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Abstract: QO-40 (5-(chloromethyl)-3-(naphthalene-1-yl)-2-(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-
7(4H)-one) is a novel and selective activator of KCNQ2/KCNQ3 K+ channels. However, it remains
largely unknown whether this compound can modify any other type of plasmalemmal ionic channel.
The effects of QO-40 on ion channels in pituitary GH3 lactotrophs were investigated in this study.
QO-40 stimulated Ca2+-activated K+ current (IK(Ca)) with an EC50 value of 2.3 µM in these cells.
QO-40-stimulated IK(Ca) was attenuated by the further addition of GAL-021 or paxilline but not by
linopirdine or TRAM-34. In inside-out mode, this compound added to the intracellular leaflet of the
detached patches stimulated large-conductance Ca2+-activated K+ (BKCa) channels with no change
in single-channel conductance; however, there was a decrease in the slow component of the mean
closed time of BKCa channels. The KD value required for the QO-40-mediated decrease in the slow
component at the mean closure time was 1.96 µM. This compound shifted the steady-state activation
curve of BKCa channels to a less positive voltage and decreased the gating charge of the channel. The
application of QO-40 also increased the hysteretic strength of BKCa channels elicited by a long-lasting
isosceles-triangular ramp voltage. In HEK293T cells expressing α-hSlo, QO-40 stimulated BKCa

channel activity. Overall, these findings demonstrate that QO-40 can interact directly with the BKCa

channel to increase the amplitude of IK(Ca) in GH3 cells.

Keywords: OQ-40 (5-(chloromethyl)-3-(naphthalene-1-yl)-2-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-7-
(4H)-one); Ca2+-activated K+ current; large-conductance Ca2+-activated K+ channel; single-channel
kinetics; hysteresis

1. Introduction

QO-40 (5-(chloromethyl)-3-(naphthalene-1-yl)-2-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-
7-(4H)-one) is a highly pure, synthetic, and biologically active compound (Figure 1). This
compound has been previously reported to enhance KCNQ2/KCNQ3 heteromeric currents
expressed in Xenopus oocytes [1]. QO58-lysine, a compound structurally similar to QO-40,
can also activate neuronal KCNQ channels and exert antinociceptive effects on inflam-
matory pain [2–6]. The QO-58-induced amelioration of inflammatory pain observed in
rodents was previously viewed as being accompanied by the activation of KCNQ-encoded
K+ currents [3]. To date, however, none of the studies have thoroughly investigated with
the underlying mechanism of action of QO-40 or its structurally similar compounds on
other types of ionic currents (e.g., Ca2+-activated K+ current, [IK(Ca)]).
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nel activation of their own accord can conduct large amounts of K+ ions across the cell 
membrane. As a result of its high conductance, the BKCa channel is also thought to be a 
maxi- or large-K channel. These channels, which are functionally expressed in a wide va-
riety of excitable or nonexcitable cells, can play a role in numerous physiological or patho-
logical events, including neuronal excitability, neurotransmitter release, stimulus-secre-
tion coupling, muscle relaxation, and pain sensation [7–11]. Some small synthetic or nat-
ural molecules have been previously reported to be regulators of BKCa channel activity 
[9,11,12]. BMS-204352 (MaxiPostTM), known to exert anxiolytic effects, can activate BKCa 
channels and KCNQ-encoded currents [13,14]. Similarly, naringenin, a bioflavonoid, re-
portedly activates the M-type K+ current (IK(M)) and the activity of BKCa channels [15]. 

Therefore, based on the above-stated initiatives, the aims of the present work were 
(1) to test the hypothesis that QO-40 can affect whole-cell Ca2+-activated (or Ca2+-depend-
ent) K+ currents (IK(Ca)) in pituitary GH3 lactotrophs and (2) to address the issue of whether 
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The activity of BKCa channels has been previously demonstrated to be enriched in these 
cells [7,12]. In α-hSlo-expressing HEK293T cells, QO-40 also effectively stimulated BKCa 
cells. Our results provide the first evidence demonstrating that this compound can inter-
act with the BKCa channel to increase the amplitude of IK(Ca). Experiments described in this 
study are pertinently useful, as they highlight the potential mechanism of ionic actions of 
QO-40 or other structurally similar synthesized compounds (i.e., a series of pyrazolol[1,5-
a]pyrimidin-7(4H)-one [PPO] derivatives), although these compounds have been used as 
activators of M-type K+ currents (IK(M)) [1,3,16]. 

2. Results 
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configuration of the patch-clamp experiments to evaluate any possible adjustments of 
QO-40, a synthetic and biologically active compound, on IK(Ca) identified from GH3 cells. 

Figure 1. Chemical structure of QO-40.

Big-, large-, or high-conductance Ca2+-activated K+ (BKCa or BK) channels (KCa1.1,
KCNMA1, Slo1), which belong to a family of voltage-activated K+ channels, are stimulated
by increasing cytosolic Ca2+ concentrations, membrane depolarization, or both. The
channel activation of their own accord can conduct large amounts of K+ ions across the
cell membrane. As a result of its high conductance, the BKCa channel is also thought to be
a maxi- or large-K channel. These channels, which are functionally expressed in a wide
variety of excitable or nonexcitable cells, can play a role in numerous physiological or
pathological events, including neuronal excitability, neurotransmitter release, stimulus-
secretion coupling, muscle relaxation, and pain sensation [7–11]. Some small synthetic
or natural molecules have been previously reported to be regulators of BKCa channel
activity [9,11,12]. BMS-204352 (MaxiPostTM), known to exert anxiolytic effects, can activate
BKCa channels and KCNQ-encoded currents [13,14]. Similarly, naringenin, a bioflavonoid,
reportedly activates the M-type K+ current (IK(M)) and the activity of BKCa channels [15].

Therefore, based on the above-stated initiatives, the aims of the present work were
(1) to test the hypothesis that QO-40 can affect whole-cell Ca2+-activated (or Ca2+-dependent)
K+ currents (IK(Ca)) in pituitary GH3 lactotrophs and (2) to address the issue of whether
and how this compound can perturb the activity and kinetic properties of BKCa channels.
The activity of BKCa channels has been previously demonstrated to be enriched in these
cells [7,12]. In α-hSlo-expressing HEK293T cells, QO-40 also effectively stimulated BKCa
cells. Our results provide the first evidence demonstrating that this compound can interact
with the BKCa channel to increase the amplitude of IK(Ca). Experiments described in this
study are pertinently useful, as they highlight the potential mechanism of ionic actions of
QO-40 or other structurally similar synthesized compounds (i.e., a series of pyrazolol[1,5-
a]pyrimidin-7(4H)-one [PPO] derivatives), although these compounds have been used as
activators of M-type K+ currents (IK(M)) [1,3,16].

2. Results

2.1. Stimulatory Effect of QO-40 on IK(Ca) Recorded from Pituitary GH3 Lactotrophs

In the first stage of electrophysiological measurements, we performed the whole-cell
configuration of the patch-clamp experiments to evaluate any possible adjustments of
QO-40, a synthetic and biologically active compound, on IK(Ca) identified from GH3 cells.
We performed voltage-clamp current recordings as cells were immersed in HEPES-buffered
normal Tyrode’s solution in which 1.8 mM CaCl2 was present, and the recording pipet
was backfilled with a K+-containing solution that contained 140 mM K+, 0.1 mM EGTA
and 3 mM ATP. As the whole-cell mode (i.e., in situations where the membrane patch
was broken by suction) was achieved, we held the cell in the voltage clamp at 0 mV to
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ensure the inactivation of other types of outwardly rectifying K+ currents and minimal
interference by voltage-activated Ca2+ currents [17–19]. Ionic currents were thereafter
elicited in response to a series of voltage commands ranging between 0 and +60 mV.
This type of macroscopic outward K+ current, which is biophysically characterized by a
markedly noisy and outwardly rectifying property, is IK(Ca) [7,17,20]. These currents are
particularly subject to inhibition by tremorgenic mycotoxins (e.g., paxilline, penitrem A, or
verruculogen) [21]. As demonstrated in Figure 2A,B, within 1 min of exposing GH3 to QO-
40 (3 µM), there was a progressive increase in the IK(Ca) amplitude measured throughout
all voltage-clamp steps examined.
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Figure 2. Stimulatory effect of QO-40 on the magnitude of whole-cell Ca2+-activated K+ current (IK(Ca)) recorded from GH3

pituitary tumor cells. This set of voltage-clamp experiments was undertaken in cells which were kept immersed in normal
Tyrode’s solution containing 1.8 mM CaCl2; the recording pipet used was backfilled with a K+-containing solution. We
elicited IK(Ca) from a holding potential of 0 mV to test potentials in the range of 0 and +60 mV (10 mV increments) at a rate
of 0.1 Hz. (A) Representative IK(Ca) traces activated in response to a series of voltage steps (indicated in the uppermost part).
Current traces in the upper part are controls (i.e., QO-40 was not present), while those in the lower part were obtained in the
presence of 3 µM QO-40. Arrowhead in each panel denotes the zero-current level, calibration mark in the right lower corner
applies to all current traces illustrated, and the duration of square voltage command pulse applied was set in the range of
300 and 180 ms (30 ms decrements). (B) Mean current–voltage (I-V) relationship of IK(Ca) obtained in the control, during
the exposure to 3 µM QO-40, or after washout of QO-40. Each point represents the mean SEM (n = 7–9). The statistical
analyses were undertaken by ANOVA-2 for repeated measures, p (factor 1, groups among data taken at different levels of
voltage) < 0.05, p (factor 2, groups between the absence and presence of 3 µM QO-40) < 0.05, p (interaction) < 0.05, followed
by post hoc Fisher’s least-significant difference test, p < 0.05. (C) Concentration–response relationship for QO-40-induced
stimulation of IK(Ca). Current amplitude was taken at the end of depolarizing pulse from 0 to +50 mV. Data analysis was
performed by ANOVA-1 (p < 0.05). The smooth dashed line is fitted to the Hill equation. The values for EC50, maximal
percentage increase in IK(Ca) amplitude, and Hill coefficient were yielded to be 2.3 µM, 100%, and 1.3, respectively. Each
point represents the mean ± SEM (n = 8).

A concentration-dependent relationship of the QO-40-mediated stimulation of IK(Ca)
amplitude observed in GH3 cells is illustrated in Figure 2C. Of note, this compound led to
the simulation of IK(Ca) amplitude in a concentration-dependent manner. Based on a least-
squares fit to the modified Hill equation, the experimental results yielded a concentration
required for half-maximal stimulation (i.e., EC50) of 2.3 µM and a Hill coefficient of 1.3.

2.2. Comparisons among the Effects of QO-40, QO-40 Plus Linopirdine, QO-40 Plus TRAM-34,
QO-40 Plus GAL-021 and QO-40 Plus Paxilline on IK(Ca) Amplitude in GH3 Cells

We next tested whether the stimulatory effect of QO-40 on IK(Ca) was attenuated by
linopirdine, TRAM-34, GAL-021, or paxilline. Linopirdine inhibits M-type K+ current
(IK(M)), and TRAM-34 inhibits intermediate-conductance Ca2+-activated K+ (IKCa) chan-
nels [15,22,23], while GAL-021 and paxilline suppress the activity of large-conductance
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Ca2+-activated K+ (BKCa) channels [21,24,25]. As demonstrated in Figure 3, when cells
were continually exposed to QO-40 (3 µM), neither linopirdine (10 µM) nor TRAM-34
(3 µM) could attenuate QO-40-stimulated IK(Ca); conversely, the subsequent addition of
GAL-021 (3 µM) or paxilline (1 µM) led to effective attenuation of the increase in IK(Ca)
amplitude. These findings demonstrated that the IK(Ca) amplitude stimulated by QO-40
is not modified by blockers of IK(M) or IKCa channels, but its actions can enhance BKCa
channel activity.
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Figure 3. Effects of linopirdine, TRAM-34, GAL-021, and paxilline on QO-40-stimulated IK(Ca) in GH3 cells. In this set of
experiments, whole-cell current recordings were undertaken in cells bathed in normal Tyrode’s solution, and the pipet was
backfilled with K+-containing internal solution. (A) Representative IK(Ca) traces in the absence (a, blue color) and presence
of either QO-40 (b, red color), QO-40 plus linopirdine (c, upper panel, green color), or QO-40 plus paxilline (c, lower panel,
brown color). The uppermost part shows the voltage-clamp protocol used. (B) Vertical scatter graph showing effects of
linopirdine, TRAM-34, GAL-021, or paxilline on QO-40-induced stimulation of IK(Ca) (mean ± SEM; n = 6–8 for each point).
QO-40: 3 µM QO-40; Lino: 10 µM linopirdine; TRAM-34: 3 µM TRAM-34; GAL-021: 3 µM GAL-021; Pax: 1 µM paxilline.
Data analysis was performed by ANOVA-1 (p < 0.05). * Significantly different from control (p < 0.05) and † significantly
different from QO-40 (3 µM) alone group (p < 0.05).

2.3. Stimulatory Effect of QO-40 on Large-Conductance Ca2+-Activated K+ (BKCa) Channels in
GH3 Cells

As IK(Ca) is biophysically a large, noisy, voltage-dependent, Ca2+-sensitive K+ current,
its current strength is mostly due to the opening of BKCa channels in GH3 cells [17,18,26].
Therefore, we further explored whether QO-40 has any effect on the activity of BKCa chan-
nels. All inside-out current recordings are presented, and the following recordings were
bathed in a symmetrical K+ concentration (145 mM) and bath medium containing 0.1 µM
Ca2+. During measurements, we kept the cell in a voltage clamp at a holding potential of
+60 mV. As illustrated in Figure 4A, after the addition of QO-40 (3 µM) into the cytosolic
leaflet of the channel, a drastic increase in channel open-state probability was observed.
As they were recorded from the detached patches of GH3 cells, the probabilities that BKCa
channels would be open significantly and consistently increased from 0.013 ± 0.008 to
0.029 ± 0.014 (n = 8, p < 0.05) during exposure to 3 µM QO-40. After washout of the
compound, the channel activity was reduced to 0.015 ± 0.008 (n = 7, p < 0.05). As shown
in Figure 4B, BKCa-channel activity did not differ between the absence (i.e., in the control
period) and presence of of 3 µM QO-40 plus 1 µM paxilline. Moreover, in the continued
presence of QO-40, neither linopirdine (10 µM) nor TRAM-34 (3 µM) could attenuate QO-
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40-mediated stimulation of BKCa channel activity, although further application of paxilline
(1 µM) could reverse the increase in channel opening probability (Figure 4C).
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channel amplitude. In excised patches of control cells (i.e., QO-40 was not present), open- 
or closed-time histograms at the level of +60 mV can be fitted with the goodness of fit by 
a one- or two-exponential curve, respectively. Of note, in detached patches, the addition 
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strated in Figure 5A, the slow component of mean closed time of BKCa channels was short-
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2.4. Effect of QO-40 on Kinetic Behavior of BKCa Channels

We continued to analyze the effects of QO-40 on the gating mechanisms that control
the opening or closing of these channels due to its ineffectiveness in changing the single-
channel amplitude. In excised patches of control cells (i.e., QO-40 was not present), open-
or closed-time histograms at the level of +60 mV can be fitted with the goodness of fit by a
one- or two-exponential curve, respectively. Of note, in detached patches, the addition of
QO-40 (3 µM) did not change the mean open time of the channel (2.22 ± 0.12 ms (control)
versus 2.24 ± 0.13 ms (in the presence of 3 µM QO-40); n = 7, p > 0.05). However, as
demonstrated in Figure 5A, the slow component of mean closed time of BKCa channels
was shortened to 36 ± 4 ms (n = 7, p < 0.05) from a control of 146 ± 11 ms (n = 7), although
no modification in the fast component of mean close time of the channel was detected
(13 ± 3 ms (control) versus 12 ± 3 ms (in the presence of 3 µM QO-40); n = 7, p > 0.05).
Herein, the results showed that the presence of QO-40 could result in an evident decrease
in the channel closure time, notwithstanding its ineffectiveness on the mean opening time
of the channel observed at +60 mV (2.32 ± 0.12 ms (in control) versus 2.33 ± 0.13 ms (in the
presence of QO-40); n = 7, p > 0.05). Due to the lack of change in single-channel amplitude,
such perturbations in the gating closing of the channel help account for its stimulatory
effect on BKCa channels present in GH3 cells.
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of the reciprocal of slow component in the mean closed time of the channel versus the QO-40 concentration (B). In (A),
mean closed-time histogram of BKCa channels in the absence (left) or presence (right) of QO-40 (10 µM) in GH3 cells is
illustrated, respectively. Under symmetrical K+ concentrations (145 mM) in which bath medium contained 0.1 µM Ca2+, the
potential was voltage-clamped at +60 mV, and the inside-out configuration was performed. The closed-time histogram
in the absence or presence of 10 µM QO-40 was least-squares fitted by a sum of two-exponential function (indicated by
nonlinear continuous curve, pink color) with a mean closed time of 13 and 146 ms, or 12 and 36 ms, respectively. The x-
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*) or backward (off, k−1) rate constant for QO-40-induced decrease in the slow component of the mean closed time of the
channel was calculated to be 2.298 s−1µM−1 or 4.512 s−1, respectively. Mean ± SEM (n = 8–10 for each point).

In an effort to quantitatively estimate the QO-40-mediated decrease in the slow com-
ponent of the mean closure time of BKCa channels recorded from GH3 cells, changes in
the mean closure times at varying QO-40 concentrations were further analyzed. The con-
centration dependence of changes in the slow component of the mean closed time in the
presence of QO-40 is illustrated in Figure 5B. The presence of QO-40 led to a concentration-
dependent increase in the reciprocal (i.e., 1/τ) of the slow component in the mean closed
time of the BKCa channel. A linear relationship between 1/τ and the QO-40 concentration
with a correlation coefficient of 0.96 is illustrated (Figure 5B). The minimal reaction scheme
detailed in Section 4 is closed ↔ open ↔ open·bound. The forward (or on) or backward
(or off) rate constant was thereafter analyzed and yielded 2.298 s−1 µM−1 or 4.512 s−1,
respectively; therefore, the value of the dissociation constant (KD = k−1/k+1

*) was 1.96 µM.
Of note, this value is consistent with the effective EC50 of the QO-40-stimulated IK(Ca)
amplitude described above. Therefore, the QO-40-stimulated IK(Ca) observed in whole-cell
mode is greatly linked to its reduction in the mean closure time of BKCa channels.

2.5. Effect of QO-40 on the Steady-State Activation Curve of BKCa Channels in GH3 Cells

We continued to measure the amplitude of single BKCa channels at different voltages
ranging between +50 and +100 mV. Throughout all voltage ranges examined, the I-V
relationship of the BKCa channel in the absence or presence of QO-40 was compared. In
the control (i.e., QO-40 was not present), fitting these current amplitudes with a linear
regression revealed a single channel conductance of 162 ± 8 pS (n = 9). As illustrated in
Figure 6A,B, the value did not differ significantly from that (164 ± 9 pS, n = 9) taken in the
presence of QO-40 (3 µM). Therefore, when applied intracellularly, QO-40 does not appear
to perturb the single-channel conductance of the channel, but it does greatly increase the
activity of BKCa channels in GH3 cells. Figure 7C illustrates the steady-state activation curve
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of BKCa channels obtained in the absence or presence of QO-40 (3 µM). The relationship
between the membrane potentials and the probabilities of BKCa channel openings with or
without the addition of this compound (3 µM) was constructed and plotted. The data were
least-squares fitted by the Boltzmann equation, as elaborated in Section 4. In the control
(i.e., QO-40 was not present), n = 0.052 ± 0.009, V1/2 = 73.1 ± 2.6 mV, and q = 6.5 ± 0.8 e
(n = 7), while in the presence of QO-40 (3 µM), n = 0.156 ± 0.011, V1/2 = 57.1 ± 7 mV, and
q = 8.8 ± 0.8 e (n = 7). Therefore, the presence of QO-40 (3 µM) produced a 3-fold increase
in the maximal open-state probability of BKCa channels, shifted the steady-state activation
curve of a less positive membrane potential by 14 mV, and increased the gating charge by
1.4-fold. These results demonstrate that QO-40 can stimulate the activity of BKCa channels
in a voltage-dependent manner in GH3 cells.
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Figure 6. Effect of OD-40 on BKCa-channel activity measured at the different levels of membrane potentials. Inside-out
current recordings were performed in these experiments; cells were bathed in high-K+ solution (145 mM) containing
0.1 µM Ca2+. (A) Representative current traces obtained in the absence (left, blue color) and presence (right, red color) of
3 µM OD-40. The number shown in each panel indicates the membrane potential held, and the upper deflection is the
opening event of the channel. (B) Relationship of single-channel current versus membrane potential (mean ± SEM; n = 9
for each point). The dashed lines were pointed to the reversal potential with 0 mV. Notice that the two lines are virtually
superimposed, indicating the single-channel conductance of BKCa channels did not differ between the absence (filled
symbol, blue color) and presence (open circles, red color) of OD-40. (C) The steady-state activation curve of BKCa obtained
with or without addition of 3 µM OD-40 (mean ± SEM; n-7 for each point). The statistical analyses were undertaken by
Student’s t-tests (p < 0.05). Continuous sigmoidal lines were best fit to the modified Boltzmann equation as described under
Section 4.

2.6. Effect of QO-40 on the Voltage-Dependent Hysteresis of BK-Channel Activity Elicited in
Response to a Long-Lasting Isosceles-Triangular Ramp Pulse

The voltage-dependent hysteresis of ionic currents, namely, a lag in current magnitude
as the linear voltage command is changed in the opposite direction, exerts noticeable
actions reminiscent of electrical activity, such as action potential firing (i.e., initial depolar-
ization and late repolarization) [27,28]. Therefore, we explored whether voltage-dependent
hysteresis existed in the BKCa channel activity recorded from GH3 cells. In this set of
inside-out experiments, we exploited a long (2.8 s in duration) upright triangular ramp
pulse with a ramp speed of ±93 mV/sec for measurements of the hysteretic characteristics
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(Figure 7A). Of note, as illustrated in Figure 7, the trajectory of channel activity activated by
the upsloping ramp pulse (i.e., the voltage change from −50 to +80 mV) and downsloping
(i.e., the change from +80 to −50 mV) as a function of time was overly discriminated
between these two limbs. In other words, in the presence of 3 µM QO-40, the relative
channel open probability evoked by the upsloping (forward) end of the upright isosceles-
triangular voltage ramp was higher than that in response to the downsloping (backward)
end (Figure 7B). The observations enabled us to demonstrate that the voltage dependence
of deactivation might shift to more positive potentials with increasing QO-40 concentration
as more energy is required to close the channels and that the mode shift corresponds to the
presence of distinct protein conformations [28,29].
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Figure 7. Effect of QO-40 on the voltage-dependent hysteresis of BKCa channels identified from GH3 cells. In this set of
inside-out current recordings, we bathed cells in symmetrical K+ solution (145 mM). (A) Representative current traces
obtained in the presence of QO-40 (3 µM). Channel activities were activated in response to long isosceles-triangular ramp
pulse with a duration of 2.8 sec (indicated in the Inset). The dashed arrow indicates the direction of current flow through the
channel in which time passes. (B) The relationship of the relative channel open probability versus membrane potential of
BKCa channels in response to the forward (blue color) or backward (pink color) limb of triangular ramp pulse. (C) Vertical
scatter graph showing effect of varying QO-40 concentrations on the hysteresis of BKCa channels. Hysteresis was measured
at the voltage separation between the forward and backward limb at 50% of the relative channel open probability. Inside-out
configuration was made, and a ramp speed of ±93 mV/s was applied to the patch. Each point indicates the mean ±
SEM (n = 7). Data analysis was performed by ANOVA-1 (p < 0.05). * Significantly different from 1 µM QO-40 alone group
(p < 0.05).

For quantification, we further evaluated the degree of voltage-dependent hysteresis
based on the voltage separation between the upsloping and downsloping branches at 50%
of the relative channel open probability of BKCa channels [27]. As shown in Figure 7C, the
presence of QO-40 can concentration-dependently increase the overall hysteretic strength
of BKCa channels in GH3 cells. For example, as single-channel recordings were established,
the addition of 3 or 10 µM QO-40 could increase the hysteretic strength up to 12.1 ± 1.4 or
14.9 ± 1.9 mV, respectively.

3. Discussion

In this study, QO-40 (3 µM) not only produced a shift of 14 mV to a less positive
potential in the steady-state activation curve of BKCa cells but also increased the gating
charge by 1.4-fold; however, it failed to change the single-channel conductance of the
channel. The QO-40-mediated stimulation of BKCa channels in GH3 cells was not attenu-
ated by linopirdine or TRAM-34 but was attenuated by paxilline. With the long-lasting
isosceles-triangular ramp pulse, the presence of different QO-40 concentrations enhanced
the voltage-dependent hysteretic strength of BKCa channels. Although the detailed mech-
anism of the stimulatory actions of QO-40 on BKCa channel activity is not yet known,
experimental observations suggest that QO-40 can enhance the activity of BKCa channels
in a voltage-dependent manner. Consequently, its interaction with the channel would
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considerably vary with either the pre-existing level of resting potential, the discharge
patterns of action-potential firing, the concentration of QO-40 used, or any combinations.

In the present report, the effective EC50 value required for the QO-40-induced stimu-
lation of macroscopic IK(Ca) seen in GH3 cells was estimated to be 2.3 µM, a value that is
lower than the EC50 (3.5 µM) needed for cilostazol-stimulated BKCa channels. Cilostazol
was previously reported to be a stimulator of BKCa channels [29]. Moreover, according
to the first-order reaction scheme stated in Section 4, we were able to yield the KD value
needed for its shortening in the slow component of the mean closure time of the BKCa
channel with 1.96 µM, a value that is close to the EC50 value for QO-40-stimulated IK(Ca).
These results demonstrate that QO-40-stimulated IK(Ca) in GH3 cells is largely accounted
for by its decrease in the mean closure time of BKCa channels. Alternatively, the maximal
concentration of QO-58, a synthesized compound that is structurally similar to QO-40,
following oral administration at 25, 50, or 100 mg/kg, has been previously reported to
reach 8.25, 16.29 or 18.27 mg/liter (i.e., approximately 18.6, 37, or 41 µM), respectively [30].
In this scenario, the stimulatory effects of QO-40 on BKCa channels demonstrated here
would apparently be of pharmacological or therapeutic value [3], as this compound at
lower concentrations is effective at stimulating IK(Ca) and enhancing BKCa-channel activity.
Indeed, the QO-40 concentrations for these actions tend to overlap those needed for the
activation of KCNQ currents [1,3,16]. The compounds structurally similar to QO-40 (i.e.,
PPO derivatives with different groups substituted at the C-2, C-3, and C-5 positions), as
reported previously [1,16], are likely to elicit similar results as QO-40′s interaction with
BKCa channels, which can increase the channel open-state probability and consequently
enhance whole-cell IK(Ca) amplitude. Due to their high potency, the emerging data may
be important in interpreting the in vivo mechanism of actions of this compound and its
structurally similar PPOs. Alternatively, it remains to be answered whether the rank po-
tency order for these synthetic PPO derivatives in activating BKCa channels would share a
similar magnitude for their stimulation of KCNQ currents.

Of note, the M-type K+ current (IK(M)) activated by membrane depolarization may
somehow coincide with other types of outward K+ currents (e.g., IK(Ca)) existing in different
types of cells, including CHO or HEK293 native cells. Neurons derived from dorsal root
ganglia have abundant BKCa channel activity, which is thought to be closely linked to pain
sensation [2,8,11,31–33]. As such, the ameliorating effects of QO-40 on inflammatory pain
in rodents, as reported previously [3,5], could be partly, if not entirely, explained by its
concurrent and synergistic activation of BKCa channels, which remain functionally active
in dorsal root ganglion neurons [8].

The results from the inside-out current recordings are important because they suggest
that QO-40 may bind to a site located in the cytoplasmic leaflet of the α-subunit, thereby re-
sulting in the elicitation of BKCa channels in a concentration-, voltage-, and state-dependent
manner. It is reasonable to speculate, therefore, that in addition to KCNQ channels [1,30],
the BKCa channel α-subunit may be another important target of QO-40 on plasmalem-
mal ion channels. However, the extent to which QO-40 or other PPO derivatives affect
other variants of BKCa channels in different types of cells needs to be further investigated.
BMS-204352 or naringenin is an activator of both BKCa channels and KCNQ-encoded K+

currents [15]. It is thus plausible to note from the present observations that BKCa and
KCNQ2/KCNQ channels share unique motifs or recognition sequences with which some
small-molecule compounds can interact.

The activation of BKCa channels induced by QO-40 in GH3 cells also shared similar
characteristics as those demonstrated in HEK293T cells in which α-hSlo channels were
functionally expressed (Supplementary Information Figure S1). Our results suggest that
QO-40 may bind to a site located on the cytoplasmic side of the α-subunit. However, it
remains to be resolved whether different accessory β-subunits of the channel may affect
the QO-40-stimulated activity of BKCa channels.

An equally important finding observed in this study was the emergence of voltage-
dependent hysteresis of single BKCa channel activity activated in response to the long
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upright isosceles-triangular ramp pulse when the detached patches of GH3 cells were
exposed to varying QO-40 concentrations. With increasing QO-40 concentration, the hys-
teretic strength of the channel (i.e., difference in the voltage between the upsloping and
downsloping limbs at 50% channel open probability) was robustly enhanced, suggesting
that as the QO-40 concentration increased, deactivation of the channel intrinsically changed
the voltage dependence in situations where the V1/2 values at the forward and backward
ends of the triangular ramp widened. However, in the presence of varying QO-40 concen-
trations, no obvious change in the single-channel conductance of BKCa channels during the
hysteretic changes activated in response to a long triangular ramp pulse was demonstrated,
although the channel open probability existing at the forward and backward limbs of the
isosceles-triangular ramp pulse became overly distinguishable. Therefore, the observed
change in voltage-dependent hysteresis in the presence of QO-40 does not appear to be
located at the pore region of the channel, despite being intrinsically hysteretic in channel
activity. Nevertheless, either the voltage dependence of BKCa channels or a significant
mode shift, where there is voltage sensitivity in the gating charge movements of the cur-
rent, might potentially appear in the presence of QO-40 [27,28]. Further work is required
to evaluate the extent to which the direct QO-induced hysteretic changes (i.e., dynamic
voltage dependence) in BKCa channels impact cell behavior in different cell types.

Some compounds known to augment IK(M) (e.g., diclofenac, naringenin, or flupir-
tine) have previously been shown to perturb other types of voltage-activated K+ cur-
rents [15,34,35]. It appears that QO-40 or other structurally similar compounds (e.g., PPO
derivatives) do not exclusively act on KCNQ channels, as suggested previously [1,3,16].
From this perspective, QO-40′s modifications of ionic currents described presently with
effective EC50 or KD values required for the stimulation of BKCa channels may well be
repurposed or entailed to exert a strong impact on the functional activities of varying cell
types occurring in vitro or in vivo if they functionally express BKCa channels. Regardless
of the mechanisms possibly involved, the effectiveness of QO-40 or other structurally
similar compounds in activating BKCa channels should be noted carefully in relation to its
increasing use as an activator of KCNQ/M channels.

Of note, the IK(Ca) found in glioma cells are mediated by an isoform of the BKCa
channel, termed gBK, which contains a 34-amino-acid insert at splice sites [36]. Additionally,
the mitochondrial BKCa channels have been previously reported [37]. Whether QO-40 can
exert any effects on these glial or mitochondrial BKCa channels or on other channel proteins
remains to be further investigated.

The study limitation in this study must be emphasized. In the whole cell experiments,
QO-40 was applied extracellularly, while in inside-out current recordings, it was applied
intracellularly. In whole-cell mode, current amplitudes were contaminated with Ca2+

ions and 0.1 mM EGTA, while in single-channel recordings, 0.1 µM Ca2+ was present in
bath medium. Moreover, the voltage ranges applied to activate BKCa in this study were
observed to be more positive, although this could be due to the possibility that the bath
medium contained high-K+ solution. Therefore, the experimental conditions in this study
might not be physiological.

4. Materials and Methods

4.1. Chemicals and Solutions Used in This Work

QO-40 (5-(chloromethyl)-3-(naphthalen-1-yl)-2-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-
7(4H)-one, 5-(chloromethyl)-3-naphthalen-1-yl-2-(trifluoromethyl)-1H-pyrazolo[1,5-a]pyrimidin-
7-one, C18H11ClF3N3O, https://www.alomone.com/p/qo-40/Q-265, https://pubchem.ncbi.
nlm.nih.gov/#query=QO-40, accessed on 16 May 2011), and paxilline were acquired from
Alomone (Asia Bioscience, Taipei, Taiwan). GAL-021 was obtained from MedChemExpress
(Biogenesis Technologies, Taipei, Taiwan), linopirdine was obtained from Sigma-Aldrich (Merck,
Taipei, Taiwan), and TRAM-34 was obtained from Togenesis Technologies (Taipei, Taiwan).
QO-40 was dissolved in DMSO as a 20 mM stock solution, and it was thereafter diluted in
extracellular solution to the final concentrations achieved; the vehicle at the final concentration

https://www.alomone.com/p/qo-40/Q-265
https://pubchem.ncbi.nlm.nih.gov/#query=QO-40
https://pubchem.ncbi.nlm.nih.gov/#query=QO-40


Pharmaceuticals 2021, 14, 388 11 of 16

did not affect the channel activity. QO-40 stock solutions were refrigerated at 4 ◦C and kept in
foil to prevent light degradation. For cell preparations, we acquired all culture media, fetal calf
serum, horse serum, L-glutamine, and trypsin/EDTA from HyCloneTM (Thermo Fisher; Level
Biotech, Tainan, Taiwan), whereas other chemicals were of analytical grade. In the experiments,
we used double-distilled water that had been deionized through a Millipore-Q purification
system (Merck, Taipei, Taiwan).

The composition of extracellular solution (i.e., HEPES-buffered normal Tyrode’s so-
lution) was as follows (in mM): NaCl 136.5, KCl 5.4, CaCl2 1.8, MgCl2 0.53, glucose 5.5,
and HEPES 5.5 adjusted to pH 7.4 with NaOH. To measure flow through macroscopic K+

currents (e.g., IK(Ca)), we filled a pipet with the following solution (in mM): KCl 140, MgCl2
1, Na2ATP 3, Na2GTP 0.1, EGTA 0.1, and HEPES 5 adjusted to pH 7.2 with KOH. To record
the activity of BKCa channels under the inside-out configuration, the bath solution con-
tained a high K+ solution (in mM): KCl 130, NaCl 10, MgCl2 3, glucose 6, and HEPES-KOH
buffer 10 adjusted to pH 7.4 with KOH. Based on a dissociation constant of 0.1 µM for
EGTA and Ca2+ (at pH 7.2), we estimated the free Ca2+ concentration. For example, to
provide 0.1 µM Ca2+, we added 1 mM EGTA, and 0.5 mM CaCl2 was added to the bath
solution. We also filtered the pipet solutions and culture media on the day of measurements
with an Acrodisc® syringe filter with a 0.2 µm Supor® membrane (Bio-Check; New Taipei
City, Taiwan).

4.2. Cell Preparations

The GH3 clonal cell line was acquired from the Bioresources Collection and Research
Center ([BCRC-60015]; Hsinchu, Taiwan). We cultured cells in Ham’s F-12 medium supple-
mented with 15% (v/v) horse serum, 2.5% (v/v) fetal calf serum, and 2 mM L-glutamine.
To promote cell differentiation, we transferred cells to serum-free, Ca2+-free medium. Cells
were maintained at 37 ◦C in a humidified atmosphere containing 95% air and 5% CO2.
Cell viability was evaluated using the trypan blue dye exclusion test. For subculturing,
we trypsin-dissociated cells and passaged them every 2–3 days, while a new stock line
was generated from frozen cells (frozen in 10% glycerol in medium plus serum) every
3 months. Electrical recordings were performed five or six days after cells had been cultured
(60–80% confluence). The preparation of α-hSlo-expressing HEK293T cells is described in
the Supplementary Information Figure S1.

4.3. Electrophysiological Recordings

Immediately before each experiment, GH3 or HEK293T cells were dispersed, and an
aliquot of cell suspension was rapidly transferred to a custom-built recording chamber
and allowed to settle to the bottom of the chamber. The recording chamber was firmly
positioned on the stage of an inverted phase-contrast microscope (Diaphot-200; Nikon; Lin
Trading Co., Taipei, Taiwan). The microscope was coupled to a video camera system with
magnification up to 1500× to monitor cell size during the experiments. Cells were kept in a
bath at room temperature (20–25 ◦C) in normal Tyrode’s solution containing 1.8 mM CaCl2.
The patch pipets were pulled from Kimax-51 thin-walled unfilamented capillaries with a
1.5–1.8 mm outer diameter (#34500; Kimble; Dogger, New Taipei City, Taiwan) using a two-
stage PP-83 puller (Narishige; Taiwan Instrument, Tainan, Taiwan), and the tips were then
fire-polished with an MF-83 microforge (Narishige). When filled with pipet solution, the
resistances ranged between 3 and 5 MΩ. We performed standard patch-clamp recordings in
cell-attached, inside-out, or whole-cell configurations using an RK-400 amplifier (Bio-Logic,
Claix, France) [17,18]. Any seals less than 1 GΩ were discarded. Junctional potentials,
which develop at the pipet tip when the composition of the internal solution differed
from that in the bath, were nulled before the start of each giga-seal formation, and such
potentials then corrected the whole-cell data. The tested compounds were either applied
through perfusion or added to the bath to achieve the final concentration indicated. During
measurements, the signals, consisting of voltage and current tracings, were stored online at
10 kHz in an ASUSPRO-BU401 LG laptop computer (ASUS, Tainan, Taiwan) equipped with
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a Digidata-1440A device (Molecular Devices; Advance Biotech, New Taipei City, Taiwan)
and controlled by pCLAMP 10.7 software (Molecular Devices).

4.4. Data Analyses

To calculate the percentage stimulation of IK(Ca) by QO-40, we incubated cells in normal
Tyrode’s solution containing 1.8 mM CaCl2. The examined cell was 300 ms depolarized
from 0 to +50 mV at a rate of 0.1 Hz, and the IK(Ca) amplitude taken at varying QO-40
concentrations was measured at the end of the depolarizing pulse. The amplitude of IK(Ca)
in the presence of 100 µM QO-40 was taken as 100%, and those achieved during exposure
to different QO-40 concentrations (0.3–30 µM) were thereafter compared. We determined
the concentration–response relationship of QO-40-stimulated IK(Ca) amplitude in GH3 cells
by using the least-squares fitting of data to the Hill equation:

% increase =
[QO− 40]nH × Emax

[QO− 40]nH + ECnH
50

where EC50 or nH is the half-maximal concentration of QO-40 or the Hill coefficient, re-
spectively; [QO-40] is the QO-40 concentration; and Emax is the maximal activation of IK(Ca)
caused by this compound.

4.5. Single-Channel Analyses

Single BKCa channel amplitudes identified in GH3 or HEK-293T cells were determined
by fitting Gaussian distributions to the amplitude histograms of the closed (resting) and
open states. The probabilities of channel openings in a patch were expressed as N·PO,
which was estimated using the following equation:

N·PO =
(A1 + 2A2 + . . . + nAn)

(A0 + A1 + A2 + . . . + An)

where A indicates the area under the curve of an all-points histogram that corresponds to
the closed (resting) state, A1 . . . An are the histogram areas indicating the levels of distinct
open state for 1 to n channels in the patch, and N represents the number of active channels
in the patch. Open- or closed-time distributions with or without the addition of QO-40
were fitted with logarithmically scaled bin width. For dwell-time analyses, only one single
channel in the patch was used.

The stimulatory effect of QO-40 on BKCa channel activity is thought to be ascribed to
a state-dependent stimulator that binds predominantly to the closed (or resting) state of
the channel. Based on this simplifying assumption, a minimal reaction scheme was given
as follows:

C
α
−→←−
β

O
k+1
∗ ·[QO−40]
−−−−−−→←−−−−−−

k−1

O·[QO− 40]

or,
dC
dt

= O× β− C× α

dO
dt

= C× α + O·[QO− 40]× k−1 −O× β−O× k∗+1·[QO− 40]

d(O·[QO− 40])
dt

= O× k∗+1·[QO− 40]−O·[QO− 40]× k−1

where [QO-40] is the QO-40 concentration used, and α or β is the voltage-gated rate
constant for the opening or closing of the BKCa channel, respectively. k+1

* or k−1 represents
the forward (i.e., on or bound) or backward (i.e., off or unbound) rate constant of QO-40,
respectively, whereas C, O, or O·[QO-40] in each term represents the closed (resting), open,
or open-[QO-40] state, respectively.
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The value of k*
+1 or k−1 was evaluated based on the mean closed time in the slow

component of BKCa channels attained during exposure to varying QO-40 concentrations.
Using the above-described binding scheme, these rate constants could be optimized using
the following equation:

1
τ
= [QO− 40]× k∗+1 + k−1

where k*
+1 or k−1 can be derived from the slope or from the y-axis intercept at [QO-40] = 0

of the linear regression, which interpolates the reciprocal time constants (i.e., 1/τ) versus
the QO-40 concentration used, and [QO-40] is the QO-40 concentration. A measure of the
dissociation constant (KD) equal to the k−1 value divided by the value of [KO-40]·k*

+1 can
thereafter be appropriately yielded.

The relationship between the membrane potentials and relative open-state probability
of BKCa channels (i.e., the steady-state activation curve) with or without the application of
QO-40 (10 µM) was constructed and fitted by the Boltzmann equation (or the Fermi-Dirac
distribution) using the goodness-of-fit test [38]:

relative N·PO =
n1 + e

[−(V−V 1
2
)qF

RT

]
where N is the number of channels in the patch; n is the maximal relative N·PO; V is the
membrane voltage in mV; V1/2 and q represent the potential for half-maximal activation
and the apparent gating charge, respectively; and F, R, and T are Faraday’s constant, the
universal gas constant, and the absolute temperature, respectively.

To determine the effect of QO-40 on the hysteretic strength of BKCa channels, a 2.8-sec
upright triangular ramp pulse from −50 to +80 mV with a ramp speed of ±93 mV/s at a
rate of 0.1 Hz was utilized and then applied to the detached patch with digital-to-analog
conversion. To obtain the relative probabilities of channel openings in varying QO-40
concentrations, single-channel amplitudes in response to 20-voltage ramps were averaged,
and each point of the averaged current was divided by the single-channel amplitude of
each potential after the leak component was corrected [39]. The number of active channels
in the patch, N, was also counted at the end of the experiments through the addition of a
solution with 100 µM Ca2+ and then used to normalize the open-state probability. To obtain
values for the gating charge and half-maximal activation of voltage, the curve obtained
at the upsloping (forward) or downsloping (backward) limb of the triangular ramp pulse
was fitted with Boltzmann functions as described above.

4.6. Statistical Analyses

Linear or nonlinear curve fitting of experimental data sets was achieved with the
least-squares minimization procedure using various maneuvers, such as Microsoft Excel-
embedded “Solver” (Microsoft, Redmond, WA, USA) and 64-bit OriginPro® program
(OriginLab; Scientific Formosa, Kaohsiung, Taiwan). The macroscopic or single-channel
data are presented as the mean ± standard error of the mean (SEM) with sample sizes (n)
indicative of the cell number from which the experimental results were achieved. We ini-
tially applied Student’s t-tests (paired or unpaired) for statistical analyses. Additionally, we
performed either analysis of variance (ANOVA)-1 or ANOVA-2 with or without repeated
measures followed by post hoc Fisher’s least-significant difference test. p values < 0.05
were considered significant.

5. Conclusions

The principal findings from this study are as follows: (a) QO-40 can concentration-
dependently stimulate the amplitude of IK(Ca); (b) QO-40-stimulated IK(Ca) can be effectively
reversed by either GAL-021 or paxilline, but not by linopirdine or TRAM-34; (c) QO-40
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increases the probabilities of BKCa channels that would be open, although it did not change
single-channel conductance; (d) QO-40-stimulated IK(Ca) can be largely explained by a
concentration-dependent reduction in the slow component of the mean closed time of
the channel; (e) QO-40 produces a left shift in the steady-state activation curve of BKCa
channels and increases the gating charge of the channel; and (f) this compound can enhance
the hysteretic strength of BKCa channels elicited by the long isosceles-triangular ramp pulse.
Taken together, apart from the well-established activation of KCNQ currents [1,16], the
QO-40-mediated stimulation of BKCa channels described herein could highlight another
yet unidentified but noticeable ionic mechanism of the actions produced by it or other struc-
turally similar compounds (i.e., pyrazolol[1,5-a]pyrimidin-7(4H)-one [PPO] derivatives)
through which they act on the functional activities of various cell types in vivo.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14050388/s1, Figure S1: Stimulatory effect of QO-40 on BKCa-channel activity measured
from α-hSlo-expressing HEK293T cells.
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