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Colonic expression of Ace2, the SARS-CoV-2 entry receptor, is suppressed by 
commensal human microbiota
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ABSTRACT
Infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is responsible for the 
COVID-19 pandemic. Angiotensin-converting enzyme 2 (Ace2) is expressed in the gastrointestinal 
(GI) tract and a receptor for SARS-CoV-2, making the GI tract a potential infection site. This study 
investigated the effects of commensal intestinal microbiota on colonic Ace2 expression using 
a humanized mouse model. We found that colonic Ace2 expression decreased significantly upon 
microbial colonization. Humanization with healthy volunteer or dysbiotic microbiota from irritable 
bowel syndrome (IBS) patients resulted in similar Ace2 expression. Despite the differences in 
microbiota, no associations between α-diversity, β-diversity or individual taxa, and Ace2 were 
noted post-humanization. These results highlight that commensal microbiota play a key role in 
regulating intestinal Ace2 expression and the need to further examine the underlying mechanisms 
of this regulation.
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The pandemic of COVID-19, caused by the severe 
acute respiratory syndrome-coronavirus-2 (SARS- 
CoV-2), has resulted in over 3 million deaths 
worldwide as of early 2021.1 The family of corona-
viruses, which includes SARS-CoV-2, utilizes 
angiotensin-converting enzyme 2 (Ace2) as 
a receptor for viral attachment and intracellular 
entry.2,3 Ace2 is expressed in a wide range of tissues 
including the liver,4 kidney, heart,5 lungs,2 and 
intestine,6 making each a potential route for viral 
entry and infection. A number of clinical studies 
have reported COVID-19 patients to have GI 
symptoms.7–10 Importantly, some studies have 
associated GI symptoms with disease severity, 
longer viral clearing, and poorer outcomes.7,11–13 

Individuals with comorbidities such as obesity, dia-
betes, cardiovascular disease, and immune-com-
promised states, all of which have reported gut 
microbial dysbiosis,14 are at risk for severe 
COVID-19 symptoms.15–18 Additionally, gut 
microbiome diversity and composition in mice 
appears to be influenced by Ace2 expression,6 and 
the microbiome can alter colonic Ace2 expression 
in conventional animals.19 However, the effect of 
human microbiota on Ace2 expression remains 

unknown. The intestinal microbiome may serve as 
an important determinant of COVID-19 predispo-
sition and outcomes through its effects on Ace2 
expression.

We and others have shown dysbiosis in patients 
with irritable bowel syndrome (IBS).20–22 In this 
study, we examined the effect of commensal micro-
biota from healthy volunteers and IBS patients on the 
expression of Ace2 in the colon using a humanized 
mouse model. Our goal was to understand how colo-
nization with different microbial communities 
impacts Ace2 expression and if specific bacterial taxa 
associate with colonic Ace2 expression. We recruited 
Rome III IBS patients (n = 12, 11 females, age 
42.4 ± 14.0) and healthy volunteers (n = 6, 5 females, 
age 48.7 ± 11.6) for collection of fecal samples and for 
obtaining sigmoid colonic biopsies. We used shotgun 
metagenomics to determine microbiota composition 
in these volunteers. Shotgun metagenomic sequences 
were analyzed using the SHOGUN v1.0.8 taxonomy 
profiler (BURST aligner).23 IBS patients had 
decreased microbial α-diversity (Inverse Simpson 
and Shannon indices, linear regression, p< .05, 
Figure 1a) and changes in microbiota composition 
compared to healthy controls (Bray–Curtis distance, 
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PERMANOVA, p< .05, Figure 1b). Differential abun-
dance analysis revealed that the phylum Euryarchae- 
ota, the families Odoribacteraceae, Methanobacteriac- 
eae, Odoribacteraceae, and Sutterellaceae, and the 
genus Methanobrevibacter were decreased in IBS 
patients, while Actinobacteria phylum was increased 
in IBS patients (permutation test,24 FDR<0.1, 
Benjamini–Hochberg procedure25).

To determine how commensal human micro-
biota affects Ace2 expression, we gave germ-free 
mice an oral gavage of fecal slurry (prepared anae-
robically, 1:2 ratio of feces: pre-reduced PBS) from 
healthy volunteers (n = 6 volunteers). Mice were 
housed within flexible film isolators with access to 
both autoclaved food and water20,26 for 6 weeks to 
allow for microbiota to establish, after which fecal 
pellets and proximal colonic mucosal tissue were 
then collected (Figure 1c). Total RNA from mice 
and human colonic biopsies was sequenced and 
aligned using the Mayo Analysis Pipeline for RNA 
Sequencing (MAPRSeq v3.1.3) with the mouse gen-
ome reference mm10 and human genome reference 
hg38, respectively. We found that humanization 
resulted in a significant loss of Ace2 expression in 

colonic mucosa compared to that of germ-free mice 
(333.4 ± 191.1 vs. 1914.4 ± 309.9 Fragments Per 
Kilobase of transcript per Million mapped reads 
(FPKM), FDR<0.001, Figure 2a). Furthermore, 
there was a 5.8-fold decrease in Ace2 expression 
post-humanization (Figure 2b), indicating that 
human intestinal microbiota are able to suppress 
colonic Ace2 expression.

We next wanted to understand if dysbiotic com-
mensal microbiota from IBS patients would have 
a different effect on Ace2 expression. We humanized 
mice using the same strategy (Figure 1c) and found 
no differences in Ace2 expression post-humaniza-
tion with healthy or IBS microbiota (Figure 2c). 
Additionally, no differences were noted between 
colonic Ace2 expression of healthy volunteers and 
IBS patients (Figure 2d) suggesting IBS-associated 
microbial dysbiosis does not lead to changes in 
colonic Ace2 expression in the GI tract. Compared 
to the mice humanized by the healthy microbiota, 
IBS microbiota humanized mice had a greater abun-
dance of the phylum Firmicutes and the class 
Clostridia but lower abundance of the genus 
Marvinbryantia (permutation test, FDR<0.1). We 

Figure 1. Fecal microbiota diversity and composition is different between IBS and healthy volunteers. (a) IBS patients have decreased 
α–diversity compared with healthy volunteers (InvSimpson and Shannon,p< .05). (b) PCoA plot of β-diversity shows IBS patients have 
differences in microbial composition compared to healthy volunteers. (c) Schematic for mouse humanization with healthy and IBS 
(dysbiotic) microbiota (n = 6–12 volunteers/group).
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next examined potential associations between 
microbial diversity or taxonomy and colonic Ace2 
expression. No significant associations were noted 
between α–diversity measures (Inverse Simpson and 
Shannon indices, linear regression, p> .1) and Ace2 
expression (Figure 3). Additionally, no significant 
association was found between β-diversity and the 
log transformed Ace2 value while adjusting for dis-
ease status (Bray–Curtis distance, PERMANOVA 

p= .574). Finally, differential abundance analysis 
with Ace2 expression did not identify any significant 
Ace2-associated taxa (permutation test, FDR > 0.1).

This study is one of the first to examine the role 
of human microbiota in regulating the expression 
of Ace2 in the GI tract, describing a novel role for 
human commensal microbiota. Our humanized 
mouse model revealed that Ace2 expression is sig-
nificantly inhibited by both healthy commensal 

Figure 2. Colonic expression of Ace2 in humanized mice and matched human donors. (a) Significantly lower colonic Ace2 (333.4 ± 191.1 
vs. 1914 4 ± 309.9) was seen in mice that were humanized with microbiota from healthy human donors compared to germ-free mice, 
FDR<0.001, n = 3–6 mice/group. (b) Humanized mice have a 5.8-fold lower Ace2 expression compared to germ-free mice, Mann– 
Whitney, *p< .05, n = 3–6 mice/group. (c) Mice humanized with dysbiotic microbiota from IBS volunteers had similar Ace2 expression 
as mice given healthy commensal microbiota, n = 6–12 mice/group. (d) Ace2 expression in colonic biopsies from human healthy and 
IBS volunteers used for humanization was similar, n = 5–11 volunteers/group.
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microbiota and dysbiotic microbiota from IBS 
patients. We also found similar Ace2 expression 
in colonic biopsies from IBS patients and healthy 
individuals. It was recently shown that the mouse 
intestinal microbiome influenced Ace2 expression 
in a wide range of organs and antibiotic treatment 
that depletes microbiota resulted in an increase in 
Ace2 expression.27This is consistent with our 
observation of germ-free mice having significantly 
higher Ace2 expression, which was suppressed 
after these mice were colonized with commensal 
human microbiota. Additionally, a recent study 
has shown that microbiota transplanted from 
Ace2 knockout mice to germ-free animals resulted 
in severe colitis after dextran sulfate sodium chal-
lenge indicating an important relationship 
between the microbiome, Ace2, and intestinal 
homeostasis.6 The reduced levels of Ace2 as 
a consequence of the intestinal microbiome there-
fore may have a protective role against SARS- 
CoV-2 infection by limiting potential receptors 
for viral entry via the colon. This is supported by 
single cell RNA sequencing data that has demon-
strated expression of Ace2 by colonic epithelial 
cells is positively associated with viral entry into 
the cell.28 However, the mechanisms underlying 
microbial regulation of Ace2 expression in the GI 
tract and its effect on SARS-CoV-2 entry into 
colonic epithelial cells need to be studied. 
Additionally, it still needs to be ascertained is if 

GI involvement by SARS-CoV-2 plays a role in the 
clinical course of COVID-19 or the associated GI 
manifestations of the disease.

Recently, the expression of Ace2 has been shown to 
be significantly increased in individuals diagnosed 
with chronic obstructive pulmonary disease, 
smokers,29 hypertension, diabetes,30,31 and conditions 
associated with complications from COVID-19.32–34 

A recent retrospective study demonstrated that 
among patients with functional GI disorders, diarrhea 
predominant IBS (IBS-D) was a positive predictor of 
COVID-1935 which may be explained by differences 
in the microbiota between the various subtypes of 
IBS.20,36 Interestingly, fecal metabolomics has also 
implicated intestinal microbiome as a predisposing 
factor for developing COVID-19.37 A study high-
lighted that COVID-19 patients have compositional 
differences in the microbiome structure that persist 
after the virus has cleared. The relative abundance of 
specific microbial taxa, specifically Ruminococcus 
gnavus,37 Coprobacillus, Clostridium ramosum, and 
Clostridium hathewayi38 correlated with increased 
disease severity, tissue damage, and immune response 
to the SARS-CoV-2 virus.39,40 It remains unclear, 
though, whether these changes are due to the inflam-
mation or the therapies used to treat COVID-19.

In conclusion, we demonstrate an important role 
of commensal microbiota in regulating the expres-
sion of Ace2 expression in the colon. Moreover, we 
provide evidence showing that the dysbiotic 

Figure 3. Associations between colonic Ace2 expression and microbiota of humanized mice. Linear modeling was used to test for 
associations between α–diversity of healthy and IBS microbiota with Ace2 expression. No associations between α–diversity and FPKMs 
of Ace2 in the colon were found (InvSimpson p= .492, Shannonp= .798), n= 6–12 mice/group.
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microbiota of IBS patients does not necessarily lead 
to dysregulated Ace2. The limitations of this study 
include small sample size as well as the examina-
tion of only one type of dysbiosis. It is possible that 
dysbiosis associated with other conditions such as 
obesity and diabetes confers different regulation of 
Ace2 expression and increased risk for severe 
COVID-19. Future studies need to explore the 
role of commensal microbes on GI expression of 
Ace2 which may affect predisposition for infection 
or poorer outcomes with SARS-CoV-2. Moreover, 
in patients, comorbidities, medications, and diet 
affect microbiota composition, reflecting the need 
for understanding the role of these factors as we 
explore if microbiota modulation can affect the 
course of SARS-CoV-2 infection.

Mayo Clinic Institutional Review Board approved 
all human studies and participants were also pro-
vided written, informed consent (IRB protocol: 12- 
006529; ClinicalTrials.gov identifier: 
NCT03266068). Animal experiments were approved 
by the Mayo Clinic Institutional Animal Care and 
Use Committee (Protocol #A00003420-18-R20). All 
data are displayed as means with standard deviation, 
with any frequencies and percentages for categorical 
variables. For all collected data, non-Gaussian dis-
tributions were assumed. Statistical tests were com-
pleted using a Mann–Whitney U test. When more 
than 2 groups were compared, a Kruskal-Wallis test 
(non-parametric one-way analysis of variance) was 
used. For all experiments and comparisons, a p < .05 
was considered statistically significant.
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