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α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the
chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently,
we discovered that α-MSH did not always stimulate pigment dispersion because this hor-
monal peptide exerted no effects on the melanophores of flounders. We assumed that the
reduction of α-MSH activity was related to the co-expression of different α-MSH receptor
subtypes – termed melanocortin receptors (MCR) – a member of G-protein-coupled recep-
tors (GPCR) – based on several reports demonstrating that GPCR forms heterodimers
with various properties that are distinct from those of the corresponding monomers. In
this review, we summarize the relationships between the pigment-dispersing activity of
α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes
expressed in fish chromatophores.

Keywords: melanocyte-stimulating hormone, melanocortin, melanocortin receptor, G-protein-coupled receptor,

heterodimer, pigment-dispersing activity

INTRODUCTION
Fish color change is achieved by two major aspects, such as
physiological and morphological color change. Short-term phys-
iological color change in teleosts is caused by pigment aggrega-
tion/dispersion in skin chromatophores in which the neuroen-
docrine and sympathetic nervous systems are involved (Fujii
and Oshima, 1986; Fujii, 2000). In the long term, these systems
also influence survival or apoptosis of the chromatophores and
contribute to morphological color change (Sugimoto, 2002).

The hypothalamo-pituitary system is a major player of the
neuroendocrine system, in which melanocyte-stimulating hor-
mone (MSH) and melanin-concentrating hormone (MCH) are
associated with color changes in fish, exerting opposing actions
(Takahashi and Kawauchi, 2006a; Mizusawa et al., 2011). MSH
stimulates pigment dispersion and MCH induces pigment aggre-
gation.

Melanocyte-stimulating hormone is derived from a precursor
termed proopiomelanocortin (POMC), and MCH is derived from
a precursor called proMCH (Takahashi and Kawauchi, 2006a).
The major sources of MSH and MCH are the pituitary gland
and hypothalamus, respectively. The MSH receptor, known as
the melanocortin (MC) receptor (MCR), is a member of the G-
protein-coupled receptor (GPCR) family, as is the MCH receptor.
The members of this family have seven transmembrane domains

(Mountjoy et al., 1992; Saito et al., 1999). Five subtypes and two
subtypes are present for MCR and MCH receptor, respectively
(Takahashi and Kawauchi, 2006b).

Compared to the rather conservative amino acid sequence of
MCH, MSH varies in molecular form because of the presence of
two or more molecular forms encoded in pomc and a variety of
modifications to the N- and C-terminals (Ebelre, 1988). Recently,
we discovered that the biological activities of α-MSH-related pep-
tides were dramatically reduced by the presence of an acetyl group,
and this modulation was related to the co-expression of differ-
ent mcr types (Kobayashi et al., 2009, 2010). Abundant evidence
regarding this interesting activity modulation was obtained in an
experiment using barfin (bf) flounder, a flatfish that is commer-
cially important in the northern part of Japan. Comparative stud-
ies using the closely related Japanese (Jpn) flounder (Kobayashi
et al., 2012) and the distantly related goldfish (Kobayashi et al.,
2011) further supported these results. In this review, we provide
an overview of our recent studies on the relationships between mcr
transcripts expressed in fish chromatophores and the biological
activities of α-MSH-related peptides possessing different num-
bers of acetyl groups. The differences in activity of these peptides
appear to be related to the interaction of ligands with different
degrees of acetylation at the N-terminus and the types of MCR
biosynthesized in the chromatophores.
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GENERAL ASPECTS OF MC SYSTEMS AND CHALLENGES
PROVIDED BY α-MSH
Melanocortins are members of peptides such as α-MSH, β-MSH,
γ-MSH, and adrenocorticotropic hormone (ACTH). These pep-
tides are derived from a common precursor protein termed proo-
piomelanocortin (Smith and Funder, 1988; Castro and Morrison,
1997; Raffin-Sanson et al., 2003; Kasper et al., 2006; Takahashi and
Kawauchi, 2006b). POMC also contains β-endorphin (β-END), a
non-MC peptide. In general, α-MSH is composed of 13 amino
acid residues with an acetylated N-terminal and an amidated C-
terminal. α-MSH is derived from the N-terminal portion of ACTH
comprising 39 amino acid residues, and other MSHs originate
from different parts of POMC. While the POMCs of basal ray-
finned fish, lobe-finned fish, and tetrapods contain three MSHs,
those derived from ray-finned fish, namely teleosts, lack γ-MSH,
but contain α-MSH and β-MSH (Takahashi and Kawauchi,2006a).
Sharks and rays are unique because of the presence of four MSHs;
the fourth MSH is termed δ-MSH (Amemiya et al., 1999, 2000;
Takahashi et al., 2004, 2008). γ-MSH appears to have been deleted
from POMC and δ-MSH is suggested to be derived from β-MSH
during the evolution of teleost and cartilaginous fish, respectively
(Takahashi and Kawauchi, 2006a).

A major source of POMC is the pars intermedia (neurointerme-
diate lobe, NIL, in teleosts) and pars distalis (PD) of the pituitary
gland, and the final products in each lobe are different because
of tissue-specific post-translational processing (Smith and Fun-
der, 1988; Castro and Morrison, 1997; Raffin-Sanson et al., 2003;
Kasper et al., 2006; Takahashi and Kawauchi, 2006b). For example,
ACTH is a product of the PD, and α-MSH is a product of the NIL.

The presence of five subtypes – MC1R to MC5R – has been
reported for MCR (Mountjoy et al., 1992; Mountjoy, 2000; Gantz
and Fong, 2003). These subtypes are distributed in bodies in a
rather subtype-specific manner, and are associated with a variety
of biological processes conveyed by MC peptides. Of the subtypes,
MC1R and MC2R are the classical α-MSH and ACTH recep-
tors, respectively (Mountjoy, 2000; Gantz and Fong, 2003). Many
experiments on the binding affinity of each subtype vs. a vari-
ety of MC peptides have been conducted using a solely expressed
MCR molecule in a transfected cell line (Cone, 2000; Schiöth
et al., 2005). These procedures have characterized a remarkable
difference between MC2R and the other MCRs – while MC2R
binds ACTH, but not MSH, the other MCRs bind both ACTH and
MSH. These methods have also contributed to the development of
many MC peptide-related antagonists and agonists (Cone, 2003).
However, increasing biochemical and biophysical evidences have
indicated that GPCRs have been shown to form heterodimers or
heterooligomers with various biochemical and/or pharmacolog-
ical activities that are distinct from those of the corresponding
monomers or homomers (Satake and Sakai, 2008; Rozenfeld and
Devi, 2011).

The presence or absence of an acetyl group at the N-terminal
of α-MSH is involved in the regulation of this peptide’s bio-
logical activities. In frogs, pigment-dispersing activities in chro-
matophores are enhanced by the presence of an acetyl group
(Ebelre, 1988), while desacetyl (Des-Ac)-α-MSH stimulates lipid
mobilization in the liver of rainbow trout (Yada et al., 2000). More-
over, diacetyl (Di-Ac)-α-MSH, which has acetyl groups at the N

and O positions of the N-terminal Ser residue, demonstrates sub-
stantial cortisol-releasing activity on the head kidney in tilapia
(Lamers et al., 1992). This activity is followed by Des-Ac-α-MSH
and α-MSH in order of potency. Namely, these results suggest
that the number of acetyl groups on α-MSH-related peptides
may influence ligand–receptor interactions, and that the biolog-
ical activities of these peptides are not always proportional to
the degree of acetylation. These findings are also different from
pharmacological properties demonstrating that the interactions of
α-MSH and Di-Ac-α-MSH via solely expressed MCRs are greater
than those of Des-Ac-α-MSH (Schiöth et al., 1996; Sánchez et al.,
2009a,b, 2010). We have obtained evidence solving these para-
doxical results using bf flounder as well as other fish such as Jpn
flounder and goldfish, as described farther on.

POMC AND MC PEPTIDES IN FLOUNDERS
While most teleosts have two POMC subtypes, probably caused
by gene duplication events during fish evolution, we first reported
that three pomc subtypes are expressed in the pituitary gland of
bf flounders (Takahashi et al., 2005). Two of the POMC types (A
and B) contain two MC sequences corresponding to α- and β-
MSH, and 1 β-END, as is the case for other teleosts. The third
POMC, namely POMC-C, is composed of α- and β-MSH, and a
β-END remnant, which appears to be secondarily mutated after
divergence from the strain leading to POMC-A and -B. There-
fore, it is conceivable that POMC-C may have lost the bifunctional
role as a precursor for both MC peptides and β-END, and became
specialized for the precursor of MC peptides, the so-called prome-
lanocortin, as we previously mentioned (Takahashi et al., 2005;
Takahashi and Kawauchi, 2006a). While the amino acid sequence
of α-MSH – including α-MSH-A and -B derived from bf floun-
der POMC-A and -B, respectively – is most conserved among the
several MSH types, bf flounder α-MSH-C derived from POMC-C
differs by one residue with respect to the sequences of α-MSH –
at position 13 (Thr-amide in α-MSH-C vs. Val-amide α-MSH;
Takahashi et al., 2005).

Pomcs are expressed in both the PD and NIL of the bf flounder
pituitary gland (Takahashi et al., 2006). In these lobes, POMCs are
cleaved into several biologically active peptides. The major prod-
ucts in the PD are ACTH, while a part of ACTH is further cleaved
into Des-Ac-α-MSH, and those in the NIL are Des-Ac-α-MSH,
α-MSH, Di-Ac-α-MSH, β-MSH, and C-terminally truncated N -
Ac-β-END. Thus, the differences between the PD and NIL reside
in the final products, including the occurrence of acetylation.

The pomc-a transcripts are most predominant in the pituitary,
where pomc-b transcripts are second in predominance (Kobayashi
et al., 2009). While pomc-c is expressed in the pituitary, this gene
is also expressed in the eyed side and non-eyed side skin of the
flounder. While pomc-c transcripts are detected at extremely low
concentrations in the skin compared to that in the pituitary, their
total amounts in whole skins are comparable to those of pomc-a in
whole pituitary glands. Des-Ac-α-MSH-C derived from POMC-C
is also observed from bf flounder skin extracts, indicating that the
skin is another major source of α-MSH-related peptides.

Pomc-a, pomc-b, and pomc-c cDNA have been cloned in Jpn
flounder (Kim et al., 2009 and accession number ACG68732); the
original terms POMC-II, POMC-I, and POMC-III in the paper

Frontiers in Endocrinology | Experimental Endocrinology February 2012 | Volume 3 | Article 9 | 2

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


Kobayashi et al. Melanocortin systems in fish chromatophores

correspond to POMC-A, POMC-B, and POMC-C, respectively.
We observed the expression of these three genes in the pituitary
and those of pomc-c in Jpn flounder skin. Therefore, it is indicated
that the pomc expression patterns of these two flounder species
are closely related.

Mcr SUBTYPES IN FLOUNDERS AND GOLDFISH
The presence of mcr has been reported in wide vertebrate
classes such as Cephalaspidomorphi (lampreys), Chondrichthyes
(sharks), Sarcopterygii (lobe-finned fish, including tetrapods), and
Actinopterygii (ray-finned fish; Klovins et al., 2004; Schiöth et al.,
2005; Haitina et al., 2007a,b). While mammals and chickens have
shown to possess five mcr subtypes – mc1r to mc5r, zebrafish is
the only fish species in which the presence of a set of five subtypes
was demonstrated, while its mc5r is subdivided into mc5ra and
mc5rb (Logan et al., 2003; Klovins et al., 2004). Fugu may lack
mc3r, while four mcr subtypes have been identified by genomic
studies. We have cloned the cDNAs for mc1r, mc2r, mc4r, and mc5r
in bf flounder (Kobayashi et al., 2008, 2010, 2011). These four
mcr cDNAs have also been identified in Jpn flounder (Kobayashi
et al., 2012). Taking the taxonomically close relationship between
Pleuronectiformes, including flounders, and Tetraodontiformes,
including Fugu, into consideration, flounders may lack mc3r, as is
the case with Fugu.

On the other hand, we recently demonstrated the presence of
mc1r, mc2r, and mc3r in goldfish (Kobayashi et al., 2011). These
results, as well as the previous characterization of mc4r and mc5r
cDNA (Cerdá-Reverter et al., 2003a,b), provide the second line of
evidence for the presence of five mcr subtypes in fish. The Cyprini-
formes, to which both goldfish and zebrafish belong, is a group of
ray-finned fish that is rather basal when compared to the Fugu
of Tetraodontiformes (Nelson, 2006). Therefore, it is possible that
the five mcr subtypes may have appeared in an early vertebrate,
possibly in a common ancestor of ray-finned fish and tetrapods.
Mc3r may have been deleted during the course of evolution from
a strain from which ray-finned fishes such as flounder and Fugu
were descended.

α-MSH ACTIVITY: RELATIONSHIP WITH ACETYLATION AND
mcrs EXPRESSED IN CHROMATOPHORES
NEW CONCEPTS OBTAINED FROM bf FLOUNDER
In teleost fish, MSHs stimulate not only melanophores but
also other bright-colored chromatophores – erythrophores, xan-
thophores, and leucophores (Fujii and Oshima, 1986; Fujii, 2000).
In classical concepts, acetylation increases the melanin-dispersing
activity of α-MSH in teleosts (Kawauchi et al., 1984) as well as
amphibians (Ebelre, 1988). Moreover, α-MSH-related peptides
stimulate both melanophores and xanthophores in bf floun-
der; however, N-terminal acetylation differentially modulates the
pigment-dispersing activities of these cells (Kobayashi et al., 2009,
2010). Surprisingly, acetylation reduces the activity of α-MSH
on melanophores, while enhancing its activity on xanthophores
(Table 1). Reduction of the pigment-dispersing activity of α-MSH
by acetylation is the first piece of evidence for this. On the other
hand, replacement of the C-terminal residue of α-MSHs may have
negligible effects on pigment-dispersing activities because Des-
Ac-α-MSH-C and Des-Ac-α-MSH exhibit similar effects on the
two chromatophore types (Kobayashi et al., 2009). We expect the
differences in the effects of α-MSHs on pigment dispersion with
modification of the N-terminal residue to provide insight into the
interaction of α-MSH-related peptides with MCRs.

In the early stage of our investigation into MC systems in fish
skin, preliminary findings detected the expression of mc1r, mc4r,
and mc5r in bf flounder skin parts (Kobayashi et al., 2007). Based
on these results, we assumed that different pigment-dispersing
activities between Des-Ac-α-MSH and α-MSH were results from
the difference in MCR subtypes generated between xanthophores
and melanophores. In brief, MCR(s) on xanthophores might inter-
act with α-MSHs irrespective of the presence or absence of an
acetyl group, demonstrating higher sensitivities to α-MSH than
to Des-Ac-α-MSH. With the exception of MC2R, a specific recep-
tor of ACTH, α-MSH has demonstrated the highest affinity to
MC1R among the MCRs in pharmacological studies using human
MCRs (Schiöth et al., 1997). Moreover, Des-Ac-α-MSH demon-
strated a higher affinity to MC4R and MC5R than to MC1R

Table 1 | Mcr subtypes expressed in fish chromatophores and pigment-dispersing activities of α-MSH-related peptides in these cells.

Chromatophores Mcr subtypes Pigment-dispersing activities

Des Mono Di

BARFIN FLOUNDER1

Melanophores 1 and 5 + − N

Xanthophores 5 + ++ N

JAPANESE FLOUNDER2

Melanophores 1 and 5 + − +
Xanthophores 5 + + +
GOLDFISH3

Xanthophores 1 + ++ ++

Des, Des-Ac-α-MSH; Mono, α-MSH; Di, Di-Ac-α-MSH; N, not examined.
1Taken from Kobayashi et al. (2010).
2Taken from Kobayashi et al. (2012).
3Taken from Kobayashi et al. (2011).
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in humans (Schiöth et al., 1997). Therefore, we assumed that
a receptor(s) similar to human MC4R and/or MC5R is gen-
erated in the melanophores of bf flounder skin. To verify this
assumption, we examined mcr expression using isolated skin cells.
The results indicated that we needed to change our assumption
because modulation of the pigment-dispersing activity was sug-
gested to be associated with two different mcr subtypes expressed
concomitantly, as described below.

Two chromatophore types, melanophores and xanthophores,
are observed in bf flounder skin. These chromatophores and non-
chromatophoric dermal cells were isolated from skin pieces and
used to examine mcr expression. When RT-PCR was performed
for mc1r, mc2r, mc4r, and mc5r using total RNA extracted from
single cells of bf flounder fin skin, a cDNA fragment of mc5r,
but not those of other subtypes, was amplified from the total
RNA prepared from xanthophores (Table 1). As described above,
α-MSH exhibited higher pigment-dispersing activity than Des-
Ac-α-MSH did, suggesting that acetylation at the N-terminus of
α-MSH increased the activity. Pharmacological studies on sea bass
MC5R have revealed that α-MSH efficacy in stimulating cellular
activities is higher than that of Des-Ac-α-MSH (Sánchez et al.,
2009a). Acetylation-mediated augmentation of the binding affin-
ity of Des-Ac-α-MSH was also observed during pharmacological
studies with human MC5R (Schiöth et al., 1997). Therefore, it is
possible that acetylation of the ligand results in increased bind-
ing affinity of the ligand to MC5R, thus leading to increased
pigment-dispersing activity.

In contrast, α-MSH did not stimulate pigment dispersion in
melanophores (Kobayashi et al., 2009). When RT-PCR was per-
formed using total RNA extracted from single cells of bf floun-
der fin skin, cDNA fragments of mc1r and mc5r, but not those
of other subtypes, was amplified from the total RNA prepared
from melanophores (Table 1). An apparent contradiction con-
cerning pigment migration in xanthophores could be elucidated
by the expression of two different mcr subtypes in bf flounder
melanophores. This idea came from increasing biochemical and
biophysical evidences indicating that many GPCRs form dimers or
higher orders of oligomers (Angers et al., 2002; Breitwieser, 2004;
Kroeger et al., 2004; Nakata et al., 2005; Eglen et al., 2007; Milligan,
2007). Such receptor dimerization may occur not only between
identical molecules that comprise homodimers, but also between
related molecules belonging to the GPCR families. Heterodimer-
ization may either increase or decrease the affinity of ligands to
the corresponding GPCRs. For example, a heterodimer consisting
of somatostatin receptor (SSTR) five and dopamine D2 receptor
exhibits a high affinity for both SSTR and D2 agonists (Rocheville
et al., 2000). On the other hand, a heterodimer consisting of SSTR
2A and SSTR3 inactivates SSTR3 function (Pfeiffer et al., 2001).
According to these findings, it is plausible that MC1R and MC5R
on bf flounder melanophores may constitute heterodimers. It is
also conceivable that the affinity of α-MSH with an acetyl group
may be dramatically reduced by heterodimerization of the MCRs,
whereas the affinity of Des-Ac-α-MSH is retained (Figure 1).

EVIDENCE OBTAINED FROM Jpn FLOUNDER
We evaluated the results obtained with bf flounder using Jpn floun-
der, which is another member of Pleuronectiformes, to determine

FIGURE 1 | Schematic models of the pigment-dispersing activities of

α-MSH-related peptides via MCRs. Both Des-Ac-α-MSH and α-MSH
stimulate pigment dispersion when one type of MCR is expressed in
chromatophores, such as in xanthophores of bf flounder, Jpn flounder, and
goldfish (A). Des-Ac-α-MSH also exhibits activities in chromatophores
expressing two types of MCRs, such as in the melanophores of bf and Jpn
flounders, but α-MSH does not. α-MSH may have low affinity to putative
MCR heterodimers (B).

whether relationships between the effects of α-MSH-related pep-
tides and mcrs expressed in chromatophores are restricted to bf
flounder or are common to other species. In other words, we inves-
tigated whether reduction of the pigment-dispersing activities of
α-MSH is related to the expression of two different mcr types.

The expression of only mc5r among four mcr subtypes was
observed in Jpn flounder xanthophores. This result is identical
to that obtained in bf flounder (Kobayashi et al., 2009). Differ-
ences between the two flounders were observed in the pigment
dispersion in xanthophores; namely, α-MSH activities were indis-
tinguishable from those of Des-Ac-α-MSH in Jpn flounder, while
α-MSH was more potent than Des-Ac-α-MSH in bf flounder
(Kobayashi et al., 2009). Thus, the pigment-dispersing activity of
α-MSH is not always enhanced by the presence of an acetyl group
in chromatophores expressing a single mcr subtype, while phar-
macological studies using sea bass MC5R expressed in human
embryonic kidney (HEK) 293 cells have demonstrated that the
response to α-MSH is undoubtedly higher than the response to
Des-Ac-α-MSH (Sánchez et al., 2009a). These results suggest that
signal transduction processes in relation to pigment migration
between the xanthophores of bf and Jpn flounders are different,
while Mc5r is expressed in these cells.
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Mc1r and mc5r transcripts were detected in Jpn flounder
melanophores. This result is the same as that obtained from bf
flounder (Kobayashi et al., 2010). The effects of α-MSH-related
peptides on pigment dispersion in Jpn flounder were also com-
parable to those observed in bf flounder; namely, Des-Ac-α-MSH
exhibited the activities, while α-MSH never stimulated pigment
dispersion (Kobayashi et al., 2009). Consequently, experiments
using Jpn and bf flounders demonstrated that the remarkable
reduction of pigment-dispersing activity is observed specifically
in melanophores, in which two different mcr types are concomi-
tantly expressed. Therefore, it is possible that the physicochemical
property of α-MSH originating from the presence of an acetyl
group causes the reduction of its activity, and this reduction
appears to be associated with melanophore properties that differ
from that of xanthophores with regard to ligand–receptor interac-
tion. Results obtained from Jpn flounder support the occurrence
of MCR heterodimers modifying the activity of α-MSH-related
peptides (Figure 1).

EVIDENCE OBTAINED FROM GOLDFISH
The pigment-dispersing activity of α-MSH in goldfish xan-
thophores is somewhat greater than that of Des-Ac-α-MSH. These
results are similar to those observed in bf flounder xanthophores
(Kobayashi et al., 2009). Only one mcr subtype, i.e., mc1r and mc5r
in goldfish and flounders, respectively, is expressed in the xan-
thophores. Considered together, α-MSH-related peptides exhibit
pigment-dispersing activities irrespective of the degree of acetyla-
tion when one type of Mcr is expressed (Table 1). Monoacetylation

of the N-terminus may contribute to an increase in the pigment-
dispersing activity of α-MSH-related peptides in goldfish because
the α-MSH activity was found to be slightly but significantly higher
than that of Des-Ac-α-MSH when their effects were compared
at low concentrations. Similar enhancing effects of pigment dis-
persion caused by monoacetylation have also been observed in
grass carp, tilapia, and frogs (Kawauchi et al., 1984; Ebelre, 1988;
van der Salm et al., 2005). Only one mcr subtype appears to be
expressed in the melanophores of these species. Additionally, the
pigment-dispersing activity of α-MSH was comparable to that
of Di-Ac-α-MSH. Pharmacological studies using sea bass MC1R
expressed in HEK 293 cells have exhibited similar responses to
both α- and Di-Ac-α-MSH (Sánchez et al., 2010). Similar phar-
macological properties have been observed for sea bass MC5R
(Sánchez et al., 2009a). Therefore, it is suggested that both MC1R
and MC5R recognize α-MSH and Di-Ac-α-MSH equally.

CONCLUSION
Based on comparative studies using chromatophores from floun-
ders and goldfish, it is hypothesized that the pigment-dispersing
activity of α-MSH is reduced in chromatophores expressing two
different mcr subtypes due to the formation of MCR heterodimers.
On the other hand, when one mcr type is expressed, as in the case of
flounder and goldfish xanthophores,α-MSH-related peptides such
as Des-Ac-α-MSH, α-MSH, and Di-Ac-α-MSH exhibit pigment-
dispersing activities in a dose-dependent manner irrespective of
the degree of acetylation. Further experiments using a variety of
fishes are necessary to confirm the hypothesis.
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