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The complement system (CS) is an ancient and highly conserved part of the

innate immune system with important functions in immune defense. The

multiple fragments bind to specific receptors on innate and adaptive immune

cells, the activation of which translates the initial humoral innate immune

response (IR) into cellular innate and adaptive immunity. Dysregulation of the

CS has been associated with the development of several autoimmune

disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), ANCA-associated vasculitis, and autoimmune bullous dermatoses

(AIBDs), where complement drives the inflammatory response in the effector

phase. The role of the CS in autoimmunity is complex. On the one hand,

complement deficiencies were identified as risk factors to develop

autoimmune disorders. On the other hand, activation of complement can

drive autoimmune responses. The anaphylatoxins C3a and C5a are potent

mediators and regulators of inflammation during the effector phase of

autoimmunity through engagement of specific anaphylatoxin receptors, i.e.,

C3aR, C5aR1, and C5aR2 either on or in immune cells. In addition to their role in

innate IRs, anaphylatoxins regulate humoral and cellular adaptive IRs including

B-cell and T-cell activation, differentiation, and survival. They regulate B- and

T-lymphocyte responses either directly or indirectly through the activation of

anaphylatoxin receptors via dendritic cells that modulate lymphocyte function.

Here, we will briefly review our current understanding of the complex roles of

anaphylatoxins in the regulation of immunologic tolerance and the early events

driving autoimmunity and the implications of such regulation for therapeutic

approaches that target the CS.
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Introduction

The complement system (CS) is an ancient and highly

conserved part of the innate immune response (IR)

comprising soluble proteins and membrane-bound receptors

bridging innate immunity and adaptive immunity (1). Aside

from its well-appreciated canonical activation pathways, non-

canonical mechanisms have been recently described, which

orchestrate the cleavage and activation of complement factors

both in the circulation and intracellularly in immune cells (2).

The broad implications of complement activation for health and

disease have been reviewed elsewhere (3). Canonical

complement activation occurs via three different pathways, i.e.,

the classical pathway (CP), the lectin pathway (LP), and the

alternative pathway (AP), all of which converge at the level of

C3, eventually resulting in terminal pathway (TP) activation and

subsequent membrane attack complex (MAC) formation (4).

While the CP and the LP have critical roles in the initiation of

the complement cascade and/or pathogen recognition, the AP

accounts for amplification and the majority of terminal

complement activation (5). In autoantibody-mediated

autoimmune diseases, the deposition of immunoglobulin G

(IgG) immune complexes can activate the CP (6). During this

process, several cleavage products of C3 and C5 are formed that

can activate multiple cells of the immune system via their

corresponding complement receptors (7–9). The two cleavage

fragments C3a and C5a, the so-called “anaphylatoxins”,

significantly contribute to inflammation and the activation of

cells through ligation of their cognate anaphylatoxin receptors

C3aR, C5aR1, and C5aR2. Anaphylatoxins are potent

chemoattractants that recruit several types of phagocytes to

the site of inflammation and mobilize reactive oxygen species

in macrophages (10), eosinophils (11), and neutrophils (12). Due

to their strong pro-inflammatory properties, they significantly

contribute to the pathogenesis of many acute and chronic

inflammatory diseases (13).

Autoimmune diseases are a group of chronic inflammatory

diseases in which a combination of genetic and environmental

factors leads to activation of self-reactive lymphocytes that

escaped the multiple layers of central and peripheral tolerance

(14). The underlying mechanisms leading to the loss of self-

tolerance are multifaceted (15). Most autoreactive lymphocytes

are removed at two main checkpoints, i.e., the thymus and the

bone marrow by central tolerance mechanisms including

deletion and editing. After lymphocytes exit the primary

lymphoid organs, several mechanisms of peripheral tolerance

ensure that many self-reactive lymphocytes, which escaped

central tolerance, are removed from the system (16–18). For

this complex process to be successful, a tightly regulated

interplay of dendritic cells (DCs), CD4+ T cells, and B cells is

required. Dysregulation can lead to a break of tolerance that

initiates and drives the early phase of autoimmunity, followed by
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the effector phase where innate and adaptive effector cells

promote multiple inflammatory responses. The CS is critically

involved in the immunopathology of several autoimmune

diseases, including systemic lupus erythematosus (SLE),

rheumatoid arthritis (RA), and autoimmune bullous

dermatoses (AIBDs) such as bullous pemphigoid (BP) and

epidermolysis bullosa acquisita (EBA) where it significantly

shapes the effector phase of such diseases by recruiting effector

cells to the sites of inflammation (19–24).

During the past decade, our understanding of the

mechanisms underlying complement-mediated inflammation

during the effector phase of several autoimmune diseases has

markedly improved. In contrast, we are still at the beginning to

delineate the multiple (path)ways by which the CS contributes to

the initiation of autoimmunity. Here, we provide an overview of

our current understanding and potential future developments in

the field.
The dual role of complement
in autoimmunity

The role of complement in autoimmunity is complex. On the

one hand, complement activation is associated with the progression

of several autoimmune disorders (19, 20, 23, 24). On the other

hand, complement can also protect from autoimmunity.

The deficiency of complement factors that drive the

activation of the CP such as C1, C2, and C4 is strongly

associated with the development of SLE (25). As part of the

C1 complex, binding of C1q to IgG or IgM immune complexes

results in activation of the CP (26). Roughly 90% of patients with

deficiency in C1q develop lupus-like manifestations (27).

Recently, an elegant study shed new light on the role of C1q

in the development of SLE (28). The authors demonstrated that

C1q limits tissue damage by acting as a “metabolic rheostat” for

effector CD8+ T cells that drive autoimmune inflammation

through the generation of autoantigen fragments via granzyme

B. In contrast to patients with C1q deficiency, only 10%–20% of

patients with a C2 deficiency develop lupus (29). The milder

disease manifestation in C2-deficient patients might be

explained by a C2 bypass mechanism that leads to activation

of terminal complement by C1q and mannose-binding lectin

(MBL) (30).

While the incidence of SLE among C3 deficiency is very low

(19), reports for C4 deficiency differ depending on the ancestral

and ethnic background of the patients (31–35). In a study with

over 6,000 lupus patients and healthy controls of European

ancestry, both C4 isoforms appeared to be protective relative to

complete C4 deficiency. However, patients deficient in C4A were

at a higher relative risk than patients deficient in C4B (36).

When either human C4A or C4B was expressed in a lupus-

susceptible strain (37), mice expressing C4A developed less
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humoral autoimmunity than C4B-expressing mice. This

included a decrease in the number of germinal centers (GCs),

autoreactive B-2 cells, autoantibodies, and memory B cells,

where the higher efficiency of C4A in inducing self-antigen

clearance was associated with the follicular exhaustion of

autoreactive B-2 cells. In summary, recent findings provided

detailed insights into the mechanisms underlying the protective

effects of C1q in the context of autoimmunity; however, the

picture regarding the protective effects of C2 and C4 is still

sketchy and demands further studies.

In contrast to the protective effect of C1q, C2, and C4, C3

cleavage fragments serve as important cofactors to mount a

strong humoral IR. An elegant series of experiments from the

Carroll lab demonstrated that binding of C3d-opsonized

antigens to complement receptor 2 (CR2; CD21) serves as an

important mechanism to foster the uptake of immune

complexes by naive B-2 cells within the lymphatics and deliver

them to follicular DCs (FDCs) in the B-cell compartment.

Furthermore, they identified CR2/CD21 as an important

coreceptor for the CD19/CD81 complex that augmented B-cell

receptor (BCR)-mediated activation through antigen-tagged

C3d that links the CD21/CD19/CD81 complex with the BCR.

Finally, CR2 is critical to retain antigens on FDCs, which is

crucial for the GC reaction and formation of memory B

cells (38).

C3 activation initiates the formation of C5 convertases that

activate the terminal pathway. This pathway is characterized by

the cleavage of C5 into C5a and C5b, the latter of which initiates

the formation of the C5b-9 complex that can form pores as the

MAC and destroy pathogens. Aside from its beneficial cytolytic

effector functions, the MAC also contributes to inflammation

and tissue damage and is closely linked to several autoimmune

diseases, such as SLE, where its deposition is associated with

disease intensity and used as a marker for treatment response

(39). The smaller C5 cleavage, C5a, binds to two distinct

receptors, i.e., C5aR1 (CD88) that mediates many of the

effector functions of C5a and C5aR2 (C5L2; GPR77), which

has initially been considered a mere decoy receptor due to its

missing coupling to G-proteins. However, more recent findings

identified several C5aR2-mediated functions in inflammation

and immunity either in concert with C5aR1 or even independent

of C5aR1 (40–43). C5a is a crucial player in the effector phase of

various autoimmune disorders, where it drives disease

progression through the recruitment and activation of

neutrophils and macrophages, depending on the disease

(44–49).

By binding to its cognate C3aR, the second anaphylatoxin,

C3a, adds to the inflammatory response by activation of innate

and adaptive immune cells. In addition to its function as a

chemoattractant and activator of eosinophils and mast cells, C3a

regulates B-cell and T-cell responses (50, 51). Similar to C5a,

C3a plays important roles in the effector phase of different

autoimmune disorders including SLE and autoimmune
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encephalitis (52, 53), where C3a/C3aR signaling promotes the

infiltration of neutrophils and macrophages/monocytes. Also,

elevated levels of C3a have been associated with disease

progression in RA and SLE (54, 55). Of note, C3a can also

exhibit anti-inflammatory properties such as preventing the

mobilization and degranulation of neutrophils in acute

inflammation (56). In summary, C3 cleavage fragments

promote humoral autoimmune responses, the MAC can

facilitate tissue damage in the context of autoimmunity, and

the chemoattractant properties of anaphylatoxins orchestrate the

effector phase of many autoimmune disorders.
From the break of tolerance to
early autoimmunity

The maintenance of tolerance underlies a complex interplay

between DCs, T follicular helper (TFH) cells, and B cells, where

dysregulation can lead to a break of tolerance and the

development of autoimmunity. Here, we discuss our current

understanding of anaphylatoxin receptor signaling as a

regulator of early autoimmunity.

DCs are specialized in priming different types of effector T

cells and thus possess the unique ability to control both

immunity and tolerance. DCs capture antigens at several

mucosal surfaces and then migrate to the lymph nodes, where

major histocompatibility complex (MHC)-I- or II-loaded

peptides are recognized by T cells via the T-cell receptor

(TCR) (57). Immature DCs can keep tolerance by presenting

self-antigens to T cells in the absence of appropriate

costimulation. After receiving appropriate stimuli from pattern

recognition receptors, they can differentiate into mature DCs

(58) that show a reduced endocytic activity associated with a

strong upregulation of MHC-II and costimulatory molecule

expression (59). These changes enable them to efficiently drive

activation of naive T cells and their differentiation into distinct

effector T cells through immunomodulatory signals mediated

via cell-to-cell contacts and the release of a defined set of

cytokines such as IL-12, IL-23, and IL-6 (57, 60).

Activation of C5aR1 on DCs has a strong impact on

proliferation and differentiation of naive T cells (48). In anti-

neutrophil cytoplasmic antibody (ANCA)-associated vasculitis

(AAV), ANCAs produced by autoreactive B-2 cells activate

neutrophils, resulting in direct endothelial injury and extensive

glomerular deposition of myeloperoxidase (MPO) (61, 62).

Here, the response of MPO-specific T cells to glomerular

MPO, mediated by C5aR1 on DCs, contributes significantly to

necrotizing glomerulonephritis (63, 64). In experimental anti-

MPO glomerulonephritis, genetic or pharmacologic C5aR1

targeting resulted in attenuated TH1 immunity and increased

frequency of regulatory T cells (Tregs) eventually mitigating

autoimmunity to MPO (48) (Figure 1A).
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Furthermore, a strong link between complement receptor

signaling and the regulation of DCs and TFH cells in the context

of immunological tolerance has been described. Activation of the

C5/C5a/C5aR1 axis controlled the development of maladaptive

TH2/TH17 development by shifting the balance between

immunogenic pulmonary CD11b+ conventional DCs (cDCs)

and tolerogenic plasmacytoid DCs (pDCs), thereby regulating

Th2 cytokine production (65–67). Recently, pulmonary C5aR1+

and C5aR1- cDC2 subsets have been described (68), which

showed a distinct impact on cDC function after one-time

allergen exposure. Ex vivo allergen pulsing resulted in low

expression of CD40 and MHC-II in the C5aR1+ cDC2 subset,

leading to minor antigen-specific proliferation of CD4+ T cells.

In sharp contrast, missing C5aR1 activation either in C5aR1-

cDC2s or by C5aR1 targeting induced strong CD4+ T-cell

proliferation, suggesting that C5aR1 activation on pulmonary

cDC2s controls pulmonary tolerance toward aeroallergens by

downregulation of CD40 (Figure 1B). Furthermore, several

studies found C5aR1 activation on T cells as a key mechanism

to control TH1 differentiation both in mice and man (69–73).
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For example, in a model of lupus-like chronic graft-versus-host

disease (GvHD), genetic or pharmacological ablation of C5aR1

in CD4+ T cells protected from the generation and expansion of

TFH cells, GC B cells, and autoantibodies (74). Furthermore,

C5aR1 antagonism initiated in mice with established

bronchiolitis obliterans syndrome ameliorated disease

manifestation and reduced the associated differentiation of

TFH and GC B cells. These findings emphasize the critical role

of C5aR1 in supporting TFH cell differentiation and its

subsequent impact on the GC reaction and (auto)antibody

production (Figure 2A).

In addition to its impact on DC and TFH functions,

anaphylatoxin receptor activation also regulates the function of

Tregs. Natural CD4+ FoxP3+ Tregs (nTregs) are crucial for

immune homeostasis, the persistence of self-tolerance, and

hence underlie strict control mechanisms to ensure protective

immunity (75–77). Based on findings showing that the

activation, differentiation, and expansion of conventional

CD4+ CD25 T cells are linked to C3aR and C5aR1 signaling

(69, 78–80), Kwan et al. (81) investigated the modulation of
A B

C

FIGURE 1

Impact of the anaphylatoxins on DC-mediated and intrinsic T cell activation. (A) The genetic absence or pharmacological targeting of C5aR1 on
DCs leads to attenuated T helper type 1 (TH1) immunity and an increased frequency of Regulatory T cells (Tregs). (B) C5aR1 signaling on naïve
mucosal conventional DC2 (cDC2) controls the expression of CD40 and MHC-II which determines the threshold of naïve CD4+ T cell
activation. Mucosal antigen exposure is associated with decreased C5aR1 expression; the lack of C5aR1 expression in cDC2s releases the break
on CD40 and MHC-II expression resulting in strong CD4+ T cell proliferation and the break of mucosal tolerance. (C) T cell activation triggers
the secretion of preformed C3 and C5 into the extracellular space, which can be cleaved into C3a, C3b, C5a, and C5b by canonical and non-
canonical mechanisms. Binding of these complement fragments to their respective receptors on the T cell induces CD4+ TH1 and CD8+ effector
T cell functions. C3 and C5 are also processed intracellularly by proteases such as cathepsin L (CTSL) in the case of C3 and an unknown
protease in the case of C5, respectively. Intracellular C3a is critical to maintain low-level mechanistic target of rapamycin (mTOR) activity by
binding to C3aR on lysosomes, thereby contributing to the homeostatic survival of CD4+ T cells. The cleavage of intracellular C5 into C5a and
C5b is enhanced by CD46-mediated signaling. C5a engages C5aR1 triggering NOD-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome assembly, eventually driving TH1 differentiation of CD4+ T cells and CD8+ effector T cell functions. Importantly, autocrine
engagement of surface-expressed C5aR2 by C5a-desArg can control intracellular C5aR1 activity. Created in BioRender.com.
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nTreg functions by C3a and C5a. They found that C3aR and

C5aR1 activation on nTregs inhibited their function by inducing

phosphorylation of the transcription factor Foxo1, resulting in

reduced FoxP3 expression on nTregs.

More recent work by Liszewski et al. (82) unraveled a novel

and unexpected role for an intracellular CS, which they termed

the “complosome,” that regulates key metabolic pathways

critical for the survival of peripheral human T cells and their

effector functions. They showed that circulating human CD4+

and CD8+ T cells continuously generate low levels of C3a and

C3b by cathepsin L-mediated cleavage of intracellular C3,

resulting in mammalian target of rapamycin (mTOR)

activation via lysosome-bound C3aR engagement and

interaction of complosome C3b with surface-bound CD46.

These mechanisms were shown to be crucial for T-cell

homeostasis, CD4+ TH1 effector function, and CD8+ cytotoxic

T-cell effector activity (83). This interesting finding implicates

that human TH1 and TH17 responses are regulated by autocrine

and intracellular complement activation, shedding new light on

the role of complement in controlling immunological

tolerance (Figure 1C).

In addition to its impact on cellular immunity, anaphylatoxins

also regulate humoral IR. Effective humoral IRs rely on high-affinity

antibodies generated by affinity maturation in the GCs within the

secondary lymphoid organs (84, 85). Here, B-2 cells go through

repeated cycles of somatic hypermutation, clonal expansion, and

affinity-governed positive selection. Positive selection is orchestrated

by costimulatory signals from TFH cells that have been recruited to

the GCs after antigen capture. Depending on these signals, non-self-
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reactive GC B cells survive and proliferate, whereas self-reactive GC

B cells undergo either further differentiation or cell death (85–88).

In this stringently regulated process, mTOR signaling and

expression of the proto-oncogene c-MYC exert crucial functions

(89, 90). In a recent study, Cumpelik et al. (91) found

downregulation of the complement inhibitor decay-accelerating

factor (DAF, CD55) in GC B cells via B-cell lymphoma 6 (Bcl-6)

associated with simultaneously increased expression of MAC

inhibitor CD59. The reduced complement regulation resulted in

increased C3 and C5 cleavage on GC B cells leading to increased

generation of C3a and C5a and consecutive enhanced C3aR and

C5aR1 signaling. Importantly, this process was indispensable for

positive selection and GC function, as disruption of this pathway

decreased mTOR activity in response to BCR-CD40 signaling,

eventually leading to a premature GC collapse and defective

affinity maturation (Figure 2B).

Furthermore, combined C3aR and C5aR1 signaling was

shown to modulate antibody production and class switch

recombination of B-2 cells (92). Using C3aR-/-C5aR1-/- mice,

Paiano et al. found that C3aR/C5aR1 signal transduction was

indispensable for CD40 upregulation, IL-6 production,

proliferation, and IL-21 production by follicular CD4+ T cells.

Furthermore, using immunized mice deficient in systemic C3

and C5 and transfecting them with wild-type bone marrow

(BM), the study showed that locally produced complement was

necessary for this signaling pathway and sufficient for the initial

B-2 antibody response.

In addition to B-2 cells that generate high-affinity antibodies

against foreign antigens, B-1 cells mediate the first line of
A B

FIGURE 2

Anaphylatoxin receptor activation on TFH cells and GC B cells controls the production of IgG (auto)antibodies (A) C5aR1 signaling on CD4+ T
cells facilitates the expansion of TFH cells and their subsequent production of IL-4 and IL-21, which are crucial for the germinal center reaction.
The absence of C5aR1 signaling leads to an attenuated TFH cell expansion and reduced GC reaction. (B) During the GC reaction, C3a and C5a
engage their receptors, C3aR and C5aR1 respectively, on GC B cells, driving B cell proliferation and differentiation into memory B cells (Bmem) as
well as long-lived plasma cells (PC). When complement activation is inhibited (bottom) either by decay-accelerating factor (DAF, CD55) over-
expression or deletion of C3aR/C5aR1 on GC B cells, (1) GCs collapse prematurely due to impaired dark zone re-entry and affinity maturation
(2), resulting in decreased generation of Bmem and long-lived PCs (3). Created in BioRender.com.
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immune defense through low-affinity natural IgM antibodies.

Interestingly, B-1 cells have also been shown to drive the

establishment of autoimmune-mediated diseases, such as type

1 diabetes (93) and SLE (94). Their regulation is also highly

dependent on C5a (95), as the C5a/C5aR1 axis controls the

trafficking of B-1 cells into the BM, the peritoneal cavity, and

from the BM to the spleen, emphasizing the importance of the

C5a/C5aR1 axis in early autoimmunity.

Based on a growing body of evidence showing that

complement not only controls the effector phase of many

autoimmune disorders but the early events of humoral and

cellular adaptive immune responses, complement pathways

and mediators have sparked the interest as therapeutic targets

to treat autoimmune disorders (96). At this point, only a few

complement inhibitors have been approved for therapeutic use,

including the C5 inhibitor eculizumab, the plasma C1 protease

inhibitor (C1INH), the C3 inhibitor pegcetacoplan, and the

C5aR1 antagonist avacopan. While eculizumab treatment has

been approved for the treatment of paroxysmal nocturnal

hemoglobinuria (PNH), atypical hemolytic uremic syndrome

(aHUS), and neuromyelitis optica spectrum disorders

(NMOSDs), C1INH is used for the treatment of hereditary

angioedema (96). Pegcetacoplan is currently approved for the

treatment of PNH (97) and the first C5aR1 inhibitor, avacopan,

for the treatment of AAV (98).

Conclusion

Apart from the well-known functions of recruiting and

activating innate effector cells that drive the pro-inflammatory

environment of many autoimmune diseases, anaphylatoxin

receptor signaling appears to also ignite the early events of

humoral and adaptive immunity, leading to the loss of

tolerance as a first step to induce autoimmunity. Exemplarily,

local generation of C3a and C5a in tissues or inside DCs, T cells,

and B cells and activation of their cognate anaphylatoxin

receptors in an autocrine or paracrine fashion function as one

important rheostat to keep tissue homeostasis and immunologic

tolerance. The growing understanding of the multiple facets of

anaphylatoxin functions opens new perspectives for spatially

and temporarily tailored targeting strategies that consider the

interindividual differences in immune responses. A few drugs are

already Food and Drug Administration (FDA)-approved that

target the complement system at the level of C3, C5 or more

specifically inhibit C5a-mediated C5aR1 activation. The multiple

complement inhibitors that are currently tested in clinical trials

open up a wide range of new treatment options for clinicians to

inhibit the distinct activation pathways or complement

fragment-mediated activation of specific complement receptors

(99, 100). However, the already approved drugs and the

compounds tested in ongoing clinical trials are designed for

the treatment of acute inflammation. In light of the impact on
Frontiers in Immunology 06
humoral and cellular adaptive immune responses of C3 and C5

cleavage fragments, it will be of major importance in future

studies to define endpoints in clinical studies of autoimmune

diseases that also take these crucial functions of complement

mediator molecules into account. Also, it will be crucial to

discriminate between intracellular and extracellular

complement and complement receptor targeting given the

major impact of complosome activation for T-cell activation in

particular (101).
Open questions
- How can we translate our findings that anaphylatoxins

shape early autoimmunity into appropriate therapeutic

approaches?

- When do we target the CS?

- Where do we target the CS, i.e., extracellular complement

vs. intracellular complement?

- What is the contribution of C5aR2 to early autoimmunity?
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