NFT’s are tangles
of the cytoskeletal protein tau that receive an aberrant post-
translational modification. A common pathological modification
of tau is phosphorylation, which forms the toxic p-tau (103). The
formation of NSP’s and NFT’s are pivotal steps in AD pathology.

Recent evidence has linked SIRT1 activity with the
interference of the factors and-or processes that produce
NSP’s and NFT’s (Figure 7). CR in mice was shown to reduce
the expression of β-secretase in part due to the activation of
SIRT1 (104). This effect was through the AMPK-SIRT1-PGC-1α
pathway in which the transcription factor PGC-1α became
upregulated and reciprocally downregulated β-secretase. PGC-
1α required SIRT1 deacetylase activity for its transcriptional
repression of β-secretase. Thus, CR induced activation of SIRT1
promotes AD neuroprotection through changes in transcription
factor activity. As stated before p-tau can contribute to AD.
The acetylation of p-tau (acetylated-tau, ac-tau) prevents its
degradation and promotes pathological accumulation (105). The

overexpression of SIRT1 in HEK293T cells expressing human
tau showed a reduction of ac-tau, while SIRT1 deletion results in
hyperacetylation. Furthermore, a GST pull-down assay showed a
direct interaction of SIRT1 and tau (105). SIRT1 has the capacity
to deacetylate ac-tau, which in turn, allows for the degradation
of tau and p-tau, potentially reducing the formation of NFT’s in
AD pathology.

In an oxidative stress model of neuroblastoma SK-N-BE cells,
the SIRT1 activator resveratrol was administered to determine
its effect on neurodegenerative oxidative stress and protein
aggregation (106). Resveratrol treatment prevented toxicity from
hydrogen peroxide-induced oxidative stress and prevented Aβ

aggregation (106). When applying sirtinol, a non-specific SIRT1
inhibitor, the protection afforded by resveratrol against oxidative
stress was lost but not the prevention of Aβ accumulation (106).
This evidence indicates that oxidative stress that accompanies
AD can be protected against through SIRT1 activation, however,
resveratrol protection of Aβ accumulation is SIRT1-independent.
SIRT1 overexpression in a transgenic mouse model of AD
was investigated by Corpas et al. (107). They studied the
CA1 region of the hippocampus to determine if SIRT1 is
protective against memory loss and cognitive decline in AD. In
the transgenic AD mouse, 6 months of SIRT1 overexpression
preserved learning and memory (107). SIRT1 overexpression
heavily reduced the presence of Aβ and p-tau in the AD model
while increasing the expression of neurotrophic factors, such as
brain-derived neurotrophic factor (BDNF) (107). Interestingly,
in wild-type mice, SIRT1 overexpression enhanced cognitive
function (107). Overexpression of SIRT1 provided protection
against pathological protein aggregation and cognitive decline in
anADmodel while improving cognitive function in the wild-type
control (107). SIRT1 is a robust candidate for AD therapies as
it has been shown to prevent the accumulation of NSP’s and
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FIGURE 7 | Therapeutic mechanisms of SIRT1 in neurodegenerative disease. The left panel represents SIRT1 in Parkinson’s disease (PD). SIRT1 deacetylates

microtubule-associated protein 1A/1B-light chain 3 (LC3) in the nucleus which induces the translocation of LC3 into the cytoplasm. In the cytoplasm, SIRT1 and

AMP-activated Protein Kinase (AMPK) coordinate to activate LC3-phosphatidylethanolamine (LC3-II). These mechanisms lead to increased autophagic clearance of

α-synuclein, reducing α-synuclein deposits. In the middle panel, SIRT1’s role in Alzheimer’s disease (AD) is represented. SIRT1 can directly deacetylate acetylated-tau

protein, increasing its susceptibility to degradation and prevent tau from forming neurofibrillary tangles. SIRT1 can also deacetylate peroxisome proliferator-activated

receptor γ (PPARγ) coactivator-1α (PGC-1α), which increases its transcriptional regulation activity. After being deacetylated, PGC-1α can instill transcriptional

repression of β-secretase, which in turn can reduce the level of amyloid-β production and neuritic senile plaque accumulation. The right panel represents Huntington’s

disease (HD). SIRT1 deacetylates CREB-regulated transcription coactivator 1 (TORC1), which allows TORC1 to activate cAMP response element-binding protein

(CREB). CREB then transcriptionally upregulates brain-derived neurotrophic factor (BDNF). The increase in BDNF promotes neurotrophic and neuroprotective

mechanisms against HD pathology.

NFT’s, reduce AD-related oxidative stress, and protect against
the cognitive deficits that result from AD pathology. Further
investigation into SIRT1’s role in AD protection may provide
endogenous targets for treating, and potentially preventing, the
disease.

Parkinson’s Disease and the Therapeutic
Potential of SIRT1
PD is a neurodegenerative disease that causes the early and large-
scale death of dopaminergic neurons (DA) in the substantia nigra
pars compacta (SNpc) (108). The loss of these dopaminergic
neurons results in motor deficits and other quality of life
diminishing symptoms (109). PD pathology is not exclusive to
dopaminergic neurons or the SNpc; thus, making PD therapies
difficult to design. DA neuronal death in PD typically results
from the aggregation of the protein α-synuclein which forms
inclusions called Lewy bodies and Lewy neurites (108). The
inclusions of α-synuclein are formed in some familial cases of PD
due to mutations in the SNCA gene which produces the protein
in a misfolded state (110). Another prominent aspect of PD is
inflammation and reactive gliosis, both of which may have the
capacity to be harmful and protective (111). Overall, the current

therapies and understanding of pathology for PD are lacking,
making PD a pressing focus of future investigation.

Once again, SIRT1 may play a protective role in
neurodegenerative disorders, PD included. There is evidence that
suggests there may be genetic correlations between SIRT1 and
PD, SIRT1-activated anti-PD signaling, and SIRT1-dependent
neuroprotection in various models. Extracellular α-synuclein
accumulation leads to mitochondrial dysfunction and a
reduction of SIRT1 expression (112). The downregulation of
SIRT1 facilitated pathological mechanisms, such as apoptotic
cell death. In a genetic study with PD patients and healthy
controls, the sequence of the SIRT1 promoter and associated
regulatory regions were analyzed to determine if there is a
mutational connection between the factor and the disease. Three
heterozygous sequence variants within the SIRT1 promoter
were identified in PD patients, but not controls (113). These
variants may alter the transcription of the SIRT1 gene and could
potentially link SIRT1-associated mutations to PD risk. These
lines of evidence suggest that the loss or mutation of SIRT1
facilitates PD pathology which highlights SIRT1 as a protective
target.

There is evidence that shows that cellular signaling resultant
from SIRT1 activation, or pathways that include SIRT1, are
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involved in the reduction of α-synuclein and promotion
of DA neuron survival (Figure 7). The application of an
activator for the PPARγ, called GW1929, to an in vitro human
DA neuronal culture conferred resilience when the cultures
were subjected to oxidative stress (114). This resilience was
attributed to antioxidant signaling and PGC-1α stimulation.
GW1929 treatment increased SIRT1 expression and protein
levels. GW1929 also resulted in phosphorylated cyclic-AMP
response element binding protein 1 (CREB), a pro-survival
transcription factor, which then activated SIRT1 (114).
Ultimately, upregulation and activation of SIRT1 activated
PGC-1α to confer DA neuron protection against oxidative
stress (114). In this way, SIRT1 is indirectly upregulated and
activated by PPARγ activation in DA neurons suggesting a
key role for SIRT1 in DA neuron vitality. In PD, PGC-1α
activity may be altered resulting in downregulation of its target
genes (115). A study looked at how resveratrol treatment
would affect PGC-1α and metabolic homeostasis in primary
fibroblasts from early-onset PD. The treatment of resveratrol
helped to regulate metabolic homeostasis through AMPK-
SIRT1-PGC-1α signaling. An increase in PGC-1α transcription
and improvement in mitochondrial function was observed
(115). Again, activated SIRT1, in this study through resveratrol
treatment, conferred protection against a PDmodel by activating
PGC-1α. In a mouse model of PD induced by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), the transgenic
overexpression of PGC-1α conferred DA neuronal protection
against oxidative stress. Resveratrol treatment recapitulated the
protective effects of PGC-1α overexpression in the mouse PD
model (116). In a PC12 PD model, the treatment of EGCG, a
polyphenol, protected against toxicity through an upregulation of
PGC-1α, via SIRT1 activity (117). It is clear that SIRT1 signaling
can result in the activation of PGC-1α which is protective against
oxidative stress and PD pathology. The evidence supports SIRT1
as a target for future therapeutic approaches in PD treatment
due to its induction of neuroprotective cell signaling. Further
investigation will provide a greater depth of understanding for
PD pathology.

Inflammation within the CNS can exacerbate or potentially
initiate PD pathology (118). The cell signaling that occurs
from increased inflammation and reactive nitrogen species
enhances the dysfunction of neurons and promotes cell
death (119). A study looked at how inducible nitric oxide
synthase (iNOS), which produces NO that can modify proteins
through S-nitrosylation, effects inflammatory signaling in
neurodegenerative diseases. S-nitrosylation of SIRT1 inhibits its
deacetylase activity. In a rodent model of PD with systemic
inflammation, S-nitrosylation of SIRT1 correlated with an
increase in p53 and NF-κB acetylation, thereby increasing
their activity and promoting further inflammation (119). In
SH-SY5Y cells, SIRT1 was shown to directly deacetylate histone
residue H3K9 of the p53 promoter, eventually resulting in
reduced expression and protecting against apoptosis (120).
Additionally, resveratrol-activated SIRT1 regulated p53 and
protected against dopaminergic neurodegeneration induced by
rotenone, a complex I inhibitor (120). As an inflammatory
regulator in PD and potentially other neurodegenerative diseases,

SIRT1’s deacetylase activity protects against pro-apoptotic
inflammatory signaling.

The removal of α-synuclein in a healthy DA neuron entails
the use of a few cellular clearance mechanisms, most of which
involve some type of autophagy (121). One of these mechanisms
utilizes a recruitment protein called LC3, which helps to drive
degradation of misfolded α-synuclein that is present in the
LC3 bound autophagosome (122). In an MPTP-mouse model,
resveratrol or EX-527 were administered to study their effects
on motor impairments and autophagic clearance of α-synuclein
(122). Resveratrol treatment attenuated MPTP effects on motor
deficits and autophagic impairment while EX-527 exacerbated
them (122). Furthermore, the beneficial effects of resveratrol
treatment were shown to be SIRT1 dependent. SIRT1 was shown
to deacetylate nuclear LC3 allowing for its translocation to
the cytosol from the nucleus and initiate autophagic clearance
(122). Thus, SIRT1 deacetylase activity mediates clearance of α-
synuclein through LC3 mediated autophagy to protect against
PD pathology. In addition, activation of the AMPK-SIRT1-
autophagy pathway was shown to increase LC3-II and enhance
α-synuclein clearance after resveratrol treatment (123). Increased
clearance of α-synuclein is yet another mechanism by which
SIRT1 confers protection against PD pathology.

Considering the multitude of evidence supporting SIRT1’s
neuroprotective potential against PD and the dynamic range
of mechanisms in which that protection is enacted, SIRT1
appears to be an optimal target for the therapeutic treatment
of PD. However, recent attempts to enhance SIRT1 expression
or activity directly, not through activators, has not shown
the same robust results. A study utilized a CNS SIRT1
overexpression mouse model to study the MPTP model of
PD. As compared to controls the SIRT1 overexpression mouse
did not confer protection against acute toxicity of MPTP in
nigrostriatal DA neurons (124). Additionally, in a study that
looked at the modulation of SIRT1 expression in multiple
human neurodegenerative diseases, there was no significant
change found in the SIRT1 expression of patient samples of PD
and Lewy bodies dementia (125). This contradictory evidence
suggests SIRT1 must operate in a network of cellular signaling
and deacetylase activity to confer is neuroprotection against PD
pathology.

Huntington’s Disease and the Therapeutic
Potential of SIRT1
Another neurodegenerative disease in which SIRT1 has been
investigated is HD. HD is a genetically autosomal dominant
disease in which the HD gene produces a mutant version
of the protein. Extended CAG-repeats in the HD gene
results in the translated protein acquiring a pathological
conformation, affecting its solubility and promoting aggregations
(126). Aggregations of the pathological Huntington’s protein
commonly occur in the axons of neurons, predominantly within
the striatum. These axonal aggregations are considered to block
anterograde and retrograde axonal transport in affected cells.
Post-mortem tissue of HD patients showed cytological features
of ballooned cells and shrunken cells within the affected brain
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regions (127). The blockage of axonal transport is suggested
to result in pathological localization of mitochondria and
mitochondrial dysfunction. The combination the cytological
aberrations and mitochondrial dysfunction are implicated as
leading reasons for neuronal death in HD pathology (128).

Like other neurodegenerative diseases, the role of SIRT1
has been investigated in the context of HD pathology. In the
R6/2 mouse model of HD, the levels of metabolic and cell
cycle regulators were assessed. SIRT1 mRNA and protein were
increased in this model but this increase did not correlate to
increased activity as shown by no significant change in p53
acetylation (129). This change in SIRT1 expression suggests that
SIRT1 levels are altered as a result of HD pathology. In the same
model of HD, treatment with β-Lapachone, a natural compound
found in the Lapacho tree’s bark, was shown to increase the
expression of SIRT1 (130). Increased SIRT1 resulted in PGC-1α
deacetylation and CREB phosphorylation, which correlated with
reduced reactive oxygen species and improvement of rota-rod
performance. β-Lapachone thus showed therapeutic potential for
HD, enacted through SIRT1 activation. There may be specific
contexts in which increased SIRT1 is therapeutic rather than a
feature of HD pathology and this is likely related to increased
SIRT1 activity.

Many studies have intentionally augmented SIRT1 in the
contexts of HD to elucidate whether it is part of the pathology
or potentially therapeutic. In an HD mouse model, SIRT1
was overexpressed, improving motor functions and pathological
metabolic functioning (131). SIRT1 overexpression was shown to
alleviate the HD associated reduction in BDNF concentrations
(Figure 7). BDNF signaling via its TrkB receptor was shown to
be rescued as well. Interestingly, this study also suggests that
mutant HD protein inhibits deacetylase activity of SIRT1, as
shown by the hyperacetylation of SIRT1-specific targets in the
presence of HD mutant protein (131). Another study looked
at the effects of SIRT1 absence in HD pathology by using a
brain-specific KO of SIRT1 in a mouse model of HD (132). The
loss of SIRT1 exacerbated pathological features of HD. These
mice had acceleration of motor deficits and increased mutant
HD protein aggregation compared to the HD mice with SIRT1
(132). This study also investigated SIRT1 overexpression, which
afforded neuroprotection against HD. SIRT1 neuroprotection
was dependent on CREB-regulated transcription coactivator 1
(TORC1), which is deacetylated by SIRT1. This interaction
increases BDNF and in the presence of the mutant HD
protein, the SIRT1-TORC1 interaction is inhibited, repressing
BDNF (132).

The role of SIRT1 in HD certainly warrants further
investigation. Though there are pathological increases in SIRT1
in neurons suffering from HD pathology, this may be a
compensatory mechanism due to the inhibition of SIRT1 by
the mutant HD protein. In studies overexpressing SIRT1, HD
pathology has been ameliorated and this protection is dependent
on SIRT1’s activity. Taken together, these lines of evidence
suggest that SIRT1 is inhibited in HD pathology and there
may be an increase in its expression for compensatory reasons.
Furthermore, the loss of SIRT1 deacetylation activity may
contribute to HD pathology and restoration of SIRT1 activity
likely possess therapeutic potential against the disease.

CONCLUSIONS

In summary, any dysregulation of brain SIRT1 activity can
have devastating consequences in terms of metabolism,
circadian synchronization, and neurological function.
Given that SIRT1 is highly specialized distributed in the
hypothalamic nuclei, it is no surprise that brain SIRT1 is
a major contributor to the systemic network of metabolic
homeostasis. It should be noted that, nowadays, accumulated
evidence supports a reciprocal relationship between brain
and peripheral tissues in metabolic benefits, circadian
oscillations and neurological functions (133, 134). Although
we only discussed SIRT1 in the brain, SIRT1 in various
peripheral organs also mediates metabolism and circadian
rhythms through sensing environmental cues and feeding
back into the homeostatic network (13, 133). Therefore,
pharmacological agents that target SIRT1 and its relevant signal
pathway in one system could potentially provide pleiotropic
benefits.

Although most studies discussed above have used resveratrol
as the SIRT1 activator, limitations remain for the resveratrol-
induced SIRT1 activation. One study reported the activation of
AMPK by high-dose resveratrol, suggesting the indirect effects of
SIRT1 through AMPK pathway as well as the off-target effects
of resveratrol (135). As a polyphenol activator, resveratrol is
poorly water-soluble. Thus, the bioavailability of resveratrol also
needs to be taken into consideration, especially when applied in
clinical trials. To improve the bioavailability, targeted delivery
of resveratrol, such as nanoparticles has been developed (136,
137).

In addition to resveratrol, another promising target to
activate SIRT1 is the NAD+ pathway. As mentioned before,
NAD+ is the rate-limiting co-substrate for SIRT1. Thus,
increased NAD+ levels is presumably to activate SIRT1.
So far, to supplement NAD+ precursor and boost NAD
biosynthesis has been the main approaches to alter NAD+

levels. Experimental studies have reported beneficial effects
of NAD+ precursor supplementation (138–140). Current
information from clinical studies is still lacking. One recent
study reported promising result that chronic nicotinamide
riboside, a NAD+ precursor, effectively increased NAD+

levels in elders (141). Again, it is difficult to tell whether the
beneficial phenotypes are produced by NAD+ or NAD+-induced
SIRT1 activation. Therefore, pharmacological agents that are
ligand-specific and tissue-specific are warranted to further
clarify the functions of SIRT1 in biological and pathological
events.
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