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Macrophage polarization is a concept that has been useful to describe the different features
of macrophage activation related to specific functions. Macrophage polarization is respon-
sible for a dichotomic approach (killing vs. repair) of the host response to bacteria; M1-type
conditions are protective, whereas M2-type conditions are associated with bacterial persis-
tence.The use of the polarization concept to classify the features of macrophage activation
in infected patients using transcriptional and/or molecular data and to provide biomarkers for
diagnosis and prognosis has most often been unsuccessful. The confrontation of polariza-
tion with different clinical situations in which monocytes/macrophages encounter bacteria
obliged us to reappraise this concept. With the exception of M2-type infectious diseases,
such as leprosy and Whipple’s disease, most acute (sepsis) or chronic (Q fever, tuberculo-
sis) infectious diseases do not exhibit polarized monocytes/macrophages. This is also the
case for commensals that shape the immune response and for probiotics that alter the
immune response independent of macrophage polarization. We propose that the type of
myeloid cells (monocytes vs. macrophages) and the kinetics of the immune response (early
vs. late responses) are critical variables for understanding macrophage activation in human
infectious diseases. Explorating the role of these new markers will provide important tools
to better understand complex macrophage physiology.
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INTRODUCTION
Why a new review about macrophage polarization during bacte-
rial infectious diseases? The initial analysis of macrophage acti-
vation, based on in vitro experiments and the use of animal
models, suggested a dichotomic classification based on the pro-
duction of canonical molecules associated with a specific func-
tion. The production of nitric oxide is associated with the killing
of microorganisms or tumor cells and characterizes M1-type
macrophage response whereas the expression of arginase (produc-
tion of ornithine) is associated with the repair and characterizes
M2-type macrophage responses (1). The concept of M1/M2 polar-
ization has been largely popularized because macrophage polariza-
tion was considered the reflection of Th1 and Th2 polarization of
lymphocytes, although the idea that activation by T cells is required
for macrophage polarization is likely incorrect (1). As the Th1/Th2
paradigm has progressively been replaced by several functional sta-
tuses over the past years, the meaning of a similar dichotomy of
macrophage activation is unknown. During the last years, numer-
ous transcriptional and/or molecular markers associated with M1-
or M2-type macrophage responses were found but they did not
have a clear relationship with macrophage functions, which has
been a source of controversies. We feel that these new markers
could provide additional important tools to better understand
complex macrophage physiology. In addition, recent advances sug-
gest that monocytes readily available in humans are not able to
polarize like mature tissue macrophages. As a consequence, the

increasing number of publications in which clinical cohorts are
investigated with new tools of macrophage investigation allows
a global analysis of the cell responses, which results in a more
precise overview of the clinical data. It is likely that the concept of
M1/M2 macrophages is likely insufficient to describe human infec-
tious diseases. While M2-type infectious diseases such as leprosy
and Whipple’s disease represent a clinical exception; most acute
(sepsis) or chronic (Q fever, tuberculosis) bacterial diseases do
not exhibit polarized monocytes/macrophages. According to the
analysis of Thomas Kuhn, the “paradigm” of macrophage polar-
ization applied to human bacterial diseases suffers from abnor-
malities that could lead to a paradigm shift to a kinetic vision of
macrophage activation.

THE MACROPHAGE POLARIZATION CONCEPT
The molecular concept of the polarization of human macrophages
has been initially based on the selective expression of a few markers
that have poor specificity when expressed alone. The development
of high-throughput profiling technologies that enable the investi-
gation of complex macrophage states (2) has increased the number
of biomarkers associated with the M1 or M2 status (Figure 1).
Among the papers reporting transcriptomic analysis of activated
macrophages that of Martinez et al. was the most contributive (3).
The authors showed that M1 and M2 polarization affect 5.2 and
0.3% of transcripts, respectively. The functional annotation reveals
the enrichment with categories such as DNA transcription, protein
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Ka et al. Macrophage polarization and infectious diseases

FIGURE 1 | M1 and M2 macrophage polarization. The figure represents canonical M1 and M2 agonists that induce the production of M1 and M2 markers by
human macrophages in vitro. These markers, isolated or combined, have been used to describe the polarization of monocytes and macrophages in clinical
investigations.

metabolism, G protein coupled-receptors, and lipid metabolism
in addition to well-identified cytokine and chemokine families.
Hence, the polarization of human macrophages has become more
complex than the initial descriptions.

A recent transcriptomic analysis of human macrophages stim-
ulated by a large panel of agonists allowed a description of
macrophage activation as a spectrum. This spectrum of activation
was more complex than the M1 vs. M2 model of activation because
at least nine distinct activation programs were identified. The use
of network analyses demonstrated a central transcriptional regula-
tor present in all activation conditions that was complemented by
regulators associated with the programs stimulated by each agonist
(4). The authors used this model of activation to analyze human
alveolar macrophages from patients who were smokers or from
patients with chronic obstructive pulmonary disease (COPD).
They found that the activation program of macrophages was
more complex than predicted in smokers and in patients with
COPD. They did not find enrichment with modules associated
with interleukin (IL)-4/IL-13 activation in patients with COPD,
as was expected, but did find a decrease in the modules associ-
ated with interferon (IFN)-γ (4). This report clearly demonstrates
that the prominent, popular point of view that cigarette smoke
and COPD increase M2-like characteristics (5) was not supported
when high-throughput approaches were used.

A proteomics approach has also been used to investigate
macrophage polarization. The MALDI-TOF mass spectrometry
(MS) technique combined with gel electrophoresis permitted the
identification of a large number of soluble or membrane proteins
in activated macrophages. This double approach allowed the iden-
tification of an M1 signature in human macrophages stimulated
with LPS and IFN-γ (6). Recently, we used MALDI-TOF MS to
characterize whole eukaryotic cells (7) and the activation status of
human macrophages (8). We found that whole-cell MALDI-TOF

MS analysis was able to discriminate macrophages according to the
type of M1 or M2 agonists and allowed for the identification of
different subtypes of M1 or M2 macrophages. The MALDI-TOF
MS analysis of pathogen-stimulated macrophages also enabled the
detection of pathogen-associated fingerprints that did not cor-
respond to the standard M1/M2 polarization model (8). Taken
together, the use of polarization markers other than iNOS and
arginase has been controversial. Recently, we proposed guidelines
for macrophage activation in which we favored an approach based
on a combination of markers instead of isolated canonical markers
of polarization (9).

The exploration of tissue macrophages, excepted alveolar
macrophages, requires biopsies in infected patients even if it
is possible to identify M1 and M2 macrophages in tissues
using proteomic or immunohistochemical approaches. Recently,
macrophage polarization was investigated in tissues from patients
with diseases characterized by a Th1 or Th2 response. M1
macrophages were defined as those expressing CD68 or CD163
with phosphorylated STAT1 (pSTAT1), and M2 macrophages were
defined on the basis of the co-expression of CMAF (macrophage
activation factor) with CD68 or CD163 (10). The pSTAT1 and
CMAF are preferentially associated with M1 and M2 macrophages,
respectively. In contrast, CD163, which was considered by several
authors as an M2 specific-marker (11), was unable to discriminate
M1 and M2 macrophages within pathological tissues. These find-
ings were confirmed by a recent study in which macrophages were
differentiated by granulocyte macrophage-colony stimulating fac-
tor (GM-CSF) or macrophage-colony stimulating factor (M-CSF)
and secondarily polarized by IFN-γ or IL-4/IL-13; CD163 was
unable to discriminate the M1 status from the M2 status (12).
The investigation of macrophage activation in infected patients
concerns essentially circulating monocytes that are accessible after
blood collection and purification from blood, but the situation
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regarding their M1/M2 polarization is complex. Using a microar-
ray approach, we showed that M1/M2 polarization, defined by
comparison with the IFN-γ and IL-4 signatures of macrophages,
was transient in human monocytes, and gene expression data
from published reports showed that not even small signatures of
polarized macrophages were found in monocytes (13). Hence, the
study of activation in tissue macrophages or circulating monocytes
suffers from the lack of convenient tools, suggesting that the con-
cept of macrophage polarization is not convenient. Among the
recommendations for reporting macrophage activation, the rec-
ommendation precising how macrophages are isolated and which
marker combinations are used to measure macrophage activation
is likely a solution for the investigation of monocytes ex vivo (9).

MACROPHAGE POLARIZATION AND MICROBIOTA
The microorganisms present at the surfaces of mucosa mainly
consist of commensals that have developed mutualistic relation-
ships with hosts such as human beings. Indeed, during steady-state
conditions, the microbiota influences the efficiency of digestion,
controls metabolism, and affects the differentiation and func-
tions of intestinal immune cells, including macrophages. This
coevolution has been illustrated by numerous reports based on
studies on germ-free animals or antibiotic-treated hosts (14–16).
It has been established that the intestinal microbiota maintains
a tolerant environment that allows the development of M2-like
intestinal macrophages. Indeed, the macrophages from lamina
propria show down-regulated expression of innate response recep-
tors and inflammatory functions, but they retain phagocytosis
and bactericidal activities (17). It is likely that commensals may
directly or indirectly shape the polarization status of intestinal
macrophages. Hence, Bacteroides fragilis and intestinal Clostridia
are known to stimulate regulatory T cells (Tregs) and polariza-
tion toward an M2 phenotype (14). The exopolysaccharide from
Bacillus subtilis prevents the intestinal disease associated with Cit-
robacter rodentium, and protection is transferred by peritoneal
macrophages (18). The probiotic Clostridium butyricum promotes
the development of IL-10-producing macrophages that prevent
inflammatory colitis (19). Some end-products of bacterial anaer-
obic fermentation, such as short-chain fatty acids (α-butyrate),
inhibit the inflammatory response of macrophages via a mech-
anism based on the inhibition of histone deacetylase (20). In
contrast, intestinal commensals such as Enterococcus faecalis polar-
ize colon macrophages to an M1 phenotype in a murine model in
which macrophages are depleted with clodronate (21). These find-
ings suggest that the diversity of commensal bacteria accounts for
the diversity of macrophage responses. Probiotics such as Lacto-
bacillus sp. or Bifidobacterium sp. may benefit the host (14), but we
ignore their effect on macrophage polarization. The strain G-101
of Lactobacillus brevis inhibits the inflammatory response of mice
treated by trinitrobenzenesulfonic acid. This anti-inflammatory
property is related to the ability of the bacteria to prevent the
expression of M1 markers and to favor M2 markers, likely via
the production of IL-10 (22). For other authors, probiotics have
either no effect on the polarization of RAW 264.7 macrophages as
a readout (23), or these bacteria promote an activation profile of
the M1-like type in THP-1 cells stimulated with lipopolysaccha-
ride (LPS) (24). It is noteworthy that all of these studies are limited

to in vitro experiments or animal models, and the extrapolation to
human beings must be careful.

If the hypothesis that a breach of intestinal homeostasis is true,
the presence of pathogenic bacteria would interfere with the polar-
ization status of intestinal and systemic macrophages. Hence, an
M1 profile would be found in patients with acute typhoid fever
due to Salmonella enterica serovar Typhi, whereas an M2 signa-
ture would be observed in convalescent patients. The M2 response
does not mean eradication of the pathogen because persistence of
the M2 status favors re-infection, relapses, and development of a
carrier state (25, 26). On the other hand, there is an increase in M1
and M2 markers in antrum from patients infected with Helicobac-
ter pylori and uncomplicated gastritis. The presence of atrophic
gastritis is associated with the expression of M1 polarization. It
is predictable that shifting macrophage polarization from the M1
to M2 status is protective in chronic H. pylori infection. This may
be reminiscent of the association of high levels of CCL18, a typ-
ical M2 marker, with prolonged survival of patients with gastric
carcinoma (26, 27).

Imbalances in gut microbiota have also been associated with
systemic diseases such as allergy. Recently, Kim et al. reported the
induction of allergen-induced infiltration of inflammatory cells in
mice treated with antibiotics. This treatment alters macrophage
functions but reorients alveolar macrophages and circulating
monocytes toward an M2 phenotype. This latter response is
involved in allergic airway inflammation induced by allergens.
Antibiotic treatment facilitates fungal overgrowth that exacerbates
airway inflammation. The prostaglandin E2 produced by gut fungi
is responsible for eosinophil-mediated inflammation and M2
polarization of macrophages (28). If the concept of macrophage
polarization is useful for analyzing the host response to intestinal
pathogens, there is no clear evidence that it is a convenient tool to
measure the response to commensals and probiotics.

MACROPHAGE POLARIZATION AND ACUTE INFECTIOUS
DISEASES
As sepsis is a consequence of the systemic inflammatory response
to infectious aggression, it was tantalizing to consider sepsis as an
M1-associated disease (25). Sepsis can also associate a secondary
immunodeficiency in which the polarization of macrophages may
be altered, as in LPS tolerance. Indeed, LPS-tolerant macrophages
express M2 markers, but not M1 markers, and this phenotype can
be reversed by IFN-γ (29). It is thought that the evolution of sep-
sis is characterized by a transition from an initial M1 response to
a secondary M2 response. The interaction of macrophages with
pathogens accounts for their initial polarization, and the M1-to-
M2 transition should rather involve mechanisms of activation
control such as suppressors of cytokine signaling (SOCS) pro-
teins; SOCS1 and SOCS2 are associated with M2 macrophages
whereas SOCS3 is overexpressed in M1 cells. A high SOCS1/SOCS3
expression ratio might be a biomarker of M2 cells in vivo (30).
The fact that M2 bias is associated with the resistance of mice
does not account for the poor prognosis of patients who exhibit
secondary immune deficiency with an M2 phenotype. Indeed,
this latter phase, named immune paralysis, is associated with
increased susceptibility to nosocomial infections and late lethal-
ity (31). In patients with sepsis, the percentage of monocytes
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expressing CD163 and CD206 is increased. The increase in mono-
cytes expressing M2-like markers has been associated with a lower
proportion of IFN-γ-producing T cells or with a higher propor-
tion of Tregs in patients with sepsis. Nevertheless, enrichment with
M2-type monocytes has no impact on sepsis prognosis (32). In
others reports, the expression of CD163 by monocytes is accurate
for discriminating patients with inflammatory presentation from
those with sepsis (33), suggesting that CD163 may be a biomarker
of prognosis and that the expression of CD163 by monocytes is
higher in non-survivors than in survivors (34). Soluble forms of
M2-type markers such as CD163 and CD206 are also increased
in patients with sepsis, and their high levels are associated with
poor prognosis in sepsis. Although membrane and soluble forms
of CD163 share the ability to be biomarkers of prognosis in sep-
sis, circulating CD163 reflecting the polarization of monocytes
or their activation independently of M1/M2 polarization tends
to be ignored (34, 35). The measurement of monocyte activa-
tion is a partial reflection of the altered immune functions in
tissues from patients with sepsis and does not assess the diver-
sity of stimuli that they encounter from the initial pathological
event. It is probably more pertinent to consider the level of mono-
cyte activation and not the bias toward a polarized status as a
biomarker.

INTERFERENCE WITH M1 POLARIZATION IN CHRONIC
INFECTIOUS DISEASES: Q FEVER
As intracellular bacteria subvert host microbicidal effectors
in vitro, we proposed that they have evolved specific strategies
to interfere with M1 polarization (25). The example of Q fever is
informative as we have assessed the concept of macrophage polar-
ization in in vitro experiments, animal models, and patients. Q
fever is a zoonosis caused by Coxiella burnetii, an intracellular
bacterium related to Legionellae species, and for which the major
targets are monocytes and macrophages. The severity of the infec-
tious disease is chronic evolution with a risk of endocarditis or
vascular infection (36).

The circulating monocytes exhibit a pro-inflammatory M1-
type response, which is consistent with epidemiological data show-
ing bacterial clearance in most infected patients when they are
challenged by C. burnetii in vitro. More surprisingly, monocyte-
derived macrophages are polarized toward an atypical M2-type in
response to bacterial stimulation. This latter effect is character-
ized by the release of IL-10, transforming growth factor (TGF)-β,
and CCL18 and the expression of the mannose receptor (MR) and
of arginase-1, but macrophages also express IL-6 and CXCL8, two
molecules that are associated with M1 polarization (37). These dif-
ferences in monocyte/macrophage activation may account for the
unexplained differences in bacterial survival: C. burnetii are unable
to replicate in monocytes but replicate within macrophages (38).
Similar findings were found in vitro with Mycobacterium tuber-
culosis, which prevents M1 polarization and activates peroxisome
proliferator-activated receptor (PPAR)-γ, which is characteristic
of macrophage M2 polarization (25, 39).

Nevertheless, we identified IL-10 as the only cytokine able
to induce the replication of C. burnetii in monocytes and
macrophages, suggesting that IL-10-associated M2 polarization is
involved in bacterial replication and tissue persistence. The role of

IL-10 in the pathogenesis of chronic infection is strengthened by
the correlation of the amount of IL-10 and the chronic evolution
of Q fever with the restoration of the microbicidal competence of
monocytes when IL-10 was neutralized (40, 41). The engulfment
of apoptotic cells by monocytes and macrophages is associated
with an M2 program induced by IL-10 and favors the intracellu-
lar replication of C. burnetii. In contrast, treatment of these M2
polarized myeloid cells with IFN-γ and the uptake of necrotic cells
suggest that the M1 program is sufficient to clear C. burnetii (42).
The role of IL-10 is demonstrated in transgenic mice that consti-
tutively overexpress IL-10 in the macrophage compartment and
exhibit sustained infection, as in chronic Q fever. Macrophages
from IL-10-overexpressing mice are unable to clear C. burnetii
infection and exhibit an M2-type transcriptional program in
which arginase, MR and Yim1/2 are increased and inflammatory
markers are down-modulated (43). The infection of mice over-
expressing IL-10, which mimics tuberculosis reactivation, reveals
features of M2 macrophages, as reported above in C. burnetii
infection of mice (26).

Concomitantly, we found that mice deficient for vanin-1, a
membrane-anchored pantetheinase that controls tissue inflam-
mation, are permissive for C. burnetii and exhibit an activa-
tion program in macrophages that is skewed toward an IL-10-
associated M2 phenotype (44). Hence, IL-10-mediated polariza-
tion of macrophages is necessary for C. burnetii persistence in
tissues.

To test the relevance of these findings in patients, we selected
M1- and M2-related genes from the microarray analyses of IFN-γ
and IL-4-stimulated macrophages (Figure 2). The expression of
these genes was not different in patients with acute Q fever and
healthy controls. These findings did not support the hypothesis
that patients with acute Q fever, who are able to control the infec-
tion, should exhibit an M1-type phenotype. The expression of a
minority of M1/M2 genes was increased in patients with Q fever
endocarditis and who were unable to clear C. burnetii and who
were expected to exhibit an M2-type phenotype (13). The analysis
of the transcriptional profiles of patients with active tuberculo-
sis shows the modulation of M1-related genes, but not that of
M2 genes. Similar results were obtained in infants vaccinated with
Calmette–Guerin bacillus (26, 45, 46).

In conclusion, the activation program of monocytes from
patients with acute and chronic Q fever and tuberculosis can-
not be reduced to an M1/M2 dichotomy. We cannot rule out that
macrophages in tissues such as endocardium, lungs, or liver are
polarized, as suggested by in vitro studies and animal models. This
is illustrated by the example of pleural macrophages. Tuberculous
pleural effusion, an extra-pulmonary form of tuberculosis, is asso-
ciated with the M1 profile in pleural fluid that is characterized by
an increase in M1 macrophages and inflammatory cytokines (47).

M2 POLARIZATION IN CHRONIC INFECTIOUS DISEASES:
LEPROSY AND WHIPPLE’S DISEASE
Two infectious diseases, leprosy and Whipple’s disease, which
share several features such as the tropism for macrophages of
Mycobacterium leprae and Tropheryma whipplei, and the role of
the immune response into features of pathogenesis, are associated
with M2 polarization (26). The overexpression of IL-10 is found in
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Ka et al. Macrophage polarization and infectious diseases

FIGURE 2 |Transcriptomic assessment of macrophage polarization. The figure represents the heat map of gene expression in IFN-γ- and IL-4-stimulated
macrophages. The use of microarray enables the identification of the original M1 and M2 signatures.

lepromatous lesions and likely reflects M2 polarization. The tran-
scriptional analysis of these lesions reveals an enrichment of M2
genes, which is in contrast to what occurs in tuberculoid lesions
(48). The expression of CD163 by foamy macrophages in lepro-
matous lesions but not by macrophages from tuberculoid lesions
has been considered strong evidence of M2 polarization in lepro-
matous leprosy (26). Whether this polarization is a consequence
of the production of IL-10 or if it reflects a Th2 response is often
ignored.

Whipple’s disease is characterized by the presence of
macrophages with periodic acid-Schiff inclusions within the
lamina propria; these macrophages exhibit some features of
macrophages from mycobacterial lesions. As described above for
lepromatous leprosy, there is converging evidence that Th2 polar-
ization of the immune response is critical for the pathophysiology

of Whipple’s disease. An M2 macrophage signature was observed
in duodenal biopsies from one patient with intestinal Whipple’s
disease (49). Moos et al. reported the increased expression of
CD163 on duodenal macrophages and circulating monocytes,
and this finding was strengthened by an increase in IL-10 and
a decrease in inducible NO synthase expression in these cells, sug-
gesting a functional polarization toward an M2 profile (50, 51).
The conclusion that IL-10 may be critical for T. whipplei patho-
genicity was not confirmed by in vitro studies, in which we found
an increase in IL-1β, IL-16, and type I IFN production, but not
in IL-10 (52, 53). It is likely that type I IFN prevents the IFN-
γ-protective effect, as reported for mycobacterial infections (54).
This finding underlines the caution that must be taken regarding
conclusions about polarization when based on a limited number
of markers.
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COMPLEXITY OF MACROPHAGE ACTIVATION IN INFECTIOUS
DISEASES
The analysis of infectious disease literature (see above) reveals
that modulation of monocyte/macrophage activation is frequently
observed, whereas clear-cut M1/M2 polarization is rather a rare
event. This observation is related to the history of infected patients.
Indeed, the stage of the disease is a critical parameter. For instance,
the activation of monocytes/macrophages is different in patients
with initial sepsis and those with delayed complications. In addi-
tion, numerous patients are distributed between two extreme
situations: between patients with acute Q fever and those with Q
fever endocarditis, there is a population of patients with valvular
disease and Q fever associated with a risk of chronic evolution, and
these patients overproduce IL-10 in a sustained manner. However,
the measurement of IL-10 at a given time of Q fever evolution
is not sufficient to assess the prognosis of patients with Q fever
(55). In patients with tuberculosis, the transcriptional signature
is transient at the beginning of the disease and is finished 1 year
later (45). Clearly, the analysis of the transcriptional pattern of
patients with tuberculosis will be dramatically different accord-
ing to the time of the inclusion, and such an analysis is often
difficult to assess at the beginning of the disease. These different
clinical and experimental situations drove us to propose a model
of monocyte/macrophage activation in which the kinetic compo-
nent of the disease was integrated. This model is based on the
comparison of the transcriptomes from activated monocytes and
macrophages. The responses of monocytes to polarizing ligands
are characterized by two early and late phases of monocyte acti-
vation. The hallmarks of the M1/M2 status are found in the early
phase but are absent from the late phase of activation. We selected
a series of early and late genes and measured their expression in
monocytes from patients with acute and chronic Q fever. Most
of the early genes were found to be up-regulated in monocytes
from patients with acute Q fever, two of them, NLRC5 and RTP4,
were up-regulated by IFN-γ, suggesting that IFN-γ plays a role in
the host response during acute Q fever. In contrast, the late genes
were up-regulated in chronic Q fever, and some early genes were
down-modulated. There was a specific association between late
genes such as ALOX15, CLEC4F, CCL13, and CCL23 and chronic
Q fever (13). It is noteworthy that some of them have been asso-
ciated with the M2 program, which is a result that might lead to
incorrect conclusions about monocyte activation. We are unable
to assign a function to the modulated genes.

In conclusion, the analysis of macrophage polarization through
clinical situations revealed that the mechanisms underlying the
activation of monocytes and macrophages are distinct. This point
is critical because most clinical investigations are based on mono-
cytes and the conclusions are extrapolated on data obtained with
macrophages. The second observation is the importance of acti-
vation kinetics in the assessment of infected patients who are at
different stages of disease history. Therefore, early and late genes
may be alternative biomarkers for analyzing infectious and inflam-
matory diseases. The lessons from the investigation of infected
patients do not invalidate the functional model of M1/M2 polar-
ization. They revealed the difficulty to relate a signature and a
function. In addition, the finding of a role for these genes in
the activation of macrophages will be useful to understand the

complexity of macrophage physiology in normal and pathological
conditions.
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