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ABSTRACT

Motivation: Characterizing and comparing temporal gene-
expression responses is an important computational task for
answering a variety of questions in biological studies. Algorithms for
aligning time series represent a valuable approach for such analyses.
However, previous approaches to aligning gene-expression time
series have assumed that all genes should share the same alignment.
Our work is motivated by the need for methods that identify sets
of genes that differ in similar ways between two time series, even
when their expression profiles are quite different.

Results: We present a novel algorithm that calculates clustered
alignments; the method finds clusters of genes such that the genes
within a cluster share a common alignment, but each cluster is
aligned independently of the others. We also present an efficient new
segment-based alignment algorithm for time series called SCOW
(shorting correlation-optimized warping). We evaluate our methods
by assessing the accuracy of alignments computed with sparse time
series from a toxicogenomics dataset. The results of our evaluation
indicate that our clustered alignment approach and SCOW provide
more accurate alignments than previous approaches. Additionally,
we apply our clustered alignment approach to characterize the
effects of a conditional Mop3 knockout in mouse liver.

Availability: Source code is available at http://www.biostat.wisc.
edu/~aasmith/catcode.

Contact: aasmith@cs.wisc.edu

1 INTRODUCTION

Characterizing and comparing temporal gene-expression responses
is an important computational task for answering a variety of
questions in biological studies. In previous work (Smith and Craven,
2008; Smith et al., 2008), we have introduced methods for answering
similarity queries about gene-expression profiles after exposure to
some chemical or treatment. These methods have been motivated
by the task of quickly and accurately characterizing the potential
toxicity of chemicals. A fundamental step in comparing two time
series is with temporally align the series using a method such
as dynamic time warping (Sakoe and Chiba, 1978; Sankoff and
Kruskal, 1983). Previous approaches to aligning gene-expression
time series have assumed that all genes should be aligned in lockstep
with one another. In other words, these methods assume that the
transformation that specifies how one series relates to another is
the same for all genes. Here, we present a novel approach that
finds clusters of genes such that the genes within a cluster share
a common alignment, but each cluster is aligned independently of
the others. Our method is similar to k-means clustering (Duda et al.,
2000) in that it alternates between assigning genes to clusters and
recomputing the alignment for each cluster using the genes assigned
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Fig. 1. The time-series similarity task. Given a gene-expression time series
as a query, we want to find the time series in the database which are most
similar to the query. Shaded areas represent strong matches to the given query.
Notice that for both Treatments B and C, the best alignment to the query
does not account for the entire extent of the treatments. Also notice that with
Treatment B, all genes can be aligned together, whereas with Treatment C
the second gene should be aligned separately.

to it. We also present a novel multi-segment alignment algorithm that
computes more accurate alignments for sparse gene-expression time
series than previous methods.

One application for time-series alignment that we consider is the
task of answering similarity queries as illustrated in Figure 1. Given
an expression profile as a query, we want to identify treatments
in a database that have expression profiles most similar to the
query. When the query and/or some of the database treatments
are time series, we assess similarity by determining the temporal
correspondence between the query and treatments in the database.
In our toxicogenomics application, we might be trying to determine
if an uncharacterized chemical induces an expression response
similar to any known toxicants. The figure shows a simple case
in which our database consists of expression profiles from four
different treatments, and each expression profile characterizes only
three genes.

Figure 1 illustrates two important issues that arise in this task.
Sometimes (as with Treatment B) all genes should be aligned (i.e.
warped) together to find the best correspondence. But, it may also
happen that some genes need to be warped separately from the
others, as with Treatment C. A second issue is that often the best
alignment does not account for the complete extent of both time
series. Therefore, we want to allow a type of local alignment in
which the end of one series is unaligned. We refer to this case as
shorting the alignment. The two main contributions of this work are
algorithms that are designed to address both of these issues when
computing time-series alignments.
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Fig. 2. Alignment space example. The multi-segment alignment path
characterizes correspondences between two series, as shown by the dotted
lines. Knots are the points of discontinuity in the path.

Figure 2 shows the alignment of two time series in alignment
space, using a multi-segment alignment method. The alignment path
determines which points in the two series are mapped to one another.
For a given point in the path, the coordinate in the first time series
directly below it and the coordinate in the second time series directly
to its left correspond to one another. A multi-segment alignment can
take into account that the nature of the relationship between the two
series may vary in different segments. For example, it may be the
case that the later part of the expression response occurs more slowly
in one treatment than in a similar treatment. We refer to the points
of discontinuity that define the segment boundaries as knots.

The alignment in Figure 2 also illustrates the concept of shorting.
Here, Time Series A seems to have advanced more quickly than Time
Series B, which has not started to increase at the end. An alignment
path that represents shorting ends in the top row or the right column
of the alignment space diagram, but not in the top-right cell. Note
that we do not allow an alignment to short both series; all of one or
the other must be mapped to some point in its mate.

In previous work (Smith et al., 2008), we described a novel multi-
segment alignment method and empirically demonstrated that it
classifies and aligns our toxicogenomics data better than several
competing methods, including dynamic time warping, several
parametric methods (such as linear alignment) and another multi-
segment method called correlation-optimized warping, or COW
(Nielsen et al., 1998). Parametric methods, which constrain the
warping path to a simple functional form, often are not expressive
enough to capture the most appropriate warping. In contrast,
dynamic time warping can often be too expressive, finding high-
scoring alignments of unrelated series. A multi-segment method
provides a balance between these two methods.

The accuracy advantage of our previous multi-segment method
over COW was slight. COW is a global alignment method that
cannot short. On closer inspection, we found that our method
discovered more accurate alignments in cases that required shorting,
whereas COW dominated those trials that did not. Here, we present
a modified version of COW that allows shorted alignments. We call
the method SCOW, for shorting COW. Our algorithm for computing
clustered alignments uses SCOW as its base alignment method.

Aach and Church (2001) were the first to apply the method of
dynamic time warping (Sakoe and Chiba, 1978) to gene-expression
profiles, and other groups have followed with this warping method
(Criel and Tsiporkova, 2006; Liu and Miiller, 2003) and others (Bar-
Joseph et al., 2003). Importantly, they have all done their warping on
all genes together, whereas we compute clustered alignments. Also,
our approach differs in that it compute multi-segment alignments
and considers local alignments via shorting.

Other studies have investigated clustering gene-expression time
series (Bar-Joseph et al., 2003; Eisen et al., 1998; Leng and Miiller,
2006; Liu and Miiller, 2003). The important differences between
these approaches and ours are 2-fold: the goals of the clustering
process and the notion of similarity used. Whereas these previous
methods have focused on identifying clusters of genes that have
similar expression profiles, our approach, in contrast, is focused on
identifying clusters in which the genes have similar warpings. The
genes in one of our clusters may have very different expression
profiles, but they are similar in how they should be warped across
the two time series being compared.

Listgarten et al. (2005) have developed a method for multiple
alignment of time series data that has some similarities to our
approach. Their method, however, computes a single alignment
of multiple time series, whereas our method computes a clustered
alignment of a pair of time series.

We are not the first group to develop algorithms for computing
shorted alignments. Keogh (2003) devised a two-step shorting
method that first finds the appropriate end points of an alignment
before calculating a global alignment up to these points. Our
approach to shorting is different in that the shorting decision is
not decoupled from the computation of the alignment; the dynamic
programming method considers shorted as well as non-shorted
alignments.

2 METHODS

In this section, we detail two novel techniques that we have developed. The
first is SCOW, which is a method for computing multi-segment alignments
of two time series and assessing their similarity. The second is an algorithm
which computes clustered alignments in which the genes within a cluster
share a common alignment, but each cluster is aligned independently of the
others.

2.1 SCOW

We start by describing COW (Nielsen ef al., 1998), which is a dynamic
programming algorithm designed to find an optimal alignment between
two series with multiple channels of information (such as genes). We then
describe SCOW, which is our extension to COW.

COW was developed to align chromatography time-series data. Briefly, it
aligns and scores two given time series based on their similarity. Here, we
refer to the two series as g (for query series) and d (for database series). For
each possible alignment, the series are partitioned into m segments, in which
the i-th segments of the two series correspond to each other. The score of a
given alignment is the sum of correlations between corresponding segments.

As shown in Figure 3A, COW searches for good segment boundaries in
only a limited area of alignment space. The segments are assumed to be of
constant length in ¢, and variable in d. The vector K contains the coordinates
of the knots (segment endpoints) in ¢. These are usually evenly spaced. COW
works by filling a zero-indexed matrix I", which is of dimensions m+1 by
|d|+1. The element y; , contains the score of the best alignment of d from
zero to x and g from zero to Kj (the k-th element of K) using k segments.
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Fig. 3. COW and SCOW in alignment space. Both perform searches to find the best set of knots, or points of discontinuity, for a multi-segment alignment.
(A) COW, which assumes no shorting and searches for good knots only in a single dimension, along the dotted lines. (B) The first step of SCOW, which
searches independently in both dimensions. Subsequent steps are numbered in (C), as SCOW alternates horizontal and vertical movement of each knot until

it converges.

It is filled using the following recurrence relations:

[0 ifx=0 o
Wx=1 _oo  otherwise
Ykx= _max [qu,y+cor(d(y,X),q(Kk71,Kk))} 2)
yepred(x,k)

where cor is the Pearson correlation, g(a, b) represents a subseries of g from
a to b and d(a,b) is defined likewise. The predecessor function lists valid
starting locations in d for segments ending at x:

x— %(Kk —Ki—1)—t,...,
pred(x, k)= ld 3)
x— g Kk =K +1
with ¢ being a user-defined ‘slack parameter’ that controls the size of the
search space.

The best alignment, and its resulting score, is represented by the element

of y that corresponds to the end of the global alignment:
BestScore(I") = yin, || - 4)

Note that COW can be used to align a one-channel time series, such as
the expression profile of a single gene, or a multi-channel time series, such
as the expression profile of a set of genes. The only difference between these
two cases is in how the correlations are calculated.

A limitation of COW is that it forces the entirety of both series to be
aligned to each other; it cannot short the alignment. Also, COW is apt
to align segments which differ greatly in magnitude because it scores by
correlation. Further, the computation in Equation (2) may sometimes return
to an undefined value if the input segments do not have a defined correlation
(as when both segments consist of all zeros).

Our SCOW is designed to rectify these problems. As shown in Figure 3B,
SCOW searches for optimal knots in both dimensions. It first finds optimal
knots with respect to ¢ using evenly spaced knots in d, and with respect to
d using evenly spaced knots in g. It uses the better alignment from these
two passes as the starting point for an iterative process. From then on it
alternates, which dimension’s knot coordinates it holds constant, using the
coordinates found by the previous pass as the constant knots in the next
one. This iterative process is illustrated in Figure 3C, and Table 1 provides
pseudocode describing the SCOW algorithm.

There are two different recurrence relations used in SCOW’s dynamic
programming formulation:

d d
qu,x :yq{ggé‘k) |:ykq—Ly +score (d(Kk—l Ky ),q(y,X)):| s )

Table 1. The pseudocode for SCOW

procedure SCOWAlign(series d, series gq,
set of genes G):

K% <«evenly spaced integers from 0 to |q|
K¢ «evenly spaced integers from 0 to |d|
calculate T'Y,T¢ using G

if (BestScore(I'!)>BestScore(I')): « «—q

else: o <—d

K% «Traceback(I'%)

repeat:
swap-dimension o
calculate T'* using G
calculate BestScore(I'%)
K% «Traceback(I'*)

until K9,K? converge

Knots are recalculated at least three times. The Traceback function extracts the best
knots found from the previous pass to use in the next one.

d = max

d q
Jemax [yk—l,y +score (d(y,x), q(K{_ |, K ))i| . (6)

The matrix I'? is calculated when the algorithm searches for knots with
respect to g and holds them constant with respect to d, while I'? is calculated
during the opposite case. The vectors K¢ and K¢ represent the coordinates of
the knots in each dimension. The predecessor function is altered so as to not
center around the line with slope |g|/|d| but instead to enable a cone-shaped
search space (as illustrated in Figure 3B) since we want to consider shorted
alignments:

max [fo(kaKk,l), %Kk,l)],...,
pred(x, k)= , @)

min [x— %(Kk —Kk—l),“(k—l)i|

where A is the maximum slope allowed the aligning path in alignment space.
In addition, SCOW does not assume a global alignment, but searches the last
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row of the matrix for the best scoring alignment using m segments:

yr‘,’fq‘ J) if other dimension shorted

BestScore(I'%) = ®)

mjax Yom, j otherwise
This allows SCOW to short in the current dimension, if the other dimension
is not already shorted. Thus the alignment found cannot short both ¢ and d.
The effect on the search can be seen in Figure 3C: the last knot cannot move
down during the first step, because doing so would short both dimensions.

In addition to a different search procedure, SCOW also differs somewhat
from COW in the function it uses to score alignments. The scoring function
presented here is similar to one we used in previous work (Smith et al.,
2008). In particular, the scoring function includes terms that incur penalties
for segments that involve stretching and significant differences in amplitude.
We use the term stretching to refer to distortions in the rate of some expression
response, and the term amplitude to refer to distortions in the magnitude of the
response. Consider, for example, the alignment shown in Figure 2. The first
segment in this alignment involves a noticeable amplitude difference (Time
Series B has a higher amplitude than Time Series A), and the last segment
involves significant stretching (this part of the response in Time Series B
happens more slowly than the corresponding part of Time Series A).

We define the score of an alignment segment to be:

log2 Si log2 a;
20} 207

score(q;,d;)=cor(q;,d;) — (O]

Here, g; and d; denote the i-th segments of series ¢ and d, respectively, s;
is the amount of stretching in the alignment of the i-th segments, a; is the
amplitude difference, and cor is the Pearson correlation. The stretching s; is
defined as the ratio of lengths between ¢; and d;, and q; is the amplitude ratio
between the two as determined by a weighted least squares fitting procedure.

The form of the stretching and amplitude terms comes from a generative,
probabilistic model we developed in earlier work (Smith et al., 2008). This
previous approach uses probability distributions over possible stretching and
amplitude values that have the following form:

—o2

e 2 —log2v

xe 202 | 10
o2 (10

The key property of this distribution is that it is symmetrical around 1 such
that P(x)="P('/,). Thus stretching, and amplitude values that deviate from 1
are penalized, and the penalty is the same regardless of which series, ¢ or d,
is considered to have the distortion.

For all of our experiments with COW and SCOW, we calculate
correlations in the following way. We first use B-splines (Rogers and Adams,
1989) to interpolate between the observations in our time series (which are
typically sparsely sampled). To calculate correlations between segments g;
and d;, we resample their spline approximations to the same predetermined
number of values for the two segments. We also alternately add and subtract
a tiny value € to values in g; and d;, so that correlation is always defined and
two segments with constant values will have a correlation of one.

Like COW, SCOW operates with a time complexity of O(n®), where n
is the length of the interpolated series to be aligned. Further, many of the
calculations in successive passes of SCOW are the same, and may be cached.
In contrast, the segment-based method from our previous work took ond)
time to do an exhaustive search for the best segments to align the series. The
speed-up is dramatic: what took the old method an hour to calculate takes
SCOW only a few seconds.

p(v)=

2.2 Clustered alignments

Now we describe the algorithm we have developed for computing clustered
alignments. The goal of this algorithm is to find sets of genes that would have
very similar alignments if they were aligned independently. The alignment

Table 2. The pseudocode for our clustered alignment algorithm

procedure ClusterAlignments (series d, series g,
# clusters k):

centroid[1] <—null alignment
for all (genes g):
possible[g] < ScoreGene(q,d,g,Align(q,d,{g}))
best[g] <~ ScoreGene(q,d, g, centroid[1])
for (i<2 to k):
Worst <—argmin g(best[g] —possible[g])
centroid|i] «<—Align(q,d,{worst})
for all (genes g): best[g] <
max(best[g], ScoreGene(q,d, g, centroid|il]))
repeat:

for all (centroids c): set[c] <0

for all (genes g):
s <—argmax,. (ScoreGenel(q,d,g,c))
set[s] < set[s]Ug

for all (centroids c): c¢<«-Align(d,q,set[c])
until sets converge

represented by each cluster may be quite different from the alignments that
the other clusters represent. This approach is motivated by the fact that the
relationship between two similar time series may differ depending on which
subset of genes we consider.

The algorithm we have devised is a variant of traditional k-means
clustering (Duda et al., 2000). In k-means, each cluster is represented by a
centroid and the clustering process involves iteratively refining the locations
of these centroids. For example, if we were clustering points in R”, each
centroid would be represented by a point in R”. In our clustered alignment
method, each ‘centroid’ is represented by an alignment (e.g. such as the one
illustrated in Fig. 2). In our algorithm, as in standard k-means, the number
of clusters is determined by a parameter £ that is provided as an input.

We reiterate that, in contrast to previous methods which have focused
on identifying clusters of genes that have similar expression profiles, our
algorithm is focused on identifying clusters in which the genes have similar
warpings. The genes in one of our clusters may have very different expression
profiles.

Table 2 shows the pseudocode for our alignment clustering method.
It takes as input two series, termed d and ¢, and the number of clusters k.
It relies on the subroutines A1 1 gn, which returns the best alignment between
two series based on a given set of genes, and ScoreGene, which returns
the score of two series when aligned using a given alignment and a specified
gene. We use SCOW to perform these functions, using SCOWAIign for
Align while using Equation (8) for ScoreGene. However, we could
substitute any other alignment algorithm for this purpose.

The first step in the method is to assign the initial alignment centroids.
We use a greedy method, similar to that used by Ernst ef al. (2005) to select
a representative set of gene alignments as the centroids. The first centroid
is taken to be the null alignment, which represents no warping. For each
gene, we record a best possible score (when the alignment is based solely
on that gene), and the best score seen so far for that gene using one of the
current centroids. Each additional centroid is initialized by finding the gene
with the largest difference between its best score so far and its possible high
score. The new centroid is the alignment calculated using this selected gene
alone. After each new centroid is determined, the best scores for all the genes
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are modified to take the new centroid into account. We proceed until all k
centroids are defined.

Now we perform the assignment step and the update step in turn until
convergence. For the assignment step, we score every gene with every
cluster’s centroid and assign the gene to the cluster with the highest score.
For the update step, we set each centroid to the alignment calculated by
aligning ¢ and d using just the set of genes assigned to the cluster.

‘We continue iterating until the cluster assignments do not change. Because
SCOW performs a heuristic search, however, it is possible that the process
will not converge. In practice, this is seldom a problem. We can simply stop
iterating after a large number of iterations, or when infinite loop conditions
are detected by retaining a short history of cluster assignments. Alternatively,
we can guarantee convergence by using an alignment algorithm that is exact.

3 RESULTS AND DISCUSSION

In this section, we describe a set of computational experiments
that are designed to (i) evaluate the alignment accuracy of SCOW
and our clustered alignment method, and (ii) assess how well the
clustered alignment algorithm is able to uncover sets of genes that
share similar alignments across two time series.

3.1 SCOW experiments

In our first set of experiments, we are interested in testing the ability
of the SCOW method to find accurate alignments. We do this in the
context of the task illustrated in Figure 1. Here, we are given an
expression profile as a query, and we want to identify the treatment
in the database that has the expression profile most similar to the
query. We construct queries for which we know the correct matching
database treatments and their correct alignments.

The data we use comes from the EDGE toxicology
database (Hayes et al., 2005), and can be downloaded from
http://edge.oncology.wisc.edu/. Our dataset consists
of 216 unique observations of microarray data, each of which
represents the expression values for 1600 different genes.! Each
of these expression values is calculated by taking the average
expression level from four treated animals, divided by the average
level measured in four control animals. The data are then converted
to a logarithmic scale, so that an expression value of 0.0 corresponds
to the average basal level observed in the control animals.

Each observation is associated with a treatment and a time point.
The treatment refers to the chemical to which the animals were
exposed and its dosage. The time point indicates the number of
hours elapsed since exposure occurred. Times range from 6h up
to 96 h. The data used in our computational experiments span 11
different treatments, and for each treatment there are observations
taken from at least three different time points. Additionally we can
assume that for all treatments, there exists an implicit observation
at time zero. This is the time at which the treatment was applied, so
all expression values are assumed to be at the basal level.

We assemble queries by randomly sub-sampling time series in
our dataset. We assemble 10 such queries from each treatment. We
build each query by first selecting the number of observations to
be in it, then choosing which time points will be represented, and
finally picking an observation for each of these time points. The
query sizes are chosen from a uniform distribution that ranges from

!Technically, the expression measurements correspond to clones selected
from liver-derived EST and full-length cDNAs. These clones represent
products for 1600 unique genes.

one up to the number of observed times in the given treatment. The
maximum size of a query is eight, although most consist of four or
fewer observations. The time points are chosen uniformly as are the
observations for each chosen time.

To test the ability of our approach to find accurate alignments in
situations that require warping, we also assemble cases in which
we distort the query time series temporally. We use three different
distortions. The first one doubles all times in the first 48 h (i.e. it
stretches the first part of the series), and then halves all times (plus
an offset for the doubling) for the next 24 h. The second distortion
halves for the first 36 h and then doubles for 60h. The third one
triples for the first 60 h and then thirds for another 20 h. It should be
noted that not all the treatment observations extend this long in time.
The short ones (e.g. those for which we only have measurements up
to 24 or 48 h) will thus not be distorted as much as the long ones.

We then classify and align the query using all the other
observations as the database. We preprocess both the query and the
11 database treatments using B-splines (Rogers and Adams, 1989) to
reconstruct pseudo-observations at every 4 h (starting at time zero,
when all expression values are at the basal level). We then align
the query against all 11 treatments using our method. We return the
database treatment with the highest scoring alignment, as defined
by Equation (8). Because the alignment also maps each query time
to a database treatment time, we can find the temporal error for any
query time point. We then measure how accurately we are able to (i)
identify the treatment from which each query series was extracted,
and (ii) align the query points to their actual time points in the
treatment. We refer to the former as treatment accuracy and the
latter as alignment accuracy.

We consider several other alignment methods as baselines. The
first is COW (Nielsen et al., 1998), as described in Section 2. The
second is a generative method we previously developed (Smith ez al.,
2008), which we refer to as Generative Multisegment. Like SCOW, it
finds alignments which consist of multiple segments each of which
can have different warping parameters. However, the Generative
Multisegment scoring function is based on a generative, probabilistic
model, rather than correlation. Further it performs a complete search
for the best segments to use, rather than using the heuristic search
of SCOW.

The next baseline we consider is traditional Euclidean dynamic
time warping (Sakoe and Chiba, 1978; Sankoff and Kruskal, 1983).
Briefly, this method computes alignments by creating a matrix I"
with elements defined recursively as

vi,j=D(d;,qj)+min [predDTw(Vi.j)] (1)

where D(d;,q;) is the Euclidean distance between points d; and g;
in the two series and predpry (¥ ;) refers to the matrix elements
adjacent to y;; with both indices less than or equal to i and j,
respectively. The first element y o is just the Euclidean distance
at time 0, and each other element y; ; is the score of warping d from
times O to i and ¢g from O to j. We then create a normalized score

matrix I’ where
Vij=vij/\li?+1j1% (12)

This makes it reasonable to compare warpings with different
treatments, where one or the other dimension has been shorted.
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Fig. 4. Treatment and alignment accuracies when there is no temporal distortion (A), and when there is (B). The top lines represent treatment accuracy, while
the bottom two lines add the criterion that the predicted times are within 24 h and 12 h, respectively, of the actual time, on average. For each alignment method,
we show results when splines of various orders are used to interpolate the time series before alignments are calculated. Highlights represent cases in which
there is a significant difference in accuracy from the corresponding SCOW case (P <0.05 with McNemar’s x 2-test).

Finally, we consider linear parametric warping. This is similar to
the method explored by Bar-Joseph et al. (2003), except that we
make the assumption that the series are aligned at time zero. To find
an alignment, we search possible slopes of the alignment line, and
return the slope that results in the least average Euclidean distance
between the query and the given database treatment.

For these experiments, SCOW, COW and Generative
Multisegment use three segments in their alignments, and we
set o5 and o, = 10. Using more segments and setting o5 and o, to
other values yields substantially similar results.

The results of this experiment are shown in Figure 4. Figure 4A
and B shows results for the queries without distortion and results
for the distorted queries, respectively. For each method, the top line
represents treatment accuracy with different orders of splines, the
middle line represents alignment accuracy by adding the criterion
that the average time error in the mapping is less than or equal
to 24 h, and the bottom line shows alignment accuracy where this
tolerance is decreased to 12 h. Highlighted boxes denote points that
are significantly different from the corresponding SCOW point, as
determined by McNemar’s Xz-test‘

There are several interesting conclusions we can draw from these
results. First, it is clear that the multi-segment alignments computed
by SCOW, COW and Generative Multisegment are superior to
the alignments determined by ordinary dynamic time warping and
the linear alignment method. Second, SCOW finds more accurate
alignments than the other two multi-segment algorithms, COW and
Generative Multisegment. Based on these results, we conclude that
SCOW is a state-of-the-art alignment method for gene-expression
time series, and we therefore use it as the core alignment method
for our clustered alignment approach.

3.2 Clustered alignment experiments

In our second set of experiments, we are interested in testing the
ability of our clustered alignment algorithm to identify sets of
genes that should share a common alignment. We first conduct an
experiment designed to determine if our clustered alignment method
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Fig. 5. Treatment and alignment accuracies, varying by the number of
clusters when using SCOW. In the final case (1600), we warp every gene
separately. Highlighted points are significantly different from the unclustered
case, (P < 0.05 under McNemar’s Xz—test).

is able to find more accurate alignments when there are sets of genes
that have different, known ‘correct’ alignments. This experiment is
similar to the one in the previous section—we use the same data
and substantially the same methodology. The difference is that we
simultaneously apply five different temporal distortions to every
query: each one is applied to 1/5 of the genes. We then run our
clustered alignment method, in conjunction with SCOW, on the data,
allowing the number of clusters k to range from one (i.e. unclustered,
ordinary SCOW) to 10. We also run the experiment with k£ = 1600,
which warps every gene separately.

The results for queries containing three or more observations are
shown in Figure 5. These results show the value of the clustered
alignment approach with this dataset. The accuracy of the alignments
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increases as k increases, until about k =4. After this point, there is
a slight degradation in accuracy. For almost all values of k tested,
however, the treatment and the 24 h alignment accuracies are greater
with the clustered alignment method than with ordinary SCOW.

With queries containing fewer than three observations, the
clustered alignment method actually results in somewhat less
accurate alignments than the non-clustered method (i.e. ordinary
SCOW). These results can be explained by a bias-variance trade-
off (Geman et al., 1992). The gene-expression data we use (like
most expression time series) is sparse in time, and prone to noise
(because of both technical limitations and biological variability
among the animals). The sparsity and noise mean that it is difficult
to compute accurate single-gene alignments. Aggregating genes
into clusters has a regularization effect as this alignment error
is averaged out (Bar-Joseph et al., 2003). The more genes there
are in a cluster, the greater the regularization effect. Thus we
want to find the ideal trade-off between the high-bias approach of
few clusters (or one cluster, in the limit), and the high-variance
approach of many clusters. The variance component of the error
is more significant in the case when the queries are short. We
can conclude, however, that the clustered alignment approach
demonstrates good predictive value for moderately sized queries
and a range of values of k.

In our second experiment, we are interested in identifying sets of
genes that are distorted in similar ways in a knockout experiment
focusing on circadian rhythms. Mop3 is a transcription factor in
hepatocytes (Bunger et al., 2000, 2005) that is a positive regulator
of circadian rhythm and activates the transcription of genes such
as Perl and Tim. There are two sets of mice in this experiment. The
control group has a functional Mop3 gene, while the knockout group
does not. This is a time-course study based on Zt which stands for
Zeitgeiber time—the number of hours after exposure to light begins.
Before Zt0, the mice are kept in darkness for a period. At Zt0 the
lights turn on, and at Zt12 they turn off again. At intervals of 4 h
from Zt0 to Zt20, three mice from each group are sacrificed, and
microarrays are derived from pooled RNA samples from the livers
of each set of mice. In all, 27 962 genes are measured. We interpolate
the series with B-splines so that we can sample measurements
every 2 h.

When aligning the control and knockout time series, we want
to allow phase shifting. That is, we want to allow alignments
of the two time series are not necessarily aligned at Zt0. In our
previous experiment, it was reasonable to assume that the expression
responses were all identical at time zero. We cannot make that
assumption in this case, however. We modify SCOW to allow phase
shifting by first concatenating the control time series with itself, to
obtain 2 days worth of data. When computing alignments, we allow
the control series to short at both ends by redefining the initialization
[Equation (1)] of rd.

Y0,x=0. 13)

However, we disallow the alignment from shorting the knockout
series, at either end, by using Equation (4) to score I'?. Thus, all
knockout series times must be mapped to some time in the control
series, but the zero times need not correspond.

Figure 6 shows alignments for several genes in each cluster,
as determined by our clustered alignment algorithm. Here, we set
the number of clusters k=5. Each panel represents one of the
clusters, and within each one we show the three genes with the

highest relative scores for that cluster. The white alignment path in
each plot represents the consensus alignment, when all genes are
warped as a unit. The black alignment path represents the cluster’s
individual alignment. Note that we only show 1 day in the control
dimension rather than 2 days. The alignments in panels C, D and
E, all extend into 2days. This is shown by a break in the black
alignment path, as it wraps back to the left side and the beginning
of the second day.

The clustered alignment allows us to uncover sets of genes that
are disrupted in a similar manner by the knockout, even when their
expression profiles are quite different. It is clear that the clustered
alignments align the series better than the consensus alignment.
Peaks and valleys in the expression data line up well for the black
cluster alignment paths, whereas they often do not for the white
consensus ones. For example, the genes in panel E have undergone
a large phase shift. The consensus path often matches segments with
quite different expression profiles, whereas the cluster path shifts the
starting point by 12 h and achieves good agreement. In panel D, the
genes appear to be acting more quickly in the knockout mice, while
the consensus alignment would indicate they are acting more slowly.
It should also be noted that often the genes within a cluster have very
different expression profiles. Consider panel D, in which the profiles
for the three genes are all quite different, but the mapping between
control and knockout is similar. This effect illustrates the advantage
of clustering alignments in contrast to clustering the expression
profiles directly.

4 CONCLUSION

Alignment algorithms provide a valuable approach for gaining
biological understanding from gene-expression time series. A variety
of methods have been employed for such analyses, including
dynamic time warping, linear alignment algorithms and multi-
segment alignment methods.

We have presented new methods which advance the state of
the art in two ways. Most importantly, we have developed an
algorithm which is able to compute clustered alignments. This
algorithm relaxes the assumption, common to previous work in
expression time-series alignment, that all genes should be warped
in the same way. Instead, our method identifies sets of genes that
share a common alignment. It does this by simultaneously clustering
genes and computing a shared alignment for the genes in each
cluster. The second contribution introduced here is a new multi-
segment alignment method, called SCOW, that features the ability to
calculate ‘shorted’ alignments, a correlation-based scoring function,
and an efficient dynamic programming algorithm for computing
alignments.

The results of our empirical evaluation indicate that both the
clustered alignment approach and SCOW improve the accuracy of
alignments computed with sparse time series from a toxicogenomics
dataset. Additionally, we applied our clustered alignment approach
to a dataset involving a conditional Mop3 knockout in mouse
liver. This analysis illustrates the power of the clustered alignment
approach to find sets of genes that share similar temporal distortions.
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