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Abstract: Systemic treatment of hormone receptor-positive (HR+) breast cancer is undergoing a
renaissance, with a number of targeted therapies including CDK4/6, mTOR, and PI3K inhibitors now
approved for use in combination with endocrine therapies. The increased use of targeted therapies
has changed the natural history of HR+ breast cancers, with the emergence of new escape mechanisms
leading to the inevitable progression of disease in patients with advanced cancers. The identification
of new predictive and pharmacodynamic biomarkers to current standard-of-care therapies and
discovery of new therapies is an evolving and urgent clinical challenge in this setting. While
traditional, routinely measured biomarkers such as estrogen receptors (ERs), progesterone receptors
(PRs), and human epidermal growth factor receptor 2 (HER2) still represent the best prognostic and
predictive biomarkers for HR+ breast cancer, a significant proportion of patients either do not respond
to endocrine therapy or develop endocrine resistant disease. Genomic tests have emerged as a useful
adjunct prognostication tool and guide the addition of chemotherapy to endocrine therapy. In the
treatment-resistant setting, mutational profiling has been used to identify ESR1, PIK3CA, and AKT
mutations as predictive molecular biomarkers to newer therapies. Additionally, pharmacodynamic
biomarkers are being increasingly used and considered in the metastatic setting. In this review,
we summarise the current state-of-the-art therapies; prognostic, predictive, and pharmacodynamic
molecular biomarkers; and how these are impacted by emerging therapies for HR+ breast cancer.

Keywords: biomarkers; breast cancer; estrogen receptor; prognostic; predictive; pharmacodynamic

1. Introduction

Breast cancer is now the most common cancer and most common cause of cancer-
related death in women. With an expected mortality rate of approximately 30%, the burden
for patients, families, and society is high. The majority of these deaths are attributed to
metastatic disease, which has often developed resistance to standard-of-care treatments
and become clinically intractable for current therapeutic strategies.

Breast cancer classification and management is guided by its immunohistochemical
(IHC) and molecular subtype, where prognostic information can be determined and re-
sponse to therapy predicted [1,2]. Tissue-based biomarkers, including the expression of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2), have been integral in subtyping of tumours, prognostication, and choice
of systemic therapies.

Approximately 70–80% of all breast cancers are hormone receptor-positive (HR+) and
molecularly classified as luminal A or luminal B [2–5]. Currently, endocrine therapies such
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as selective ER modulators (SERMs) and aromatase inhibitors (AIs) remain the standard
of care adjuvant systemic therapy for primary HR+ breast cancer (Table 1). Extended
endocrine therapy for 10 years has been shown to decrease the risk of recurrence relative
to 5 years of therapy [6,7]. In addition, ovarian suppression improves survival when
added to adjuvant endocrine therapy in premenopausal women who have also received
chemotherapy [8]. Adjuvant bisphosphonates have also been shown to decrease recurrence
risk in post-menopausal patients [9]. With the routine use of adjuvant endocrine therapy
changing the natural history of HR+ breast cancer, the biological features of breast cancer
recurrence are sometimes different from primary tumours. For example, metastatic ER+
tumours have a higher rate of ESR1 mutations (range 12–56%) compared to primary breast
cancers (0.4%, The Cancer Genome Atlas (TCGA), https://www.cancer.gov/tcga (accessed
on30 December 2020).) [10–14].

In the metastatic setting, endocrine therapy, including selective ER degraders (SERDs),
are used in combination with cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i), and
represent the current gold standard for early lines of therapy [15–19]. These therapies
have improved survival end-points, with a median progression-free survival (PFS) of up
28 months and a median overall survival (OS) of up to 40 months in the first-line setting
reported to date (Table 2). Therapies that target the phosphatidylinositol 3-kinase (PI4K)-
mammalian target of rapamycin (mTOR) such as everolimus (an mTOR inhibitor) and
PIK3Cα inhibitors have also shown to be effective in combination with endocrine therapy
in metastatic disease [20–23] (Table 1).

Table 1. Summary of current treatment strategies for hormone receptor-positive (HR+) breast cancer.

Treatment Comparator Measure of Effect Reference

Early Stage Breast Cancer

Endocrine Therapy in Postmenopausal Women

5 year tamoxifen Placebo 15 year breast cancer mortality RR 0.70
(95% CI 0.64–0.75), p < 0.00001 [24]

5 year total therapy (tamoxifen→ AI) 5 year tamoxifen 10 year breast cancer mortality RR 0.85
(95% CI 0.75–0.96), p = 0.015 [9]

5 year AI 5 year tamoxifen 10 year breast cancer mortality RR 0.85
(95% CI 0.75–0.96), p = 0.009 [9]

5 year total therapy (AI→ tamoxifen) 5 year AI 8 year DFS HR 1.06 (95% CI 0.91–1.23), p = 0.48 [25]

10 year extended therapy (tamoxifen) 5 year tamoxifen
Benefit highest after 10 year, e.g., 10–14 year

breast cancer mortality RR 0.71
(95% CI 0.58–0.88), p = 0.01

[6]

10 year extended therapy (AI) 5 year AI→ 5 year
placebo 5 year DFS HR 0.66 (95% CI 0.48–0.91), p = 0.01 [26]

Endocrine Therapy in Premenopausal Women

5 year tamoxifen Placebo 15 year breast cancer mortality RR 0.70
(95% CI 0.64–0.75), p < 0.00001 [24]

5 year tamoxifen + LHRH agonist 5 year tamoxifen
Benefit in high-risk, e.g., 8 year DFS HR 0.76

(95% CI 0.60–0.97) in those receiving adjuvant
chemotherapy

[8]

5 year AI + LHRH agonist 5 year tamoxifen
Benefit in high-risk, e.g., 8 year DFS HR 0.68

(95% CI 0.53–0.88) in those receiving adjuvant
chemotherapy

[8]

Chemotherapy and Other Systemic Therapy

Anthracycline + taxane regimen Anthracycline w/o
taxane regimen

8 y breast cancer mortality RR 0.86
(95% CI 0.79–0.93) [27]

Bisphosphonate No bisphosphonate
In postmenopausal women, OS HR 0.77

(95% CI 0.66-0.90), p = 0.001; no benefit seen in
premenopausal women

[28]

https://www.cancer.gov/tcga
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Table 1. Cont.

Treatment Comparator Measure of Effect Reference

Advanced Breast Cancer

Endocrine + Targeted Therapy in Postmenopausal Women

AI + CDK4/6 inhibitor AI + placebo See Table 2

Fulvestrant + CDK4/6 inhibitor Fulvestrant + placebo See Table 2

Fulvestrant + alpelisib Fulvestrant + placebo
In patients with PIK3CAmut, median PFS 11.0

vs. 5.7 month, HR 0.65 (95% CI 0.50–0.85),
p < 0.001

[20]

Exemestane + everolimus Exemestane + placebo Median PFS 6.9 vs. 2.8 month, HR 0.43
(95% CI 0.35–0.54), p < 0.001 [21]

Endocrine + Targeted Therapy in Premenopausal Women

As a general principle, many targeted strategies with AI or fulvestrant backbone above can be combined with LHRH agonist for
premenopausal women

Tamoxifen + ribociclib Tamoxifen + placebo See Table 2

Chemotherapy and Other Systemic Therapy

Sequential mono-chemotherapy NA e.g., taxane, anthracycline, capecitabine,
eribulin, vinorelbine, gemcitabine [29]

Combination chemotherapy NA Consider in patients with visceral crisis [29]

PARP inhibitor Physician’s choice
chemotherapy

In patients with germline BRCA1/2mut, median
PFS 7.0 vs. 4.2 mth, HR 0.58 (95% CI 0.43–0.80),

p < 0.001
[30]

Denosumab Bisphosphonate * Skeletal-related event RR 0.78
(95% CI 0.72–0.85), p < 0.001 [28]

AI: aromatase inhibitor; AC: doxorubicin (Adriamycin) and cyclophosphamide; BRCA1/2: breast cancer gene 1/2; CDK4/6: cyclin-
dependent kinase 4/6; HR: hazard ratio; LHRH: luteinising hormone-releasing hormone; OR: odds ratio; RR: risk ratio; DFS: disease-free
survival; PFS: progression-free survival; OS: overall survival; mth: month. * For patients with bone metastases.

Table 2. Seminal trials of CDK4/6i in advanced breast cancer.

First-Line Second-Line nth-Line

Trial Paloma 2 Monarch 3 Monaleesa 2 Monaleesa 7 Paloma 3 Monarch 2 Monaleesa 3 Monarch 1

Drug Palbociclib Abemaciclib Ribociclib Ribociclib Palbociclib Abemaciclib Ribociclib Abemaciclib

Population
(pre- or post-
menopausal)

Post-M Post-M Post-M Pre-M Pre- and
Post-M Post-M Post-M Post-M

Endocrine
therapy AI AI AI OS + AI/

Tam
Ful 500 + OS

(in Pre-M) Ful 250 Ful 500 Nil

Phase III III III III III III III II

N 666 493 668 660 521 669 484 132

Randomisation 2:1 2:1 2:1 2:1 2:1 2:1 2:1 Single arm

PFS/TTP
(mth) 24.8 vs. 14.5 28.2 vs. 14.8 25.8 vs. 16.0 23.8 vs. 13.0 9.5 vs. 4.6 16.4 vs. 9.3 20.5 vs. 12.8 6

HR 0.58;
p < 0.001

0.54;
p < 0.001

0.57;
p < 0.001

0.55;
p < 0.001

0.46;
p < 0.0001

0.55;
p < 0.001

0.59;
p < 0.001 NA

OS (mth) NR NR NR Not reached
vs. 40.9 34.9 vs. 28.0 46.7 vs. 37.3 Not reached

vs. 40.0 17.7

HR - - - 0.71; p = 0.01 0.81; p = 0.09 0.76;
p = 0.014 0.72; p = 0.05 -

Reference [31] [32] [19] [17] [16] [33] [34] [35]

AI: aromatase inhibitor; OS: ovarian suppression; Tam: tamoxifen; Ful: fulvestrant; NR: not reported; PFS: progression-free survival;
TTP: time to progression; 95% CI: 95% confidence interval; HR: hazard ratio; OS: overall survival.
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2. Molecular Biomarkers in Breast Cancer

In the validation and discussion of clinically relevant biomarkers, it is important to
differentiate between prognostic, predictive, and pharmacodynamic biomarkers. Prognos-
tic markers assess the biology of the disease, and can help determine the probable outcome
as either favourable or unfavourable [36]. Predictive biomarkers aid in determining which
therapies will be efficacious for individual patients. Finally, biomarkers that show that
a biological response has occurred in an individual who has been exposed to a medical
product are said to be a pharmacodynamic/response biomarker [36]. While there are
distinctions between these different classes of biomarkers, it should be noted that they
often overlap. For example, an ER+ status indicates a favourable prognosis, and predicts
response to endocrine therapies (Table 3).

Although traditional biomarkers have proven to be valuable in breast cancer, it is
a highly heterogeneous and polyclonal disease where tissue-based biomarkers cannot
fully capture the spatial and temporal evolution of a tumour as it is exposed to multiple
therapies. Additionally, sequential tissue-based biopsies to test for biomarkers present
a logistical challenge due to its invasive nature and sampling error. The detection of
molecular biomarkers and gene signatures through alternative methods such as circulating
tumour DNA (ctDNA) analyses thus complement these traditional methods, as they allow
for non-invasive assessment of the disease, as well as for the study of multiple time
points throughout treatment, allowing for the study of tumour evolution and treatment
response [37].

Table 3. Biomarkers in HR+ breast cancer.

Biomarker Prognostic Predictive Pharmacodynamic Reference

Histopathology

Tumour grade Y N N [38]

Pathological
prognostic stage Y N N [39]

ER Y Y. to ET-based
therapy N [9,40–42]

PR Y N N [43,44]

AR N N N [45]

HER2 Y
Y. to

HER2-targeted
therapy

N [46]

Ki67 Y N N [47]

Ki67 response to 2
weeks of

preoperative ET
Y N Y [48,49]

PDL1 and TILs Y. to TILs only Y. to
immunotherapy N [50–53]

Genomic

Multigene tests Y Y. to
chemotherapy * N [54,55]

ER activation gene
signature N Y. to SERDs N [56]

ESR1mut Y Y. to SERDs Y [12,57]

PIK3CAmut Y Y. to alpelisib N [20]
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Table 3. Cont.

Biomarker Prognostic Predictive Pharmacodynamic Reference

AKTmut N Y. to
capivarsertib N [58]

ERBB2mut N
Y. to

HER2-targeted
therapy

N [59,60]

BRCA1/2mut Y Y. to PARPi N [30,61]

Cell cycle molecules N Y. to CDK4/6i N [62–64]

Imaging

FDG-PET Y N Y [65]

FES-PET Y Y. to SERDS Y [65,66]
ET: endocrine therapy; ER: estrogen receptor; PR: progesterone receptor; AR: androgen receptor; PDL1: pro-
grammed death ligand 1; TIL: tumour-infiltrating lymphocytes; SERD: selective estrogen receptor downregulator;
ESR1: estrogen receptor 1; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α; BRCA1/2:
breast cancer gene 1/2; CDK4/6: cyclin-dependent kinase 4/6; PARPi: poly(ADP-ribose) polymerase inhibitor;
FDG-PET: fluorodeoxyglucose positron emission tomography; FES-PET: 16α-[18F]fluoro-17β-estradiol positron
emission tomography. Y represents clinically validated biomarkers to date. * Oncotype and Mammaprint only.

3. Histological Biomarkers in ER + Breast Cancer
3.1. Tumour Grade

Tumour morphology can provide information on its behaviour and response to ther-
apy. Histologically, breast tumours can be classified according to grade using the Not-
tingham Grading System (NGS). Multiple studies have identified NGS as a valuable
and prognostic factor independent of tumour size and the number of positive lymph
nodes [38,67,68]. Tumour grade is strongly associated with relapse-free survival (RFS),
breast cancer-specific survival (BCSS), and disease-free survival (DFS) [69]. Thus, histologi-
cal determination of tumour grade is a robust marker in breast cancer.

3.2. Pathological Prognostic Stage

Since being defined by expert consensus with the American Joint Committee on
Cancer (AJCC), the pathological prognostic stage group is a modification of the anatomical
TNM (tumour, nodes, metastases) staging system that includes histological biomarker
grade and ER/PR/HER2 receptor status [39]. The AJCC TNM staging system has used
tumour size, extent of nodal involvement, and presence or absence of metastases as a
ubiquitous tool across all cancers to understand disease behaviour, provide prognostic
information, and guide treatment decisions since 1977 [70]. In validation studies, these
histological features can divide each anatomical stage category into distinct risk groups
(each comparison p < 0.05) [71] and can provide meaningful new information with up
to 31% and 28% upstaged and downstaged, respectively, when compared to anatomical
information alone [72].

3.3. Estrogen Receptor

Expression of ER is a hallmark of hormone-dependent breast tumour growth and
a predictive and prognostic marker in breast cancer. ER’s usefulness as a biomarker
stems from its dependence on binding to estrogenic ligands, such as 17β-estradiol, for the
regulation and activation of its canonical signalling pathway. Estradiol is one of the most
important mitogens in ER+ breast cancer, whereby ER–estradiol transcriptional complexes
initiate signalling pathways that promote cell survival and growth [73]. CyclinD1 is
such a transcriptional target of ER, which binds to CDK4 and -6, and phosphorylates the
retinoblastoma protein (Rb). Phosphorylated Rb releases E2F transcription factors and
promotes entry into S phase. Additionally, ligand-bound ER induces c-Myc expression
where subsequent CDK4 upregulation initiates S-phase.
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According to American Society of Clinical Oncology/College of American Pathologists
(ASCO/CAP) guidelines, breast tumour sections are considered ER+ where 1 to 100% of
tumour nuclei stain positive for ER by IHC analysis. Additionally, samples are deemed
ER-low where only 1 to 10% of nuclei are positive [74].

ER+ breast cancers have a better prognosis compared with ER-negative breast can-
cer [40]. However, up to 30% of patients will relapse in spite of adjuvant endocrine therapy,
and the late recurrence risk continues many years following initial diagnosis [75,76]. Inter-
estingly, quantitative measurements of ER load by IHC in stage 1-3 early breast cancer have
not been found to provide predictive or prognostic information [41]. Moreover, patients
with a higher ER load did not benefit better from endocrine therapy than patients with a
low ER load. This indicates that ER should only be considered at the qualitative level to be
valuable as a biomarker. ER is also a strong predictor for effectiveness of anti-estrogen ther-
apies; 5 years of adjuvant tamoxifen was found to be associated with 12.9–14.9% absolute
decrease in 15-year cancer recurrence for women with ER+ cancers, but there was no appar-
ent effect in those with ER-poor disease (RR 0.97, 95% confidence interval 0.88–1.07) [24].
It remains the defining predictive biomarker for all forms of endocrine-based therapy in
the early and advanced stages of ER+ breast cancer.

3.4. Progesterone Receptor

PR is both an ER-induced gene target and a modulator of ER behaviour, and is
expressed in more than 50% of ER+ tumours [77]. In the presence of PR agonists, such as
progesterone (P4) or progestins, PR associates with ER and directs ER chromatin binding
events within breast cancer cells, resulting in a gene expression signature that is associated
with a good clinical outcome [78]. Preclinical data have also uncovered that estradiol-
mediated growth of ER+ tumour models were inhibited by PR agonists in combination
with tamoxifen [78], and clinical trials are currently underway to evaluate this.

PR status is determined through immunohistochemical analysis of either core biopsy
or surgical specimens. Guidelines set by the ASCO/CAP cut off PR+ cases as ≥1% PR+
tumour cells [44]. Thus, tumours that stain for <1% positive cell nuclei are considered
PR-negative. A cut off value of 20% is also recommended by the European Society for
Medical Oncology (ESMO) to distinguish between high and low PR expression [79].

PR expression is a valuable prognostic biomarker in breast cancer. Low and negative
expression of PR in ER+ tumours is associated with a more aggressive and proliferative
disease, resulting in poorer prognosis and clinical outcome [44,80]. However, its value
as a predictive biomarker is controversial. Conflicting studies have found PR either a
useful marker of response to endocrine therapy, or that no additional predictive value
is observed when compared to ER [24,43,81]. In a meta-analysis of randomised trials
of adjuvant tamoxifen, PR was not found to be a predictive biomarker of response to
tamoxifen [24], and quantitative studies of PR load has found no clear evidence as a
predictive marker [41]. In contrast, the TransConfirm trial demonstrated a better PFS
(hazard ratio (HR) 0.59, CI 0.38–0.91, p = 0.016) in patients with a tumour with a PR Allred
score of ≥6, indicating that PR load may be a predictive factor in SERD therapy [82].

3.5. Androgen Receptor

The androgen receptor (AR) is expressed in up to 80% of all breast cancers; however,
it is more commonly co-expressed in primary and metastatic ER+ cancers (90% and 75%,
respectively) [83–85]. The use of AR as an independent prognostic biomarker could be of
benefit. The effects of AR signalling have been observed in the clinic, where ER+/AR+
tumours are typically smaller, well differentiated, and a prognostic factor for longer disease-
free survival [45]. The magnitude of AR positivity by IHC analysis is also correlated with
better survival in retrospective analyses of ER+ cohorts [83]. This has been investigated
in multiple studies, with higher levels of AR conferring a survival advantage [83,86,87].
Additionally, expression of AR is positively correlated with PR expression [78,88]. Recent
preclinical studies have demonstrated that selective AR modulators (SARMs) have promis-
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ing anti-proliferative activity in ER+ breast cancer models [89]. However, there is currently
no clinical role of AR as a predictive biomarker.

3.6. Human Epidermal Receptor 2 (HER2)

The human epidermal receptor 2 protein (HER2/ErbB-2) belongs to the ErbB fam-
ily, which consists of plasma membrane-bound receptor tyrosine kinases. Dimerisation
of HER2 results in phosphorylation of tyrosine residues in the cytoplasmic domain and
initiates signalling in the Ras/MAPK, PI3K/Akt, STAT pathways, thus promoting cell
proliferation, migration, adhesion, and survival [90]. When overexpressed, multiple HER2
heterodimers are formed and an enhanced responsiveness to growth factors and prolifera-
tion is observed [90].

The detection of HER2 overexpression by IHC, or amplification by fluorescence in situ
hybridisation (FISH), is both a prognostic and predictive indicator. Approximately 15–20%
of all breast cancers test positive for the HER2 gene [77,91,92]. Typically, HER2-amplified
tumours are associated with a higher pathological grade and more extensive forms of duc-
tal carcinoma in situ (DCIS) [93,94]. Moreover, multivariate analyses show a correlation of
poor clinical outcome with HER2 gene amplification, indicating that HER2 is a prognostic
factor [91]. However, HER2-amplified tumours exhibit sensitivity to anti-HER2 thera-
pies, such as trastuzumab (a monoclonal HER2 antibody) or lapatinib (a small molecule
HER2 inhibitor) [46,95]. Thus, HER2 is also a predictive biomarker, where the determina-
tion of HER2 status is an important factor in the stratification of patients to an effective
therapeutic strategy.

While ERBB-2mut are relatively uncommon in breast cancers, they are enriched in
metastatic tumours (approximately 1.5% vs. 5% in early and advanced disease, respec-
tively) [96,97]. Hotspot mutations including NP_001005862:p.Asp769His, p.Val777Leuc,
p.Arg896Cys, p.Ser310Phe, and p.Leu755_Thr759del in the extracellular, transmembrane,
and kinase domains result in constitutive ligand-independent HER2 signalling [97]. Impor-
tantly, two clinical trials have demonstrated clinical efficacy of neratinib (a small molecule
pan-HER2 inhibitor) in patients with ERBB-2mut breast cancer [59,60].

3.7. Ki67

Ki67 is a marker of cell proliferation and is expressed in the nucleolus of cells [98].
While it is widely used in histopathology, a major limitation is inter-reporter variability [99].
International guidelines have been established for its measurement and use in breast
cancer [100]. The St Gallen consensus cut-off values for Ki67 as measured by IHC analysis
are ≥20% for “high”-level expression and <20% for low-level expression. Together with
tumour grade and PR expression, it is endorsed to assist in differentiation of luminal A
and B subtypes of breast cancer [101,102], and often used to as an additional variable in
adjuvant therapy decisions.

Ki67 expression is associated with tumour grade, mortality [103], disease-free survival,
and distant recurrence-free survival [104]. A ≥20% increase in Ki67 expression following
neoadjuvant endocrine therapy is associated with worse disease-free survival and OS
compared to stable or declining Ki67 expression [105]. A Ki67 of ≤2.7% has been used
as an end-point and termed complete cell cycle arrest in a number of clinical studies of
preoperative combination endocrine therapy and CDK4/6i clinical trials [106–108]. This
was originally described in earlier neoadjuvant endocrine therapy studies to determine
tumour features in terms of outcome prediction, where a Ki67 of ≤2.7% following therapy
was found to be associated with improved survival outcomes [109,110].

A pharmacodynamic response in Ki67 to endocrine therapy +/− CDK4/6i was also
observed in the Poetic trial, where Ki67 following 2 weeks of therapy improved prediction
over baseline Ki67 alone [48,49]. Furthermore, tumours that did not exhibit a Ki67 response
following preoperative endocrine therapy were enriched for genomic drivers of endocrine
resistance, such as FGFR1 and CCND1 amplification, as well as intrachromosomal ESR1
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fusions and enhanced E2F-mediated transcription [111,112]. These findings further validate
the detection of Ki67 at multiple time points as a pharmacodynamic prognostic marker.

3.8. PD-L1 and TILs

Programmed death ligand 1 (PD-L1; also CD274) is a transmembrane protein ex-
pressed on normal tissues that acts on its receptor PD-1 to modulate and suppress the
immune system [113]. Over-expression of PD-L1 in cancer is thought to co-opt this mech-
anism, leading to immune system evasion, one of the modern hallmarks of cancer [114].
While its expression by IHC analysis can be utilised as a biomarker in breast cancer, there
is no consensus about assay choice; cut-off; or measuring tumour cells, immune cells, or
both [115]. One study using modified Histo-score with a positive cut-off ≥ 100 found 23%
of 650 evaluable breast cases to be PD-L1+, as well as an association with worse prognosis,
both in the overall cohort and the HER2-negative luminal B subset [116]. Other studies
found PD-L1+ in 20–56% across all breast subtypes depending on definition, with either no
association or association with better prognosis; notably, the ER+ subset was not analysed
separately in these studies [50,117,118].

Regarding the predictive utility of PD-L1, while it was associated with improved re-
sponse to atezolizumab immunotherapy in the phase 3 randomised study IMpassion130 [119],
its role in ER+ cancer is less clear. One study defined PD-L1 as a continuous variable using
automated quantitative analysis in 94 patients receiving neoadjuvant chemotherapy—PD-L1
was associated with pathological complete response (PCR), and this was also seen in the ER+
subgroup [51]. PD-L1 appears to have merit as both a prognostic and predictive biomarker, al-
though there are methodological challenges that must be overcome before it enters widespread
use in the clinic.

Tumour-infiltrating lymphocytes (TILs) are another potential biomarker reflective
of the interplay between the immune system and breast cancer cells. The International
TILs Working Group 2014 recommends standardised methodology for assessing stromal
TILs by IHC analysis [120], and this approach has minimal inter-operator variability [121].
Increasing TILs in the 1466 ER+/HER2-negative cases analysed within a pooled cohort
treated with neoadjuvant chemotherapy across six clinical trials found association with
worse prognosis (HR 1.10 for shorter OS per 10% increase in TILs, 95% confidence inter-
val 1.02–1.19) but was predictive of pathological complete response (PCR; rate 6%, 11%,
and 28% in low, intermediate, and high TILs, respectively) [52]. Regarding response to
endocrine therapy, 106 patients receiving 4 months of neoadjuvant letrozole for ER+ breast
cancer in the phase 2 Danish Breast Cancer Group study found each 10% increase in TILs
was associated with decreased chance of PCR (odds ratio (OR) 0.71, 95% confidence interval
0.53–0.96) [53]. While TILs appear to be both prognostic and predictive in ER+ breast cancer,
validation in prospective clinical trials is needed.

4. Genomic and Genetic Biomarkers in ER+ Breast Cancer

Genome analysis has led to the identification of novel biomarkers with both prognostic
and predictive implications. These genomic biomarkers, DNA or RNA characteristics
within breast cancer cells, highlight the importance of gene testing in the future of precision
cancer therapeutics. Several genetic factors have been identified as drivers of breast
cancer, including mutations of PIK3CA, TP53, ESR1, and MYC amplification [122] (TCGA,
https://www.cancer.gov/tcga (accessed on 30 December 2020).). Furthermore, these gene
alterations, particularly ESR1 and PIK3CA, have been identified as predictive biomarkers
of therapeutic response [123]. As multigene sequencing can be applied to tumour tissue.
Specific gene testing for pathogenic genetic variants can also be assessed through copy
number analysis (e.g., multiplex ligation-dependent probe amplification, MLPA) or Sanger
sequencing without the need for whole-genome analysis.

Evolving ctDNA technology may allow for fast, routine, and dynamic molecular
assessment of tumour alterations without the need for tissue biopsy [124]. While tissue
biopsies are a mainstay in the genomic characterisation of a breast tumour, there is a signif-

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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icant discordance between primary and metastatic tumours, requiring multiple samples to
be taken throughout treatment [125]. Tissue biopsies are an invasive and uncomfortable
procedure that may not yield enough tumour for analysis, due to either sampling error
or inaccessible sites [126] (235, 198). ctDNA analysis overcomes these issues, as multiple,
non-invasive samples can be taken with minimal discomfort [127]. Importantly, analysis of
tumour DNA is possible in cases where metastatic lesions are located in inaccessible sites,
and both spatial and temporal heterogeneity of the primary and metastatic tumour can be
examined [128,129].

4.1. Genomic Assays

Multiple commercially available genomic assays are currently approved for use in
HR+ breast cancer. Oncotype Dx and MammaPrint remain the only tests with prospective
clinical trial evidence [54,55]. Other genomic assays to assess breast cancer recurrence
risk include Breast Cancer Index [130], EndoPredict [131], and Prosigna [132]. However,
their data are limited to retrospective evaluations of clinical trial populations [133], and
currently there remains insufficient data to recommend one genomic biomarker assay over
another [133].

These tests can be analysed as both prognostic biomarker tools regarding the risk of
breast cancer recurrence, as well as to provide predictive information about the benefit
of adjuvant chemotherapy or endocrine therapy [134]. Oncotype Dx is a 21-gene assay
assessing 16 breast cancer-related genes and 5 reference genes to report a breast cancer
recurrence score of low, intermediate, or high risk, which is both prognostic for recurrence
at 10 years and predictive of benefit from chemotherapy [54]. Low scores (<10) reflect
that anti-estrogen therapy alone is sufficient therapy, whereas high scores (>26) reflect
poor prognosis and typically predict benefit from chemotherapy in addition to endocrine
therapy. In TailoRx, a prospective clinical trial of HR+/HER2−, lymph node-negative
breast cancers with an intermediate Oncotype Dx recurrence score (11–25) were randomly
allotted to receive either chemo-endocrine therapy or endocrine therapy alone [54]. Initial
results indicated that endocrine therapy was non-inferior to chemo-endocrine therapy,
further establishing this genomic risk score as a predictive biomarker vis-à-vis adjuvant
chemotherapy benefit. However, its predictive value can be refined by including other
patient and disease risk factors. Subsequent analyses support the benefit of chemotherapy
in women under the age of 50 years with scores in the higher end of the intermediate risk
group (21–25). Those with scores at the lower end of the intermediate risk group (16–20)
will benefit from chemotherapy if their clinical risk is also high (e.g., high grade and large
tumour size) [135].

A 70-gene expression profile test, MammaPrint, is an alternative assay that determines
a low or high genomic risk assessment in patients with node-negative or 1–3 positive
lymph node disease [55]. Whilst the Ki67 marker is a large component of the Oncotyope Dx
weighted score, this is not among the genes included in the MammaPrint assessment. The
prospective Mindact trial assessing the clinical applications of MammaPrint demonstrated
that adjuvant endocrine therapy was noninferior to chemoendocrine therapy in women
with high clinical risk and low genomic risk. Thus, the MammaPrint assay can be utilised
as a predictive biomarker to identify patients with low genomic risk who can safely forgo
adjuvant chemotherapy.

4.2. BRCA1/2 Mutation

BRCA1 and BRCA2 are tumour suppressor genes that produce the key enzymatic path-
ways for homologous recombination-mediated repair of double-stranded DNA breaks. Typ-
ically, pathogenic BRCA1/2mut are detected through germline testing of normal whole blood
or saliva DNA, or somatic testing of tumour tissue [136,137]. It has been demonstrated that
patients with germline BRCA1/2mut did not portend worse breast cancer-specific outcomes
compared to non-carriers; however, this study was not analysed in accordance with ER
status [138]. A more recent study suggested that patients with germline BRCA1/2mut ER+
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tumours had a 2.3 times higher risk of disease recurrence and 3.4 times higher risk of breast
cancer-related deaths compared to non-carriers [61].

Mutations in these genes cause chromosomal instability, and chromosome breaks are
thought to be predictive biomarkers for response to poly(ADP-ribose) polymerase (PARP)
inhibitors or platinum chemotherapy [139]. ER+ breast cancer accounts for approximately
22% and 77% of invasive breast cancers in germline BRCA1mut and BRCA2mut carriers,
respectively [140].

Whilst BRCA1 and −2 proteins play a significant role in homologous recombination,
BRCA1 is also involved in base and nucleotide excision repair. The key enzyme for the
DNA excision repair pathway is PARP-1. PARP inhibitors halt the repair of single strand
breaks, leading to DNA replication fork collapse or formation of double-strand DNA
breaks that require homologous recombination to restore. In vitro studies suggest that
in cells deficient of BRCA1 or −2 that are unable to perform the process of homologous
recombination, PARP inhibition leads to “selective cytotoxicity”, or cell death [139].

The investigators of the phase 3 OlympiAD study concluded the use of the oral PARP
inhibitor olaparib demonstrates efficacy in patients with a germline BRCA1/2mut (loss of
BRCA function) in both ER+ and triple-negative tumours [30]. In patients with somatic
BRCA1/2mut, with maintenance of normal BRCA protein functionality, PARP inhibitors
have minimal effect [139]. In patients with BRCA-related breast cancer, higher response
rates have been observed in those treated with platinum over taxane chemotherapy [141].
This is explained by the formation of DNA cross-links by platinum salts, which would nor-
mally be repaired by homologous recombination dependant on the BRCA1 and −2 genes.
While BRCA1/2mut are emerging as predictive molecular biomarkers for platinum-based
chemotherapy for triple-negative breast cancer, its role in HR+ disease is less established.

4.3. PI3K/AKT/mTOR Pathway Alterations

PI3K acts to phosphorylate proteins and lipid molecules and are overactive in a large
proportion of breast cancers. PI3K triggers downstream activation of AKT (also known
as protein kinase B) and mTOR, thus forming the PI3K/AKT/mTOR signalling pathway
leading to cell growth, metabolism, proliferation, and survival [142]. A total of 40% of
patients with ER+ breast cancer have activating PIK3CAmut, representing the most common
genomic alteration in breast cancer [143] (TCGA, https://www.cancer.gov/tcga (accessed
on 30 December 2020).). Hotspot PIK3CAmut includes NP_006209.2.4:p.Glu542Lys and
p.Glu545Lys in exon 10 (helical domain), and p.His1047Tyr in exon 21 (kinase domain) [144].
The dysregulation of this pathway initiates bidirectional crosstalk and subsequent modula-
tion of the ER to continue ER-dependent growth [145]. Moreover, activating mutations in
AKT phosphorylates CDK4/6 and CDK2 inhibitors p21 and p27, moving them away from
their cyclin/CDK targets and further promoting cell cycle progression [146,147]. Loss of
PTEN results in increased PI3K activity and may lead to clinical resistance to endocrine
therapy and has been associated with shorter relapse-free survival following tamoxifen
treatment [148]. Eventually these pathways will begin to act as ER-independent drivers of
growth, thus leading to endocrine resistance.

PIK3CAmut act as a prognostic biomarker and are associated with improved survival
outcomes in patients with early-stage HR+/HER2− breast cancer (Table 4) [144,149]. In
contrast, while the frequency of PIK3CAmut does not differ significantly between early stage
and metastatic HR+/HER2− breast cancer, patients with metastatic PIK3CAmut disease
have been shown to have a poorer outcome and resistance to chemotherapy compared
with PIK3CAwt tumours [150].

Both the Solar1 and Sandpiper trials demonstrated that patients with PI3KCAmut dis-
ease have increased response rates and survival with the use of alpelisib (a PI3Kα-specific
inhibitor) and endocrine therapy. This benefit was only seen in patients with PIK3CAmut

tumours or PI3KCAmut ctDNA, demonstrating its utility as a predictive biomarker (median
PFS 11 vs. 5.7 months, HR 0.65, p < 0.0001; median OS 39.3 vs. 31.4 months, HR 0.86,
p = 0.15) [20]. The Sandpiper trial tested the addition of taselisib (a β-sparing PI3K inhibitor)
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to fulvestrant with similar results in patients with PI3KCAmut tumours (median PFS 7.4 vs.
5.4 months, HR 0.70, p = 0.0037) [151]. The overall survival data remain immature.

Table 4. Seminal trials of PI3Ki and mTORi + endocrine therapy in advanced breast cancer.

First-/Second-
Line Second-Line First-/Second-

Line Second-Line

Trial TamRad Bolero Solar 1 Sandpiper

Drug Everolimus Everolimus Alpelisib Taselisib

Population (pre- or
post-menopausal) Post-M Post-M Post-M Post-M

Endocrine therapy Tam NSAI Ful Ful

Phase III III III III

N 111 724 572 516

Randomisation 1:1 2:1 1:1 2:1

PFS/TTP (mth) 8.6 vs. 4.5 10.6 vs. 4.1 11.0 vs. 5.7 7.4 vs. 5.4

HR 0.54; p = 0.002 0.36; p < 0.001 0.65; p < 0.001 0.70; p = 0.004

OS (mth) Not reached vs.
32.9 31 vs. 26.6 NR NR

HR 0.45; p = 0.007 0.89; p = 0.14 - -

Reference [23] [21,22] [20] [151]
AI: aromatase inhibitor; NSAI: non-steroidal aromatase inhibitor; Tam: tamoxifen; Ful: fulvestrant; NR: not
reported; PFS: progression-free survival; TTP: time to progression; HR: hazard ratio; OS: overall survival;
mth: months.

Neoadjuvant trials assessing the utility of alpelisib and taselisib showed varied results.
The Neo-Orb trial assessing the addition of alpelisib did not appear to improve objective
response or pathological complete response rates when used with letrozole [152]. In
contrast, the Lorelai trial of taselisib plus letrozole was predictive of response in the
PIK3CAmut population OR 56% vs. 38% OR 2.03 (95% CI 1.06–3.88) [153]. The Opportune
trial assessing pictilisib (a pan-PI3K inhibitors) did not support PIK3CAmut as predictive of
efficacy in the neoadjuvant setting [154].

Whilst mTOR inhibitors have been shown to be efficacious in conjunction with en-
docrine therapy in HR+ metastatic breast cancer, there are currently no predictive biomark-
ers identified. The Bolero-2 trial demonstrated that the addition of the mTOR inhibitor
everolimus to exemestane increased the median PFS (6.9 vs. 2.8 months, HR 0.43, p < 0.001)
in patients who had previously progressed on aromatase inhibitors [21]. Pre-clinical studies
have demonstrated that tumours with PIK3CAmut have increased sensitivity to everolimus,
but this has not been confirmed in clinical studies [155]. Further mutational analysis of
tumours of patients from the Bolero-2 and TamRad (tamoxifen +/− everolimus) studies
did not demonstrate a relationship between everolimus efficacy with PIK3CAmut and PTEN
status [156].

More recently, capiversertib (an AKT inhibitor), alone and in combination with ful-
vestrant, demonstrated clinical activity in a phase 1 study of patients with the activating
mutation AKT1E17K endocrine-resistant metastatic ER+ breast cancer, which represent ap-
proximately 7% of this subtype, offering further evidence that genomic alterations in this
signalling pathway may be effectively therapeutically targeted [58].

4.4. ESR1 Mutations

Mutations within the ERα encoding gene, ESR1, are frequently acquired in HR+ breast
cancer and were only recently recognised as a clinically relevant entity. These mutations
are thought to be mediated through clinical acquired resistance to prior aromatase in-
hibitor therapy. ESR1mut are gain-of-function mutations that are largely clustered within a



Genes 2021, 12, 285 12 of 23

“hotspot”, the ligand-binding domain (AF2) of the ER [11,157]. Within this hotspot, mis-
sense mutations located in residues NP_000116.2:p.Tyr537Ser, p.Tyr537Asp, p.Ser537Cys,
and p.Asp538Gly are the most common, while p.Leu536Glu, p.Leu536Arg, p.Pro535His,
p.Ser463Pro, and p.Val534Glu have also been described [13,158]. These mutations have been
described to contribute to tumour progression and endocrine therapy resistance [159–161].
Functionally, these mutations change the conformation of the ligand-binding domain and
render the ER protein stably active in the agonist mode [159]. Consequently, co-activators
are able to bind to ER in the absence of a ligand and initiate transcription independently of
estrogen. Thus, these cells exhibit reduced sensitivity to endocrine therapies. In contrast
to the TCGA study of primary breast cancers, where the frequency of ESR1mut was <1%
(https://www.cancer.gov/tcga (accessed on 30 December 2020).), ESR1mut detected by
analyses of circulating free DNA (cfDNA) have found a higher proportion (28–55%) in
metastatic ER+ breast cancers previously treated with SERD or AI therapy [12,57,162,163].

ESR1mut strongly correlate with endocrine therapy resistance and provide important
prognostic and predictive information. ESR1mut cancers are resistant to estrogen depriva-
tion and are therefore less responsive to endocrine therapies [13]. Furthermore, clinical
studies have associated these mutations with poorer outcomes compared with ESR1wt

tumours [12]. Fulvestrant, a first-generation SERD, has been shown to be relatively more
effective than aromatase inhibitors in the presence of ESR1mut; however, resistance is
still frequent [57]. Currently, second-generation SERDs that have preclinical activity in
fulvestrant-resistant and ESR1mut preclinical models are undergoing early phase trials,
representing the most promising treatment strategy in ESR1mut breast cancer.

Exploratory results from the phase 3 Pada-1 trial suggest that ESR1mut as measured
in DNA may have utility as a pharmacodynamic biomarker [164]. Among the subgroup
of 33 patients with baseline ESR1mut detected at baseline, “clearance” of this mutation
in response to therapy with aromatase inhibitor and palbociclib was associated with a
prolonged PFS compared with patients who had a persistent ESR1mut. More prospective
trials are needed to validate the use of ESR1mut as a biomarker in this way.

4.5. ER Activation Gene Signature

While molecular markers have transformed our understanding of breast cancer, and
provide vital prognostic and predictive information in the clinic, there is a lack of estab-
lished biomarkers that predict response to SERDs [82]. Moreover, there is a need for a
molecular marker or gene set to predict response or resistance to endocrine therapy in
metastatic ER+ disease. A gene set of estradiol-induced and -repressed genes whereby an
ER activity score was determined in the cell line and in patient-derived xenograft (PDX)
models treated with a SERD has been developed [56]. Interestingly, different ER ligands
drive a distinct transcriptional response in both cell line and PDX models, whereby greater
transcriptional suppression of ER correlated with stronger anti-tumour activity [56]. This
has the potential to provide valuable predictive information to guide treatment decisions.

In addition, gene expression and pathway analyses from Affymetrix microarrays of
locally advanced or metastatic ER+ tumours in the TransConfirm trial uncovered unique
ER-mediated gene signatures that conferred decreased response to fulvestrant [82]. Ex-
pression of a set of 37 genes was found to be independently associated with PFS, where
upregulation of 27 of these genes were known to have functions in the regulation of the ER
transcriptional network (FOXA1 [165], TFAP2C [166], SP1 [167]) [82]. These genes were also
associated with breast cancer biology and clinical outcome (e.g., TFAP2C, BMPR1A [168],
ARRDC3 [169]). Interestingly many genes in this set had not yet been reported in breast
cancer biology, but have functional roles in tumorigenesis or response to treatment in other
cancer types (e.g., USP5 [170]) [82].

4.6. Cell Cycle Molecules (Rb, Cyclin D1, and FAT1)

The combination of CDK4/6i with endocrine therapy is now standard-of-care first-
line therapy for advanced breast cancer. However, despite impressive benefits to PFS, not
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everyone responds to therapy and most patients relapse over time. Currently, only the
presence of ER and wild-type retinoblastoma protein (Rb) have been established as clinical
biomarkers to predict response to this combination.

CDK4/6i prevent phosphorylation of Rb, thus allowing it to deactivate the E2F tran-
scription factors that coordinate the early stages of cell cycle progression [92]. Several
preclinical studies have implicated loss of function of Rb as a driver of CDK4/6i resis-
tance [171,172]. Analyses of ctDNA detected RB1mut in 1.7% of patients across three
randomised trials of ribociclib, with an enrichment in polyclonal RB1mut detected in sam-
ples collected after CDK4/6i treatment [62,171,173]. Interestingly, the addition of ribociclib
with endocrine therapy showed no increase in PFS for these patients, indicating that RB1mut

may confer cross-resistance to endocrine therapy and CDK4/6i [64]. A panel of 87 genes
that correspond to loss of Rb function, even in the presence of an intact RB1 gene, has also
been identified. This panel (RBsig) was able to differentiate between palbociclib-sensitive
and -resistant cell lines [63]. While these results indicate that RB1 may be a predictive and
potentially pharmacodynamic biomarker, further validation is required to determine its
clinical use.

Cyclin E:CDK2 phosphorylates Rb downstream of CDK4/6 in late G1 of the cell
cycle. Amplification of the CCNE1 gene, which encodes cyclin E1, and loss of RB1 is
associated with the development of resistance to CDK4/6i, with the ratio of CCNE1/RB1
identified as a marker of palbociclib resistance [174]. This pattern was also associated
with poor OS in the Metabric dataset. Amplification of CCNE1 predicted resistance to
palbociclib in the NeoPalAna clinical trial dataset [106], and overexpression of CCNE1
was associated with palbociclib resistance in retrospective RNA analyses of both the
Paloma-3 and Preoperative Palbociclib (Pop) trials [175]. In analyses of palbociclib-resistant
MCF7 cells with amplification of CCNE1, the ablation of CDK2 and cyclin E1 re-sensitised
cells to CDK4/6i [172], suggesting a mechanistic role for cyclin E1:CDK2 in CDK4/6i
resistance. Upregulation of either cyclin E or CDK2 may therefore compensate for CDK4/6
inhibition by offering alternative pathways for Rb deactivation and constitute promising
pharmacodynamic biomarkers.

Loss of function of the protein FAT1, a negative regulator of the pro-survival HIPPO
pathway [176], has been identified as a potential driver of CDK4/6i resistance [64]. Loss
of FAT1 results in an accumulation of HIPPO pathway transcription factors that induce
overexpression of CDK6, which in turn increases the growth inhibitory concentration of
CDK4/6i, allowing tumours to proliferate. In a clinical study, targeted sequencing of
tumour and patient-matched normal DNA samples, from FFPE or peripheral blood, on
348 patients treated with palbociclib, ribociclib, or abemaciclib correlated FAT1 alterations
with reduced PFS. Cases with biallelic FAT1 inactivation showed a drastic reduction in PFS
(2.4 months), compared to patients with FAT1wt tumours (10.1 months) [64]. FAT1mut were
detected in only 6% patients with metastatic disease and therefore may have a limited role as
a predictive biomarker in question. The consequence of FAT1 loss—upregulation of CDK6—
may prove more useful. Dysregulation of other parts of the HIPPO pathway similarly
induce upregulation of CDK6 and consequent resistance to CDK4/6i [64]. Upregulation of
CDK6 as a result of gene amplification has been reported in abemaciclib-resistant breast
cancer cell lines in which knockdown of CDK6 restored sensitivity to abemaciclib [177].
FAT1mut may therefore be just one example of a broader phenomenon that does convey
predictive power.

5. Imaging Biomarkers

Functional nuclear medicine scans have recently been developed specifically for
ER+ breast cancer, specifically 16α-[18F]fluoro-17β-estradiol (FES) positron emission to-
mography (PET) [178]. In FES-PET, the positron-emitting radioisotope 18F is bound to
17β-estradiol and delivered to tissues overexpressing ER; the subsequent avidity of im-
aged tissues is reported as a standardised uptake value (SUV) [179]. Increased uptake
on FES-PET is associated with histological ER expression with agreement comparable
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to standard in vitro assays [180], and thus would be predictive of response to endocrine
therapy. Higher FES-PET uptake was found to be a positive prognostic biomarker for
90 patients with metastatic ER+ breast cancer treated with endocrine therapy: PFS of
7.9 months (95% confidence interval 5.6 to 11.8 months) and 3.3 months (95% confidence
interval 1.4 to not evaluable) for FES-PET uptake above and below the average SUV, re-
spectively [65]. This study demonstrated that the combination of imaging markers that
can assess both likelihood of response to endocrine therapy and disease aggressiveness
with traditional FDG-PET improved the ability to predict PFS over either modality alone.
Similarly, changes in FES-PET uptake may be prognostic—in a small study of 22 patients
with ER+ metastatic breast cancer, patients achieving PFS greater than 12 months had
greater change in maximum decrease in SUV: 91.0 ± 12.0% vs. 20.7 ± 16.2% [181].

Perhaps more tantalising is the use of FES-PET as a pharmacodynamic biomarker
for novel SERDs in clinical trials. Earlier work found that ER availability by FES-PET
fell in patients receiving tamoxifen or fulvestrant, but less so with aromatase inhibitors
(54% versus 15% fall in maximum SUV; p < 0.001) [182]. The oral SERD elacestrant led to
reduced ER availability by FES-PET measure in 16 patients on a phase 1b study, although
the magnitude of SUV fall did not correlate with objective response rate or PFS [66]. This
may be due to a threshold effect—a phase 1 dose escalation trial of another novel SERD
SAR439859 demonstrated a decrease in FES uptake (>87%) in all patients achieving plasma
concentration >100 ng/mL, contributing to the selection of the recommended phase 2
dose in clinical trials [183]. The utility of FES-PET in this way is promising for early phase
studies, but further validation is required before it can be used outside of clinical trials.

6. Discussion

The use of traditional tissue-based biomarkers such as ER and PR in the prognostica-
tion and prediction of response to therapy is well established. However, with increasing
understanding of molecular pathways in breast cancer and the emergence of novel targeted
therapies, there is a need for new biomarkers to be established. Recently, the development
of multigene and mutational profiles discussed in this review have opened avenues of
research into new therapeutic targets and potential biomarkers. Furthermore, with the
decreasing cost and increasing availability of genomic and panel testing for breast cancer-
specific mutations, these profiling methods may prove to be a cost-effective strategy to
guide therapy in the clinic. The combination of emerging therapies effective against specific
genomic aberrations and ctDNA technology as an accessible alternative to invasive tumour
biopsies points to a future where genomic biomarkers could be used for personalised
therapy, as well as being a means of performing serial, almost real-time, assessment of the
evolutionary mutational landscape in response to treatment.

Another promising development is the identification of pharmacodynamic biomarkers,
such as 2-week Ki67 response, ER activation gene signatures, ESR1mut, PIK3CAmut, cell
cycle components, and FES-PET imaging. In the metastatic setting, these markers have the
potential to personalise approaches to treatment and predict the development of resistance.
However, despite the identification of cell cycle components such as Rb and cyclin E1 as
pharmacodynamic markers in CDK4/6i resistance, collective data are not concordant and
there is currently no clinical use. A coordinated and streamlined approach to biomarker in
parallel with drug development, utilising cutting-edge platforms such as genomic testing
and imaging modalities, while expensive, would in the long term improve both the cost-
effectiveness and development timeline of new treatment strategies. Finally, rigorous
comparison of these emerging markers to those already established is essential, along with
strategies to integrate them into existing screening in order to further improve outcomes.
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