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Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal

Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both

humans and companion animals (horses, dogs, and cats). The properties of MSC

preparations can vary significantly with factors including tissue of origin, donor age

or health status. We studied the effects of developmental programming associated

with intrauterine growth restriction (IUGR) on MSC properties, particularly related to

multipotency. IUGR results from inadequate uterine capacity and placental insufficiency

of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs,

sheep, cattle) can be affected by IUGR resulting in decreased body size and other

associated changes that can include, alterations in musculoskeletal development and

composition, and increased adiposity. Therefore, we hypothesized that this dysregulation

occurs at the level of MSCs, with the cells from IUGR animals being more prone

to differentiate into adipocytes and less to other lineages such as chondrocytes and

osteocytes compared to those obtained from normal animals. IUGR has consequences

on health and performance in adult life and in the case of farm animals, on meat

quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes)

and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs

where IUGR occurs spontaneously, and shows features that recapitulate human IUGR.

We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and

Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and

expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly,

tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had

higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content

and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar

trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed

significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast,

chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by

a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9
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(P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential

of MSCs appears to be determined prenatally in IUGR and this should be taken into

account when selecting cell donors in regenerative therapy programmes both in humans

and companion animals.

Keywords: MSC - 51 (SCM), adipogenesis, osteogenesis, chondrogenesis, pig, IUGR, regenerative

INTRODUCTION

Mesenchymal Stem/Stromal cells (MSCs) are used in
regenerative therapies both in humans (1) and in veterinary
species (horses, dogs, and cats) (2–6). MSCs are typically
obtained from bone marrow and adipose tissue, but other
sources such as umbilical cord are also becoming more regularly
investigated (7, 8). As defined by the International Society
for Cellular Therapy (ISCT) (9), MSCs grow adherent to
plastic and clonally, and express a group of surface markers,
CD105, CD73, and CD90, and lack expression of CD45, CD34,
CD14 or CD11b, CD79α or CD19 and HLA-DR. In addition,
MSCs are multipotent having the capacity of differentiating
into cells of the mesenchymal lineage (adipocytes, osteocytes,
and chondrocytes), and these features have been explored for
regenerative therapeutic purposes. These cells produce trophic
factors which are relevant to the repair processes in vivo, and
therefore are considered as “Medicinal Signaling Cells” (10).

Different factors, such as donor (11) and age (12), can
have considerable impact on MSC properties and clinical
outcome, increasing the difficulty of MSC standardization,
commercialization and therapeutic use. In addition, donor
disease, such as diabetes and osteoarthritis (13, 14) can have a
detrimental impact on the quality of MSC preparations from the
stromal vascular fraction, which are heterogeneous cells obtained
from extracts containing stem and other cells, such as those of
endothelial and hematopoietic origin.

In IUGR, which is observed both in humans and veterinary
species, the fetus fails to reach its full genetic growth potential
(15) resulting in an increased risk of premature offspring death.
This is the case of “runt” puppies, whichmay actually be preferred
by some owners due to their appearance, but are at increased
risk of presenting adverse developmental and metabolic features
in adulthood (16, 17). Likewise, IUGR can affect equine health
and performance in adulthood by impacting negatively on
muscle and skeleton development and function, metabolism and
pulmonary efficiency (18, 19).

In humans, IUGR occurs in about 10–40% pregnancies
(20–23) resulting in delayed fetal growth and small weight at
birth often associated with placental insufficiency as a result of
maternal advanced diabetes, anemia and high blood pressure,
malnutrition, multiple gestation of two ormore fetuses, infection,
alcohol consumption and use of recreation drugs (24, 25).
Epidemiological data have shown a clear link between IUGR
and obesity, and an increased risk of type 2 diabetes and
cardiovascular disease in adulthood (26–28).

IUGR has been reported to affect cell growth and adipogenesis
differentiation properties of stem cells (29, 30), which may

underlie altered developmental phenotype and predisposition to
later disease in IUGR individuals. However, the impact of IUGR
on MSC properties is still unclear.

Pigs offer a relevant model to study IUGR. In pigs, IUGR
occurs spontaneously, and recapitulates human IUGR features,
including altered body development characterized by reduced
musculoskeletal growth and a tendency to accumulate body
fat post-nataly (31–33), as it is also observed in other models
(16, 34). Using the IUGR pig model (16, 35, 36), and in
order to assess the effect of developmental programming on
MSCs, we compared the properties of MSCs obtained from
IUGR and normal newborn pig littermates. Considering the
IUGR phenotype, we hypothesized that IUGR impacts on MSCs
properties by increasing adipogenesis and fibrogenesis and
decreasing the ability of cell differentiation into other lineages
such as osteogenesis and chondrogenesis.

MATERIALS AND METHODS

Samples
Subcutaneous adipose tissue samples were obtained immediately
postmortem from three pairs of littermates Large White ×

Landrace, 1–7 days old, in accordance to the UK Home
Office Animals (Scientific Procedures) Act 1986, schedule 1, by
decapitation following administration of isoflurane and euthatal.

Normal and IUGR (birthweight below two standard
deviations the average litter weight) mates were collected
from each litter. Tissue samples were kept on ice in PBS with
amphotericin B and 1% Penicillin and Streptomycin (P/S; Life
Technologies-Thermo Fisher Scientific) until cell extraction
<1 h after collection.

Cell Extraction and Culture
Adipose tissue was minced and digested in the presence of
collagenase II (1 mg/ml; Thermo Fisher Scientific), Bovine Serum
Albumin (3.5%) and DNase (40µg/ml; Sigma-Aldrich) for 1 h
at 37◦C with gentle rotation at 100 rpm (37, 38). Collagenase
activity was stopped with Dulbecco’s Modified Eagle Medium
(DMEM; D5796; Sigma), 20% FBS (Thermo Fisher Scientific).
After removing the lipid layer, the stromal vascular fraction
was filtered through a 40µm cut-off sieve. Cells were cultured
initially in DMEM High Glucose supplemented with 20% FBS
(Life Technologies-Thermo Fisher Scientific) and 50µg/ml basic
fibroblast growth factor (bFGF; ReproTech), and then, in the
subsequent passages, bFGF was removed from the medium and
FBS reduced to 10%.
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Cell Growth Analyses
Doubling time was calculated using the formula:

Doubling Time =
Time in culture × log(2)

log(Final number)− log(Initial number)

Where “Initial” and “Final” numbers refer to number of cells at
seeding and harvesting, respectively. To test the ability of cells to
grow clonally, 250, 500, and 1,000 cells from each population at
passage 3 were plated in 6-well plates, and cultured for 10 days.
Cells were then fixed with paraformaldehyde (2%; 30min) and
washed with PBS P/S before staining with 1% Crystal violet in
100% Methanol.

Analyses of Cell Differentiation
Adipogenesis
To induce adipogenesis cells were seeded on collagen (0.2%)
in 24-well plates (50,000 cells/well) and grown until confluence
as previously described (5). Cells were kept for 5 days in
differentiation medium consisting of DMEM supplemented with
7% Rabbit Serum (Gibco), 3% FBS, 1% P/S, 1µMdexamethasone
(Sigma-Aldrich), 10µg/ml insulin (Sigma-Aldrich) and 0.5mM
3-isobutyl-1-methylxanthine. This was followed by 7 days of cell
culture in DMEM with 10% FBS, 1% P/S and 10µg/ml insulin.
Medium was changed every 2–3 days. In order to visualize lipid
accumulation, differentiated adipocytes were stained with Oil red
O (0.375% prepared in isopropanol) for 10min and imaged in
a Zeiss Axiovert 25 Inverted Phase microscope, and differences
between the two types of cells were assessed visually.

Fibrogenesis
Fibrogenesis was induced when cells reached 80% confluence
by using a medium consisting of DMEM High Glucose,
supplemented with 0.5% FBS, 0.1mM Ascorbic acid, 1% P/S, 0.1
mg/ml Dextran Sulfate Sodium Salt, and 2.5 ng/ml Transforming
Growth Factor β (Sigma) for 3 and 6 days, as previously described
(39). However, by day 6 of differentiation cells were detaching
from the cell culture vessel and dying, and these samples were
not analyzed. Collagen was detected by staining cell cultures
with Picrosirus Red [0.1%; (40)] and then washed thoroughly
with acidified water (250 µl glacial acetic acid in 50mL MilliQ
water) and micrographs were taken in an Zeiss Axiovert 25
Inverted Phase microscope using Zen 2 software (Advanced
Micro Devices), and differences between the two types of cells
were assessed visually.

Osteogenesis
Osteogenic differentiation was induced when cells reached
90% confluence with DMEM high glucose and DMEM low
glucose (50:50 v/v; Sigma-Aldrich), supplemented with 10%
FBS, 100 nM dexamethasone (Sigma-Aldrich), 10mM sodium
β-glycerophosphate (Sigma-Aldrich) and 0.1mM stabilized
ascorbic acid (Sigma-Aldrich) (37). After 3 days, cells were
switched to DMEM low glucose supplemented with 10% FBS,
100 nM dexamethasone, 10mM sodium β-glycerophosphate and
0.1mM stabilized ascorbic acid. Cells were cultured for 12 days
and medium was changed every 3 days. At the end of the
differentiation period cells were stained with Alizarin Red (2%;

TABLE 1 | List of primers used in this study.

Gene Forward primer Reverse primer

CD44* CAGGTACGGATTCAAATATCA ACTGGGGTGTTTGTCTCTT

TCTCAGC TCATCTTC

CD90* GACTGCCGCCATGAGAATAC GGTAGTGAAGCCTGATAAGTAGAG

CD105* ATACAAAGGGCTCCATCATC TGAGTGTGAGACTTCCATTC

PPARγ CTGACCAAAGCAAAGGCGAG GACACCCCTGAAAGATGCGA

FABP4 ACGGCTTCTTTCTCACCTTGA AGCCCACTCCCACTTCTTTC

COL1A1 TTCTAAGCCGCGTCTCTTCC TCTCCCTTGGGTCCCTATCG

ALP ATGAGCTCAACCGGAACAA GTGCCCATGGTCAATCCT

RUNX2 CAAAGCCAGAGCGGAC AATTTGGATTTAATAGCGTGC

SOX9 TCAACCCCGACTGCGACGAG TGGAGCAGCTGGGATGATGG

RPL4 AATTTGGATTTAATAGCGTGC GAACTCTACGAATCTTC

TOP2B AACTGGATGATGCTAATGCT TGGAAAAACTCCGTCTGTCTC

*Primers designed in a previous study (41).

pH 4.2) for 2 h and imaged in a Zeiss Axiovert 25 Inverted Phase
microscope using Zen 2 software (Advanced Micro Devices) and
differences between the two types of cells were assessed visually.

Chondrogenesis
Chondrogenesis was induced by using the StemPro
Chondrogenesis Differentiation Kit (A1007101, Thermofisher).
Briefly, cells were seeded in micromasses (80,000 cells/each)
and incubated for 2 h in a humidified chamber in the incubator
before differentiation medium was added. After 28 days, the
chondrogenic micromasses were either harvested into Trizol for
gene expression measurements or fixed in paraformaldehyde
(4%) for 45min and directly stained overnight with Alcian
Blue (1%; Sigma). Pellets were imaged in a Zeiss Axiovert 25
Inverted Phase microscope and radius measured with Zen 2 to
calculate the spherical area (A = 4πr2, where A is the area and r
the radius).

Gene Expression Analysis
Gene expression analysis was performed in cells before
and after differentiation. RNA was extracted using TRIzol
reagent (Invitrogen), and 500 ng were reversed transcribed
with Superscript III (Invitrogen). qPCR was performed using
the SensiFAST SYBR Lo-ROX (BIO-94020; Bioline) in a
Stratagene thermocycler with primers listed in Table 1. Relative
transcript abundance was obtained using MX3005P software by
extrapolating Ct values from a standard curve prepared from
a sample pool, and TOP2B and RPL4 genes were used as
housekeeping gene controls. Differentiation time-point data were
normalized to values from undifferentiated cells (Day 0).

Statistical Analysis
Results were analyzed by Student’s t-test or Two-way ANOVA
followed by Tukey’s post hoc test as appropriate, by using
GraphPad Prism 8.2.1. Experiments were performed in triplicate
and statistical significance was defined as P < 0.05.
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RESULTS

IUGR- and Normal-Cells Displayed Typical
MSC Features
MSCs from both IUGR and Normal animals presented
similar morphology in culture and exhibited clonal growth
(Figures 1A,B). In addition, IUGR-MSCs grew faster than
Normal-MSCs but only during the first 2 passages (P =

0.001; Figure 1C) after which both cell types showed the same
rate of division. In addition, both IUGR- and Normal-MSCs
expressed the classical MSC markers, CD44, CD90, and CD105
which levels were not statistically different (Figure 1D and
Supplementary Table 1; P = 0.8, 0.4, 0.9, respectively), while
the hematopoietic cell marker CD45 was not detected in either
cell type.

IUGR-MSCs Showed Increased
Adipogenesis and Fibrogenesis Compared
to Normal-MSCs
Upon induction of adipogenesis, both MSC types produced
mature adipocytes, as shown by staining of intracellular lipids
with Oil Red O (Figure 2A). However, differentiation was more
efficient for IUGR- than Normal-MSCs as evidenced by the
expression of adipogenesis-associated genes, PPARγ and FABP4,
a transcription factor and a fatty acid carrier protein, respectively
(P < 0.05; Figures 2B,C). Likewise, fibrogenesis as evidenced
by the Picrosirius Red collagen staining (Figure 3A), was more
pronounced in IUGR-MSCs, as shown by higher expression of
COL1A1, a major component of type I collagen (P < 0.03;
Figure 3B), 3 days after the induction of differentiation of IUGR-
compared to Normal-MSCs.

IUGR-MSCs Showed Attenuated
Osteogenesis Compared to Normal-MSCs
Contrary to what was observed for adipogenesis and fibrogenesis,
IUGR-MSCs had reduced osteogenic capacity compared to
Normal-MSCs, as indicated by lower expression of RUNX2 and
ALP (a transcription factor and a osteogenic marker, respectively;
P < 0.02; Figures 4B,C) after 12 days of differentiation in IUGR-
MSCs. Differentiated cells stained positively with Alizarin Red
(Figure 4A) and both RUNX2 and ALP genes increased during
differentiation of Normal-MSCs (P < 0.04), however, ALP (P =

0.02) but not RUNX2 (P = 0.96) increased during differentiation
of IUGR-MSCs.

IUGR-MSCs Presented Decreased
Chondrogenesis Compared to
Normal-MSCs
Both Normal- and IUGR-MSCs differentiated into chrondrocytic
micromasses as evidenced by Alcian Blue staining (Figure 5A)
and increased transcription factor SOX9 expression levels (P <

0.05). Similarly to osteogenic differentiation, chondrogenesis was
more extensive in Normal- than in IUGR-MSCs as demonstrated
by the larger micromasses (P = 0.001; Figures 5A,B) and higher
expression levels of the transcription factor SOX9 (P < 0.05;
Figure 5C) measured after 28 days of differentiation.

FIGURE 1 | Appearance and growth of IUGR- and Normal-MSCs in culture.

(A) Micrographs, taken at 10×, of IUGR- and Normal-MSCs displaying the

typical spindle-like morphology. (B) Cell colonies obtained from IUGR- and

Normal-MSCs after seeding 250, 500, 1,000 cells/well (left, center, and right

wells) and stained with crystal violet. (C) Rate of cell growth expressed as

doubling time for IUGR- and Normal-MSCs (dashed and continuous line,

respectively) at passages 1–2 to 5–6. **indicates a significant difference

(P = 0.001) between IUGR- and Normal-MSCs. (D) mRNA levels, measured

by qPCR, of the MSC markers, CD44, CD90, and CD105 for IUGR- and

Normal-MSCs. All results are shown as mean ± SEM; AU, arbitrary units.

DISCUSSION

Dysregulated tissue development and a predisposition for later
life disease in IUGR are thought to result from programming
effects during fetal development. The implications of fetal
programming on the properties of body stem cell populations
and their potential for regenerative medicine are still unclear.
The pig, a multiparous species, provides a well-established, pre-
clinical model of cell-based tissue regeneration and engineering,
gene therapy and xenotransplantation, most notably in relation
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FIGURE 2 | Adipogenic differentiation of IUGR- and Normal-MSCs. (A)

Micrographs showing differentiated adipocytes of IUGR- and Normal-MSCs

stained with Oil red O. Scale bars correspond to 100µm of micrographs taken

at 20×. mRNA levels, measured by qPCR, of (B) PPARγ and (C) FABP4

during adipogenic differentiation of IUGR- and Normal-MSCs. All results are

shown as mean ± SEM; AU, arbitrary units. *P < 0.05, indicates differences

between IUGR- and Normal-MSCs.

to cardiovascular repair (42–45). In addition, contrary to other
models such as the rat and the sheep, IUGR occurs spontaneously
and with relative high frequency in pigs, with most litters
containing at least one piglet that is distinctly smaller than
the other littermates (35, 36, 46). Thus, comparisons between
IUGR and normal phenotypes can be performed within the
same genetic background in the pig (16). With this rationale,
we sought to investigate the effects of fetal reprogramming on
MSC properties in IUGR pigs. Our results showed that, although
MSCs from IUGR share similar features withMSCs fromNormal
littermates, multipotency is significantly dysregulated in IUGR
MSCs, with their adipogenic and fibrogenic capacity being

FIGURE 3 | Fibrogenesis of IUGR- and Normal-MSCs. (A) Micrographs

presenting undifferentiated (Und) and differentiated (Diff) cells from IUGR- and

Normal-MSCs, stained with Picrosirius Red collagen staining. Scale bars

correspond to 100µm of micrographs taken at 20×. (B) mRNA levels of

COL1A1, measured by qPCR, in IUGR- and Normal-MSCs before (day 0) and

after 3 days of induction of fibrogenesis. All results are shown as mean ±

SEM; AU, arbitrary units. *P < 0.05, indicates differences between IUGR- and

Normal-MSCs.

increased in detriment of chondrogenesis and osteogenenesis,
as assessed by gene expression of appropriate markers and
chemical stainings of differentiated cells (which were only
visually evaluated). This indicates that stem cell programming
during fetal development impacts negatively on the quality of
MSCs by compromising their differentiation potential. These are
important aspects that should be taken into consideration during
selection of MSCs for regenerative therapy applications.

Porcine MSCs have been characterized (47, 48), and they
display features, in terms of marker expression andmultipotency,
that are similar to those of companion animals and humanMSCs
(49). Here, we showed that, similar to Normal-MSCs, IUGR-
MSCs displayed classical features of human and porcine MSCs
(49–51) namely of CDmarker expression, as defined by ISCT (9),
and, except for a faster initial cell growth of Normal-MSCs, there
were no differences between the two cell types. Others studies,
using different IUGR models showed variable results regarding
MSC growth; in the rat, food-restriction caused increased cell
proliferation of bone marrow MSCs (29), whilst in the sheep,
bone marrow MSC proliferation was reportedly reduced with
poor maternal nutrition (30).

IUGR in humans (21, 28) and animals, namely pig (33,
52, 53), sheep (31) and rat (54), results in increased body
adiposity and fibrosis (55, 56). In contrast, IUGR has a negative
impact on bone (34, 57), cartilage (58) and skeletal muscle
development (33, 59) as observed in horses (18, 19) and dogs
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FIGURE 4 | Osteogenic differentiation of IUGR- and Normal-MSCs. (A)

Micrographs of IUGR- and Normal-MSCs stained with Alizarin Red before

(Und) and after differentiation (Diff). Scale bars correspond to 100µm of

micrographs taken at 10×. mRNA levels, measured by qPCR, for (B) ALP and

(C) RUNX2, before and after induction of differentiation of IUGR- and

Normal-MSCs. All results are shown as mean ± SEM; AU, arbitrary units.

*P < 0.05 shows differences between IUGR- and Normal-MSCs.

(17, 60). Our results indicated an increased predisposition of
IUGR-MSCs for adipogenesis and fibrogenesis which suggested
that IUGR programmes the adult stem cell niche during fetal
development, and this may underpin the increased accumulation
of fat and fibrous tissue reported in IUGR individuals, later
in life (61). This is likely to be a generalized body effect, i.e.,
not limited to adipose-derived stem cells as the same effect
was observed by us in cells obtained from skeletal muscle
(unpublished results) and in bone marrow IUGR-MSCs in other
studies (29). In addition, we showed that IUGR MSCs had
decreased osteogenic and chondrogenic capacities, in agreement
with observations in different IUGR models in vivo (16). IUGR
may also impact other MSC properties which were not part
of the objectives of the present work, such as those related to
angiogenesis and immunomodulation. A negative association
between adipogenesis and osteogenesis in the body is also

FIGURE 5 | Chondrogenesis of IUGR- and Normal-MSCs. (A) Micrographs

showing chondrogenic micromasses from IUGR- and Normal-MSC 28 days

after induction of differentiation (scale bar = 20µm, 5× magnification), stained

with Alcian Blue. (B) Graph showing results of micromass quantification. (C)

mRNA levels of SOX9, measured by qPCR, in IUGR- and Normal- before (0

days) and after 28 days of chondrogenic induction. All results are shown as

mean ± SEM; AU, arbitrary units. *P < 0.05; ***P < 0.0001, shows differences

between IUGR- and Normal-MSCs.

observed in other settings, such as aging, osteoporosis and obesity
(62, 63). It is conceivable that in some instances these effects may
be linked to IUGR, or at least, they are likely to be exacerbated
in IUGR subjects with consequences for health, tissue repair
and healing and, therefore, for the therapeutic efficacy of
MSC preparations and this warrants further investigation in
future projects.

In agreement to our hypothesis we show that MSC
properties are developmentally programmed in IUGR
resulting in an enhanced capacity to differentiate into
adipogenic and fibrogenic lineages at the expense of the
osteogenic and chondrogenic lineages, as we observed in
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early passaged MSCs. This may underlie tissue development
and inform on the development of therapies relevant to
disease predisposition phenotypes observed during adulthood
in IUGR individuals. Our results highlight important
considerations when selecting MSC donors for regenerative
medicine applications.
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