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Abstract
Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by

an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysre-
gulation in the human HD brain has been documented but is incompletely understood. Here

we present a genome-wide analysis of mRNA expression in human prefrontal cortex from

20 HD and 49 neuropathologically normal controls using next generation high-throughput

sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differ-

entially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-

free geneset enrichment method that dissects large gene lists into functionally and tran-

scriptionally related groups discovers that the differentially expressed genes are enriched

for immune response, neuroinflammation, and developmental genes. Markers for all major

brain cell types are observed, suggesting that HD invokes a systemic response in the brain

area studied. Unexpectedly, the most strongly differentially expressed genes are a homeo-

tic gene set (represented by Hox and other homeobox genes), that are almost exclusively

expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of

transcriptional changes of developmental processes in the HD brain is poorly understood

and warrants further investigation. The role of inflammation and the significance of non-neu-

ronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer

important opportunities in treating HD.
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Introduction
Huntington’s Disease (HD) is a devastating neurodegenerative disorder characterized clinically
by involuntary choreic movement, personality changes, and premature death[1,2]. The disease
is caused by an expanded CAG repeat in theHuntingtin gene (HTT)[3] that produces selective
neuronal loss in the brain[4]. Individuals commonly present characteristic motor signs in mid-
life with a mean onset age of 40 years[5]. No therapy to date has definitively delayed onset or
subsequent progression of these symptoms. Most studies in HD are conducted using model
systems, (i.e. cell lines or mouse models) or peripheral human biospecimens such as blood and
not in involved brain regions from human HD affected individuals. While collecting and ana-
lyzing human post-mortem samples presents challenges, the study of brain regions involved in
HD provides relevant insight into the disease pathogenesis.

Although transcriptional dysregulation has been convincingly implicated in HD[6,7], few
genome-wide gene expression studies have targeted affected tissues in post mortem human
brain to date. To expand our understanding of alterations in mRNA transcriptomics, we have
performed mRNA expression profiling by next-generation sequencing in human post-mortem
prefrontal cortex Brodmann area 9 (BA9) in 20 HD and 49 neuropathologically normal indi-
viduals using Illumina high-throughput sequencing (See Tables 1 and 2). Although the primar-
ily affected brain region in HD is the striatum[4], neuronal loss of up to 90% by the time of
death impedes the interpretation of expression profiles derived from striatal whole tissue
homogenate since the cell type distribution is altered from that of corresponding unaffected
control tissue. It is well established that the prefrontal cortex is involved in HD pathogenesis
[8,9] but suffers substantially less neuronal death than striatum[10]. The brains used in this
study have been comprehensively characterized for pathological involvement through detailed
histological examination as previously described[11], which enables direct interpretation of the
results in the physiological context of neurodegeneration. We therefore used whole tissue
homogenate from the BA9 region in this study.

Table 1. HD sample statistics.

Sample
ID

PMI Age of
Death

RIN mRNA-Seq
reads

Age of
Onset

Duration CAG Vonsattel
Grade

H-V Striatal
Score

H-V Cortical
Score

H_0001 37.25 55 7.1 7,46,35,390 44 11 45 3 2.661 0.922

H_0002 5.75 69 7.5 7,10,15,288 63 6 41 3 2.644 1.081

H_0003 20.5 71 7.0 7,73,85,918 52 19 43 3 2.428 1.707

H_0005 19.15 48 6.9 8,23,66,794 25 23 48 4 3.820 1.939

H_0006 unk 40 6.2 7,71,23,676 34 6 51 4 3.522 1.431

H_0007 8 72 8.5 6,32,94,390 55 17 41 3 2.593 0.849

H_0008 21.3 43 7.4 7,10,56,116 28 15 49 3 2.701 1.701

H_0009 3.73 68 7.8 6,61,69,262 45 23 42 3 2.668 1.701

H_0010 6.16 59 8.3 6,53,41,820 35 24 46 3 2.621 1.200

H_0012 12.75 68 6.0 8,31,10,358 52 16 42 3 2.661 1.077

H_0013 25.1 57 6.1 7,13,20,688 40 17 49 3 2.911 1.491

H_0539 14.5 54 6.5 12,42,22,130 42 12 45 3 2.132 0.401

H_0657 24.3 61 8.1 13,67,64,622 36 25 45 4 3.290 1.604

H_0658 11 48 7.8 8,55,91,704 42 6 44 3 2.410 0.978

H_0681 19.06 69 7.0 7,84,93,314 50 19 42 3 2.484 1.088

H_0695 16.15 55 7.9 8,64,12,654 36 19 45 4 3.581 2.062

H_0700 15.66 50 8.0 7,83,29,378 33 17 47 3 2.741 1.202

H_0726 14.75 50 9.2 8,60,25,890 27 23 48 4 3.598 1.201

H_0740 13.58 75 6.4 10,19,97,434 60 15 42 3 2.621 2.361

H_0750 16.16 53 6.0 12,29,09,122 38 15 48 4 3.260 1.010

doi:10.1371/journal.pone.0143563.t001
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Table 2. Control sample statistics.

Sample ID PMI Age of Death RIN mRNA-Seq reads

C_0012 19 66 7.1 11,83,27,116

C_0013 15 69 7.8 8,94,78,160

C_0014 21 79 8.0 6,53,77,604

C_0015 10 61 8.2 12,37,46,070

C_0016 20 58 8.4 6,77,58,208

C_0017 21 70 8.2 7,22,38,818

C_0018 17 66 8.5 6,46,88,322

C_0020 24 60 7.9 8,36,96,384

C_0021 26 76 7.3 7,94,87,172

C_0022 17 61 7.8 7,31,33,936

C_0023 18 62 6.6 9,44,93,436

C_0024 26 69 8.7 6,29,89,822

C_0025 25 61 8.1 5,58,10,684

C_0026 11 88 7.1 7,25,81,752

C_0029 13 93 6.4 5,93,86,108

C_0031 24 53 7.3 7,32,83,170

C_0032 24 57 8.3 7,09,94,352

C_0033 15 43 7.5 6,95,05,712

C_0034 14 71 7.8 6,59,79,612

C_0035 21 46 7.6 6,23,00,754

C_0036 17 40 7.5 6,39,61,372

C_0037 28 44 8.3 6,02,88,132

C_0038 20 57 7.7 6,10,19,098

C_0039 15 80 7.3 7,48,92,650

C_0050 2 74 8.5 8,53,10,070

C_0053 2 69 8.4 16,70,44,880

C_0060 2 76 7.5 10,39,52,680

C_0061 3 78 7.6 9,53,93,100

C_0062 2 87 8.7 8,37,73,400

C_0065 2 86 8.7 11,57,14,502

C_0069 24 54 8.3 12,84,59,102

C_0070 19 68 6.3 14,50,87,692

C_0071 21 106 7.6 8,68,40,836

C_0075 23 52 7.4 9,99,46,984

C_0076 30 46 8.2 8,58,90,116

C_0077 21 36 8.5 8,01,03,722

C_0081 26 55 7.6 8,29,17,984

C_0082 18 57 7.8 12,31,18,398

C_0083 32 66 8.4 8,06,96,360

C_0087 19 64 8.7 7,71,98,978

C_0002 2 73 7.7 12,01,08,434

C_0003 2 91 7.9 3,84,20,004

C_0004 2 82 8.6 7,58,50,406

C_0005 2 97 9.1 15,06,61,916

C_0006 5 86 8.6 6,36,07,838

C_0008 2 91 8.7 6,61,31,458

C_0009 3 81 6.0 6,92,84,092

C_0010 2 79 8.4 6,05,42,776

C_0011 2 63 6.5 9,37,02,684

doi:10.1371/journal.pone.0143563.t002
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Statistical analysis of the dataset yielded a large set of 5,480 differentially expressed (DE)
genes, which prompted us to develop a novel hypothesis-free geneset enrichment method to
categorize the large gene lists into functionally and transcriptionally relevant groups. Our
computational analytic approach, using Gene Ontology, biological pathway database, and tran-
scription factor regulatory gene sets, implicates groups of related genes and functions that
expose and visually organize the fundamental molecular dysfunctions of the disease. Our
computational analytic approach implicates a complex profile of genes related to development,
most notably HOX genes, strongly reinforces a fundamental role for neuroinflammation in the
HD brain, and expands our understanding of cellular involvement in the disease to implicate
all major brain cell type as opposed to one of primarily neuronal degeneration.

Results

Widespread Differential Expression Changes Are Observed in HD
After processing sequencing data to reduce noise, remove outliers, and normalize (see Meth-
ods), differential expression (DE) analysis identified 5,480 out of 28,087 confidently expressed
genes with significantly altered expression at FDR p-values<0.05 in HD vs control samples,
described in Fig 1. More genes are overexpressed in HD versus control than are underexpressed

Fig 1. DE statistics. A) Histogram of log2 fold changes for DE genes showing that 54.8% of the DE genes are overexpressed in HD cases. B) Fraction of up
vs down regulated genes across the gene list ranked by significance. Top and bottom plots are top 500 and remaining genes, respectively. Sliding windows
lines plot the fraction up vs down in the 100 gene window of greater rank than the x coordinate. This plot shows that the most highly differentially expressed
genes are predominantly over-expressed in HD relative to control BA9. C) Pie chart shows proportions of biotypes for DE genes according to Ensembl.
Protein coding genes are over-represented among the DE genes. D) Normalized counts for all samples in HD and control for top ten significant genes. Rows
are normalized for visualization such that the highest count is equal to 1. These genes are almost exclusively expressed in HD cases.

doi:10.1371/journal.pone.0143563.g001
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(3,004 vs 2,476, Fig 1A), and this effect is consistent across the whole list of DE genes ranked
by significance (Fig 1B). 76.7% of the DE genes are protein coding according to the Gencode
v17 annotation[12], while the remaining most abundant biotypes include lincRNAs, pseudo-
genes, and anti-sense transcripts. A greater portion of DE genes is protein coding when com-
pared to the distribution of biotypes in all 28,087 detectable genes as shown in Fig 1C. Notably,
the top DE genes are expressed almost exclusively in HD as illustrated in Fig 1D. A complete
list of DE genes is in Table A of S1 File.

With so many DE genes, it is useful to sort the results in such a manner as to expose mean-
ingful sets of relevant genes. As described in Table 3, the top genes sorted by significance are
predominantly located in the Hox clusters and other related developmental genes, a novel
result also recently observed for HD in our miRNA study[10]. Twenty-four of the 39HOX
genes across all four Hox clusters are DE. A table of the Hox genes and their DE properties is
included in Table F in S1 File. The majority of these genes are expressed almost exclusively in
HD (see Table 3 and Fig 1D), and consequently attain high significance. However, the relative
transcript abundance of these genes is low (e.g. HOXB9 has 8.72 normalized reads on average
in the HD samples when the median normalized read count average is 96.6). We sought to
identify genes that are both highly expressed and have a large statistically significant difference
in expression between HD and control. We created a “differential expression score” (DES) that
combines mean expression level, log2 fold change, and statistical significance of differential
expression to generate a set of genes that may be relevant to the toxic HD cellular milieu.
Table 4 presents the list of the top genes ranked by DES.

A number of key proinflammatory genes appear as DE in this dataset. Four of the five NFkB
family members NFkB1 (log2 fold change 0.32, q = 0.004), NFkB2 (LFC 0.73, q = 0.001), RELA
(LFC 0.63, q = 5.6e-5), and RELB (LFC -0.56, q = 0.005) are DE in this dataset. When we exam-
ine the 20 interleukin-related genes in the DE gene list, we find that fifteen are cytokine

Table 3. DE genes by significance.

Ensembl ID Gene Symbol Overall Mean Counts HD Mean Counts Control Mean counts log2 FC pvalue padj DES

ENSG00000069011.10 PITX1 5.645675 18.68429 0.323793 4.769658 9.57E-39 2.69E-34 903.9895

ENSG00000170689.8 HOXB9 2.542841 8.723281 0.020213 4.76079 1.63E-25 2.29E-21 249.8732

ENSG00000180818.4 HOXC10 2.801117 9.515088 0.060721 4.573976 2.91E-24 2.72E-20 250.6672

ENSG00000005073.5 HOXA11 1.968121 6.790017 0 4.704005 3.92E-24 2.75E-20 181.0905

ENSG00000253293.3 HOXA10 3.490951 11.39924 0.263077 4.273311 8.03E-24 4.51E-20 288.5972

ENSG00000128710.5 HOXD10 2.571228 8.771584 0.040471 4.602451 1.35E-23 6.33E-20 227.1957

ENSG00000151615.3 POU4F2 3.275095 10.65475 0.262991 3.962235 3.42E-23 1.37E-19 244.7754

ENSG00000106031.6 HOXA13 2.456714 8.029653 0.182045 4.165899 6.20E-23 2.18E-19 190.9965

ENSG00000128709.10 HOXD9 2.226869 7.18692 0.202358 3.657288 1.22E-18 3.80E-15 117.4429

ENSG00000175879.7 HOXD8 1.709838 5.601477 0.121413 3.86684 2.09E-18 5.88E-15 94.09001

ENSG00000152779.12 SLC16A12 55.42204 167.6664 9.608012 3.513877 4.74E-18 1.11E-14 2717.727

ENSG00000106004.4 HOXA5 2.198025 7.087533 0.202308 3.879624 4.49E-18 1.11E-14 119.0033

ENSG00000113196.2 HAND1 1.939326 6.244745 0.182012 3.703297 1.46E-17 3.16E-14 96.95744

ENSG00000171540.6 OTP 3.20356 9.16907 0.768658 2.998538 3.93E-17 7.88E-14 125.8704

ENSG00000056736.5 IL17RB 1311.101 2144.334 971.0062 1.392757 3.80E-16 7.12E-13 22182.16

ENSG00000163817.11 SLC6A20 173.0366 433.2822 66.81386 2.355393 2.49E-15 4.37E-12 4629.918

ENSG00000197757.7 HOXC6 1.32181 4.411567 0.060685 3.608891 4.26E-15 7.04E-12 53.19922

ENSG00000183943.5 PRKX 604.7496 900.2916 484.1202 1.419149 6.22E-15 9.20E-12 9471.658

ENSG00000112303.9 VNN2 25.7452 62.90119 10.57949 2.490891 6.03E-15 9.20E-12 707.7395

ENSG00000180229.8 HERC2P3 1987.225 3987.18 1170.917 2.068673 8.09E-15 1.14E-11 44991.92

doi:10.1371/journal.pone.0143563.t003
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receptors (including IL17RB, IL13RA1, IL4R). However, the cytokines that correspond to these
receptors are not DE, nor are TNFalpha or IL6, two primary cytokines of the immune and
inflammatory response.

An independent set of 33 HD and 31 control prefrontal cortex brain samples not used in the
sequencing study were subjected to Reverse transcriptase quantitative PCR (RT-qPCR) to rep-
licate the findings of two genes found to be DE in this study. HOXC10 and NFKBIA, genes
associated with developmental and neuroinflammatory processes, respectively, were chosen for
the replication. HOXC10mRNA species were not detected in any of the control samples,
whereas 11 HD samples showed amplified product after 40 PCR cycles (p = 0.0002). The pres-
ence ofHOXC10mRNA transcripts in HD, and absence in controls, is consistent with the
sequencing findings. In the 16 HD and 16 control samples selected for highest mRNA quality,
NFKBIA was detected in all samples and, after filtering outlier replicates, was found to be sig-
nificantly more abundant in HD samples (T = -1.804, p = 0.041).

RT-qPCR was used to quantify and orthogonally validate mRNA differential expression
from sequencing. Six genes were selected for the study AHNAK, AQP4, SLC38A7C, GJA1,
TP53INP2 which had high DES scores, and PITX1, which was the most significantly differen-
tially expressed gene. 21 controls and 15 HD samples from the sequencing study were selected
for the assay. Four of the six genes were statistically significant (AHNAK p = 0.02; SLC38A7C
p = 0.01, TP53INP2 p = 0.03, PITX1 p = 3.4e-10). Two genes did not meet significance (AQP4
p = 0.08, GJA1 p = 0.08). All differential expression was in the expected direction.

Immune Response, Development, and Transcriptional Regulation
Functions Are Enriched in HD
We sought to explore which biological processes are enriched among DE genes in HD. These
analyses were performed using the DE list of 5,480 genes ranked by significance. DAVID

Table 4. DE genes by DES. Differential Expression Score (DES) is calculated as (overall mean counts) x abs(log2 FC) x–log10(adjusted p-value)

Ensembl ID Gene Symbol Overall Mean Counts HD Mean Counts Control Mean counts log2 FC pvalue padj DES

ENSG00000197971.10 MBP 180740.9 103940.8 212087.9 -1.14454 0.000227 0.003282 513821.5

ENSG00000131095.7 GFAP 139594.9 147197.9 136491.6 0.747036 0.001561 0.013498 194980.9

ENSG00000120885.15 CLU 98559.44 117016.8 91025.83 0.557853 0.000197 0.00296 139030.9

ENSG00000135821.11 GLUL 61547.89 76676.16 55373.08 0.671273 0.000218 0.003176 103210.9

ENSG00000104833.6 TUBB4A 20856.71 13003.3 24062.19 -0.84178 3.44E-08 4.12E-06 94539.22

ENSG00000171885.9 AQP4 20362.81 27513.91 17443.99 1.094429 2.29E-06 0.0001 89094.63

ENSG00000152661.7 GJA1 13340.95 19835.51 10690.11 1.263084 7.06E-08 6.94E-06 86931.93

ENSG00000168309.12 FAM107A 38970.09 47446.88 35510.18 0.737032 0.000164 0.002585 74321.76

ENSG00000134294.9 SLC38A2 5448.303 9251.666 3895.909 1.312784 3.02E-13 2.83E-10 68291.6

ENSG00000079215.9 SLC1A3 26782.89 35129.11 23376.27 0.855477 6.42E-05 0.001294 66171.29

ENSG00000198668.6 CALM1 83743.27 75824.67 86975.35 -0.34932 0.000542 0.006243 64492.7

ENSG00000160014.12 CALM3 47941.46 38247.79 51898.06 -0.55962 0.000424 0.005225 61221.65

ENSG00000124942.9 AHNAK 9570.149 14157.49 7697.765 1.190373 9.48E-08 8.73E-06 57631.07

ENSG00000226958.1 CTD-2328D6.1 16679.1 5983.11 21044.81 -1.19344 0.000217 0.003174 49731.65

ENSG00000154146.7 NRGN 39663.72 30172.8 43537.57 -0.69835 0.002654 0.019734 47221.27

ENSG00000007237.13 GAS7 15300.17 11322.25 16923.81 -0.69125 5.64E-07 3.50E-05 47122.17

ENSG00000078804.8 TP53INP2 6501.307 3430.574 7754.667 -1.37796 8.45E-08 8.02E-06 45652.02

ENSG00000180229.8 HERC2P3 1987.225 3987.18 1170.917 2.068673 8.09E-15 1.14E-11 44991.92

ENSG00000111674.3 ENO2 25831.65 20005.15 28209.81 -0.57404 6.29E-05 0.001273 42930.44

ENSG00000131711.10 MAP1B 37563.64 29736.15 40758.53 -0.51967 0.00057 0.006441 42770.9

doi:10.1371/journal.pone.0143563.t004
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Functional Enrichment Clustering[13,14] of the top 3000 DE genes (�the DAVID tool restricts
the input list size to 3000 genes) identifies numerous biological functions related to immune
response, development, cell growth, and transcriptional regulation. Table 5 contains a sum-
mary of the enriched clusters identified by DAVID that are significant at a cluster score corre-
sponding to FDR p<0.05. DAVID does not enforce mutually exclusive gene membership
between GO categories/pathways and thus one finds redundancy in the list of clusters. The
themes of immune response, development, and transcriptional regulation are seen as the most
consistent functional groups in this analysis. Fig 2 depicts the functional clusters identified by
DAVID as a network where nodes are the DE genes underlying the clusters and edges represent
common genes between clusters. The cluster with the largest number of genes is immune
response with 1,248, followed by skeletal system development with 921.

Integrated Geneset Enrichment Analysis Identifies Specific Enriched
Functional Categories
The DAVID results, while informative, did not provide sufficiently detailed information to
understand how the DE gene list mapped to biological functions. To attain a more fine-grained
understanding of the enriched biological functions and characteristics of the DE genes, we next
performed a detailed analysis of subsets of the DE gene list using the Gene Ontology (GO)
annotation database[15] and the MsigDB[16] C2 Canonical Pathways and C3 Transcription
Factor target gene sets (see Methods). Briefly, the central idea of the method is to partition the
gene list into groups that include increasing numbers of DE genes, where the first group con-
tains the top 25 DE genes, the second group the top 50, and so on for the entire gene list. The
last group contains all 5,480 DE genes. Each of these groups is then used to calculate enrich-
ment against each geneset separately using an appropriate statistical method (see below), and
then the results from each gene set are concatenated and hierarchically clustered.

Table 5. DAVID functional clustering. Cluster Function labels were assignedmanually by inspecting the terms within the cluster but generally correspond
to the name of the most enriched term within the cluster. The (1) Immune response cluster contained 27 distinct terms from across the default genesets used
by DAVID.

# Cluster Function Cluster Term Keywords # genes # terms score

1 immune response membrane, plasma, transmembrane, receptor 1248 27 3.764689

2 identical protein binding protein, activity, identical, function 212 5 3.346027

3 metallothioniens metal, binding, ion-binding, cluster 33 17 3.338415

4 skeletal system development morphogenesis, embryonic, regulation, development 577 80 3.186388

5 skeletal system development regulation, transcription, process, negative 921 76 3.143774

6 gland development development, gland, mammary, lactation 39 3 2.793014

7 immune system development myeloid, differentiation, leukocyte, cell 78 11 2.637665

8 pattern specification process symmetry, determination, pattern, left/right 62 5 2.39939

9 response to oxygen levels response, oxygen, ovulation, process 54 4 2.374104

10 growth growth, regeneration, developmental, tissue 52 4 2.325598

11 extracellular matrix extracellular, matrix, proteinaceous, part 63 4 2.27691

12 cell growth growth, cell, developmental 36 3 2.222128

13 positive regulation of immune system process response, immune, regulation, activity 593 113 2.204324

14 IgG binding binding, receptor, c2-type, protein 93 11 2.191733

15 skeletal system morphogenesis development, morphogenesis, differentiation, bone 75 14 2.170232

16 positive regulation of immune system process regulation, cell, positive, immune 358 177 2.076509

17 cytokine receptor activity Fibronectin, type-iii, receptor, regulation 134 32 2.025433

18 positive regulation of cell differentiation development, morphogenesis, tube, regulation 287 89 2.008837

doi:10.1371/journal.pone.0143563.t005
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GO Enrichment Analysis Implicates Development and Immune
Response
GO term enrichment was calculated using topGO[17], a tool that uses the GO term hierarchy
to identify enrichment of the most biologically specific categories given a gene list. Fig 3 depicts
GO term enrichment of ranked subsets of genes ordered by the most significant term across all
subsets. Enrichment is only shown for gene subset/term pairs that attain significance at
p<0.05. In total, 901 biological process (BP) terms, 168 molecular function (MF) terms, and 68
cellular component (CC) terms were found to be significant in at least one of the ranked gene
subsets. Performing analysis on subsets of top enriched genes reveals that developmental pro-
cesses and transcriptional regulation are enriched among the most DE genes, while immune
response genes are found throughout the DE gene list. Table 6 contains detailed statistics on

Fig 2. DAVID functional clustering network. Network representation of the DAVID clusters from Table 5. Nodes represent clusters, the size of the node is
proportional to the number of unique genes that make up the cluster and numbers within nodes are the number of unique genes mapped to terms in the
cluster. Edges between nodes indicate the existence of overlapping genes, where the width is proportional to the percent overlap of genes in the smaller of
two connected nodes. The color of nodes and edges is proportional to the average fold change of the genes in the node or edge.

doi:10.1371/journal.pone.0143563.g002
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the top enriched GO terms. These detailed results are consistent with the cluster results from
DAVID and better expose the specific biological functions involved in the DE gene list.

Pathways Involved in Multiple Immune System Processes Are Enriched
To identify biological pathways as opposed to functional categories, we performed hyper-
enrichment of the MsigDB C2 Canonical Pathways using a hypergeometric test on the same
ranked subsets of genes as in the GO analysis. These analyses found 538 significantly enriched
pathways in at least one gene subset. Enriched Canonical Pathways show a clear immune
response and inflammation-related pattern across pathway databases, including Reactome
[18,19] innate immune system [DOI: 10.3180/REACT_6802.2], KEGG[20] complement and
coagulation cascades [hsa04610] and cytokine-cytokine receptor interaction [hsa04060], and
PID[21] IL4-mediated signaling events [Pathway id:il4_2pathway] and NFkB canonical path-
ways [Pathway id:nfkappabcanonicalpathway].

DEGenes Are Enriched as Targets of Transcription Factors Implicated
In HD
We next performed transcription factor (TF) target analysis using the MsigDB C3 TF regula-
tion gene set to identify potential regulators responsible for the observed differential expres-
sion. 237 TFs were identified as significantly enriched in at least one gene subset. A number of
the enriched TFs are known to physically interact with the mutantHtt protein, including SP1
[22] and TBP[23]. The pattern of enrichment for the top TF,MYC-associated zinc finger

Fig 3. Detailed GO enrichment. Top 25 enriched GO categories across all three GO namespaces identified by topGO for different numbers of DE genes. X-
axis indicates the number of top genes used for the enrichment in each GO category, e.g. the first column uses the top 25 genes, the second column uses the
top 50, and so on. The intensity is proportional to–log10(p-value) from topGO. White dots indicate the gene set with the most significant p-value, concordant
with Table 5. This figure shows that the first three GO Categories are defined by genes that are among the top 25 to 150 DE genes in the dataset. GO
Categories further down the list are defined by genes whose differential expression is less pronounced between HD and controls.

doi:10.1371/journal.pone.0143563.g003
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protein (MAZ), tracks closely with pathways associated with immune response (i.e. both
become more enriched as more genes are included) but otherwise has no previous connection
with HD. The second most enriched TF is forkhead box O4 (FOXO4). Another notable
enriched TF is NFkB, which plays a key role in innate immune response, is critical for glial and
neuronal cell function and synaptic signaling[24,25] and impairs synaptic transport in the
presence of mutant Htt protein[26]. Other TFs implicated as potential regulators of the DE
genes include NFAT[27],HSF1[28], and PU1[29].

Integrated Geneset Enrichment Analysis Links Biological Function and
Transcriptional Regulation
The top fifteen most enriched gene set profiles from each of GO, Canonical Pathways, and
Transcription Factors were concatenated and hierarchically clustered to identify which gene
sets are enriched in similar DE genes, as shown in Fig 4. The clustering identifies five groups of
genesets that correspond primarily to either immune response or developmental functions
(A-C, and D-E respectively in Fig 4). Transcription Factor genesets are clustered with pathway
and GO genesets, indicating which co-regulated genes are associated with which biological
functions. Further remarks on this result are found in the Discussion section.

Table 6. Enriched GO Categories. The most enriched GO category GO:sequence-specific DNA binding
using the top 25 DE genes ranked by significance. The second most enriched GO category, GO:anterior/pos-
terior pattern specification, was found when considering the top 350 DE genes.

GO Category Top n genes -log10(p-value)

GO: sequence-specific DNA binding 25 12.211851

GO: anterior/posterior pattern specification 350 10.890978

GO: sequence-specific DNA binding transcription factor activity 25 10.19469

GO: cellular response to zinc ion 350 9.630161

GO: proximal/distal pattern formation 25 8.874839

GO: negative regulation of growth 350 7.983699

GO: plasma membrane 2350 7.603115

GO: embryonic digit morphogenesis 1350 7.542254

GO: positive regulation of transcription from RNA polymerase II promoter 50 7.350002

GO: integral component of plasma membrane 5480 7.167156

GO: inflammatory response 4850 7.057813

GO: embryonic forelimb morphogenesis 25 6.633754

GO: immune response 4350 6.311688

GO: immunoglobulin binding 2100 6.178673

GO: immune response-activating cell surface receptor signaling pathway 1100 6.135233

GO: skeletal system development 25 6.059758

GO: neutrophil chemotaxis 1850 6.038185

GO: blood microparticle 3350 5.968453

GO: developmental growth 4600 5.939322

GO: transcription factor complex 1100 5.636701

GO: negative regulation of transcription from RNA polymerase II
promoter

850 5.624786

GO: cellular response to cadmium ion 350 5.593366

GO: extracellular vesicular exosome 3350 5.489169

GO: positive regulation of tumor necrosis factor production 1350 5.481418

GO: signaling pattern recognition receptor activity 1850 5.366574

doi:10.1371/journal.pone.0143563.t006
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Association of Gene Expression with Clinical Covariates
Genes whose expression is associated with CAG-adjusted age at onset are potential genetic fac-
tors that modify the presentation of disease independent of CAG repeat length, though in the
presence of the mutation, and thus may be useful as a biomarker in identifying patients at risk
of early onset. Therefore, to identify genetic factors that may modify clinical covariates, each of
the 28,087 confidently expressed genes was analyzed for association with CAG repeat length,
CAG-adjusted residual age at onset, and scores representing cortical and striatal involvement
using the Hadzi-Vonsattel (H-V) method[11]. Due to the significant association between age
at onset and CAG repeat length, a CAG-adjusted residual age at onset variable was constructed
with the model from Djousse et al[30] and used to test for association (see Methods).

Fig 4. Clustergram of Top Enriched Pathway, TF, and GO terms.Concatenated enrichment profiles for GO, C2, and TF gene set collections, similar to Fig
3, ordered by hierarchical clustering of Euclidean distance between rows. Rows have been normalized by dividing by the row sum for visualization, intensity
is proportional to normalized enrichment. Heatmap is partitioned into groups A-E based on hierarchical clustering. Clusters A, B, and C are primarily involved
in the immune response and are enriched in gene subsets that include more genes. Clusters D and E are predominantly related to developmental and
transcriptional regulation processes.

doi:10.1371/journal.pone.0143563.g004
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Association was assessed using a linear regression model predicting normalized, normally-
transformed counts (see Methods) from each covariate separately, adjusting for RNA integrity
number RIN. No gene associations reached genome-wide significance after multiple hypothesis
adjustment, though many reached nominal significance as described in Table 7 and Tables B,
C, D, and E in S1 File. We did not find any significant association between gene expression in
HD brains and either the striatal or cortical H-V involvement scores. While this may be a con-
sequence of the relatively small sample size of twenty HD brains studied here, it is also worth
noting that these brains exhibited a wide range of cortical (from 0.401 to 2.361) and striatal
(from 2.132 to 3.820) involvement on the H-V scale. To identify potential confounding in the
DE gene list by cortical involvement, we analyzed the DE gene counts to identify any with sig-
nificant association with H-V cortical score (see Methods). None of the DE genes attained sig-
nificance after multiple hypothesis adjustment, indicating the DE gene results are not
confounded by cortical involvement.

Discussion
We conducted mRNA transcriptional analyses in HD and control brains to identify altered
gene expression profiles in this disease. To our knowledge, these are the first reported results
from a gene expression analysis of high-throughput mRNA sequencing from post-mortem
human HD and control brains. Widespread DE genes strongly implicate immune response,
transcriptional dysregulation, and extensive developmental processes across all primary brain
cell types (i.e. astrocytes, oligodendrocytes, microglia, and neurons). The genes from the DES-
ranked list in Table 4 reveal a variety of disease related processes, implicating genetic signatures
for different brain cell types as well as genes heavily associated with brain injury and

Table 7. Protein coding genes associated with clinical covariates. P-values are nominal.

CAG Repeat Length CAG Adjusted Onset Cortical involvement score

Gene beta p-value Gene beta p-value Gene beta p-value

C2CD3 -0.07136 0.000139 CAPN8 0.589035 0.000129 STRADB 0.271437 7.87E-05

NPBWR1 0.224468 0.00021 ARSF -0.58752 0.000461 ABCF3 -0.36875 0.00038

GPR142 -0.1366 0.000275 BICD2 -0.22363 0.000474 BARD1 0.888169 0.000423

CEP95 -0.0913 0.000423 MYB -0.68965 0.000766 TMEM190 0.582559 0.000514

C18orf42 0.207978 0.000583 GDF5 0.68 0.00121 GLUD1 0.621515 0.000522

NNAT 0.176257 0.000658 KLHL40 0.537238 0.001479 F2R 1.010939 0.00054

OFD1 -0.10494 0.000669 PODNL1 0.555785 0.001579 FAM64A -1.01782 0.000547

SOX1 0.112901 0.000683 CRELD2 0.307269 0.001749 SDC4 1.069862 0.000552

PCDH8 0.232301 0.000734 PLEK2 -0.63464 0.001817 RIN2 0.827077 0.000677

NAA20 0.062964 0.000743 ZNF398 -0.25083 0.001828 ANGPTL4 1.498085 0.000752

SH3TC2 -0.24499 0.000823 EPS8L2 0.382135 0.002523 STOX1 0.703621 0.000783

RWDD2B 0.104283 0.000829 PAX5 -0.64915 0.002563 DLK2 -0.7786 0.000898

IGF1 0.199257 0.000846 GATSL1 -0.42252 0.002896 WWOX 0.440922 0.000991

PAPL -0.21977 0.000869 ICMT -0.24777 0.003183 RFC5 -0.32834 0.001024

DST -0.13745 0.000877 NPY2R -0.78898 0.003207 DPH2 -0.3034 0.001124

C1orf131 -0.06809 0.000889 POLA2 0.331568 0.003421 ETNPPL 0.980477 0.001187

GDNF -0.15728 0.000909 PRPSAP1 0.245984 0.003581 PON2 0.718243 0.001353

PDCD2 0.034442 0.000965 TTC16 0.456621 0.003612 ELP4 0.602198 0.001368

NCKAP5 -0.14426 0.001001 C3orf52 -0.56693 0.003654 MYADM -0.40523 0.001438

FAM194A 0.164749 0.001009 FAM127C 0.195028 0.004014 NR5A1 -0.65309 0.001475

doi:10.1371/journal.pone.0143563.t007
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neurodegeneration. The top two DES-ranked genes,MBP (myelin basic protein) and GFAP
(glial fibrillary acidic protein), are typical markers used to identify oligodendrocytes and reac-
tive astrocytes, respectively[31]. These proteins have also been implicated in immune pro-
cesses, blood-brain barrier permeability, and response to injury in the central nervous system
[31–33]. The next highest DES-ranked gene, CLU (clusterin), is associated with clearance of
cellular debris, lipid recycling, apoptosis, and, as a stress-induced secreted chaperone protein,
has been genetically associated with late-onset Alzheimer’s disease[34]. GLUL (glutamate-
ammonia ligase) is a glutamine synthetase found primarily in astrocytes in the brain and is
involved in neuron protection from excitotoxicity through the conversion of ammonia and glu-
tamate to glutamine[35]. Alteration in TUBB4A (tubulin beta-4A chain), a major component
of microtubules, has been associated with neurodegenerative diseases caused by hypomyelina-
tion with atrophy of the basal ganglia and cerebellum[36]. AQP4 (aquaporin) is a specific
marker for astrocytic endfeet and has been linked to Ca2+ induced edema[37]. ENO2 (enno-
lase), a neuron-lineage-specific gene ranked 19th by DES, has been identified as a marker for
ischemic brain injury[38]. Although it is not included in the top list, the analysis also identified
CD40, a protein uniquely expressed in activated microglia for antigen presentation in the brain
[39]. Together, these genes suggest a systemic response in all brain cell types to stress and brain
injury.

While some of the differences in gene expression that are observed in our studies are almost
certainly a consequence of alterations in the cellular distribution in HD due to the loss of neu-
ronal cells and the reactive response to degeneration in the HD brain, it is important to note
that we did not find that the levels of gene expression in HD brains were related to the extent of
cortical involvement. Specifically, while the HD samples in this study range from very low
(H-V cortical score 0.401) to very high (H-V cortical score 2.361) levels of cortical involve-
ment, levels of differentially expressed genes were not found to be significantly associated with
H-V cortical score. Because the H-V cortical score comprehensively characterizes the level of
involvement and cellular architecture of the HD brains studied, these findings suggest that the
differentially expressed genes are not simply a reflection of altered distribution of cell types in
the samples studied.

DAVID functional clustering analysis identified a number of functionally related clusters
with overlapping genes. The network in Fig 2 illustrates that the immune system and develop-
mental clusters are highly interrelated in their underlying genes, suggesting a link between
these cellular processes. The detailed analysis of different gene subsets for enrichment of GO,
Canonical Pathways, and Transcription Factors affords some insight into this relationship as
illustrated in Fig 4. The top fifteen most enriched gene set profiles from each collection were
concatenated and hierarchically clustered to identify which gene sets are enriched in similar
DE genes. The clustering identifies five distinct clusters that are functionally organized into
coherent groups (labeled A-E in Fig 4). Clusters A, B, and C are primarily involved in the
immune response and are enriched in gene subsets that include more genes. Transcription fac-
tors SP1,MAZ,MYC, E12, and PAX4 are enriched in similar sets of DE genes that are also
involved in inflammatory and immune response, suggesting these functions are transcription-
ally related. Clusters D and E are predominantly related to developmental and transcriptional
regulation processes, and are clustered with transcription factor FREAC2 (Forkhead Box F2,
also known as FOXF2) which, as a member of the forkhead family of transcription factors, is
potentially implicated in development, organogenesis, regulation of metabolism, and immune
system processes[40].

The strong implication of immune response and neuroinflammation in this study is consis-
tent with prior reports as a critical aspect of the human response to HD[41–43]. The set of DE
genes is highly enriched for multiple immune system processes, including both innate and
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adaptive immune response, implicating a tissue-wide immune response at multiple cellular lev-
els. The presence of the proinflammatory genes NFkB and interleukins (IL8, IL9, IL15, IL18) is
strong indication of an innate immune response and is previously reported in the HD litera-
ture[41–43].

Except for our recent miRNA finding[10], the Hox locus has not previously been implicated
in HD in model or human systems. The extent of altered developmental genes is quite striking
and affords no immediate interpretation since the enriched developmental processes seem to
be specific to cell types that have no obvious role in the central nervous system (i.e. skeletal,
limb morphogenesis, etc.). This apparently non-specific developmental enrichment might
therefore be a consequence of profound transcriptional changes related to the extreme inflam-
matory stress experienced by the affected brain regions as well as transcriptional dysregulation
due aberrant interactions between TFs and mutantHTT protein fragments. It is still unclear
whether a subset or if all brain cell types are responsible for this signal, and elucidation of the
source of the developmental gene transcription may provide further insight into the cell type
specificity of transcriptional dysregulation.

This dataset suggests the calpain family of proteolytic proteins plays a role in HD. Calpains
have a direct role in the cleavage of mutant Htt into toxic fragments[44] and the inhibition of
these proteins leads to decreased neuronal toxicity in in vitro settings[45]. Three calpains,
CAPN2, CAPN7, and CAPN11, are significantly DE in this dataset, where 2 and 7 are highly
abundant and up-regulated in HD while 11 shows low expression and is down regulated. Cal-
pains are typically activated by elevated intracellular Ca+2 levels[46] and there is significant
evidence in this dataset that genes responsive to calcium and other ionic metals are activated.
Four of the eight calmodulin related genes (CALM1, CALM2, CALML3, CALML4) are DE in
the dataset, and are all significantly down regulated with the exception of CALML4 (LFC -0.55,
-0.35, -0.97, 0.42, respectively). Calcium plays a key role in apoptotic phagocytosis and the
inflammatory response[47,48], processes that are strongly implicated in this dataset, and dis-
rupted calcium concentration has been implicated in HD and neurodegeneration in general
[49,50]. Among the enriched GO categories are calcium-dependent protein binding, calcium-
dependent phospholipid binding, cellular response to cadmium ion, and cellular response to
zinc ion. Metallothioneins appear as one of the most enriched DAVID functional clustering
results, with nearly every metallothionein 1 subtype DE in the dataset (all except MT1B). Alto-
gether, this dataset strongly implicates the presence of metal ion disequilibrium in the HD con-
text. Though the presence of ion disequilibrium is strongly implicated by this study, it is
unclear whether this effect is a cause or a consequence of the toxic effects of mutant Htt.

A popular hypothesis asserts that mitochondrial dysfunction contributes to neurodegenera-
tion in HD[51–53]. Dysregulation of mitochondrial function in HD is thought to be induced
by disrupted cytoplasmic Ca2+ concentrations[51] which lead to alterations in bioenergetic
processes and mitochondrial morphology[52]. Several of the signals observed in this study sug-
gest an imbalance in calcium ion homeostasis in the human HD brain as described above,
which supports the hypothesis that mitochondrial dysfunction is implicated in human HD.
However, none of the mitochondrial genes are DE in this dataset.

In contrast to this study, Hodges et al[54] found no detectable gene expression changes for
HD in post mortem BA9 tissue. Nonetheless, there are consistencies between our findings.
First, although overall gene expression was observed to be down regulated in the striatum for
Hodges et al, the distribution of fold changes for BA9 in both studies indicate overall up regula-
tion. Second, and more significantly, there is suggestive overlap of enriched biological processes
between the two datasets across brain regions. Specifically, they observed that central nervous
system and neuronal developmental genes, ion transport, microtubule, and vesicle-related pro-
cesses were enriched, signals also observed in this study.
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The discovery of thousands of statistically significant differences in gene expression pre-
sented a major challenge to the interpretation of this dataset. The DAVID analysis, which is
specifically designed to interpret large gene lists, was not sufficiently detailed to readily provide
insight about which genes were involved in which functions, nor did the tool organize its out-
put in a way that presents how different enriched genesets are related. The method developed
here addresses both of these issues, and allows the use of different statistical enrichment meth-
ods, as appropriate, for different gene sets. It also combines and visualizes the enrichment
information in such a way as to facilitate generating specific hypotheses concerning which
genes are related through their enrichment profiles. The link between genes that are regulated
by TFs known to interact with mHtt fragments and their immunological functions (Fig 4 clus-
ter A) proposes a mechanism by which mHtt may play a toxic role to cells, namely via tran-
scriptionally altering genes involved in the immune response. FOXF2 was also identified as a
TF that is potentially responsible for aspects of both the inflammatory and developmental gene
expression changes (Fig 4 cluster D). These insights were not obvious from the DAVID results,
demonstrating the utility of our novel analytical methodology.

These data represent the most comprehensive characterization of genome-wide gene
expression in human HD subjects to date. The broad scope of changes across biological func-
tions and cell types establishes HD as a systemic disease of the brain, implicating not only neu-
rons but also the primary glial cell types. This new molecular evidence supports previous
imaging-based observations of cortical and whole-brain structural changes in HD[55–57]. The
immune response is intrinsically intercellular in its activation and function, cued by the com-
plex interaction of stressed neurons and the reactive glial cells of the central nervous system
immune response. This brings into focus the importance of considering the HD brain as a
whole organ, and important advances in understanding and mitigating HD pathogenesis may
be gained by developing and studying models of these complex multi-cellular interactions. In
particular, in vitro studies of human-derived neuronal HD cell line models and HDmouse
models cannot capture the complexity of the human brain microenvironment, an especially
important point for mouse models due to the compelling differences between the human and
murine inflammatory response[58]. It remains to be shown precisely which cell types are
responsible for which aspects of the biological response observed in this study. Similarly, it is
not known how the immune and developmental DE genes are related, and whether some com-
plex combination of these genes can be shown to modulate clinical features of disease, in par-
ticular age of onset. It is conceivable that subjects with a different or more extreme immune
response may experience neurodegeneration differently than others, and we hypothesize that
this avenue of research will yield important advances in our understanding of HD
pathogenesis.

Methods

Sample Information
Frozen brain tissue from prefrontal cortex Brodmann Area 9 (BA9) was obtained from the
Harvard Brain and Tissue Resource Center McLean Hospital, Belmont MA, the Human Brain
and Spinal Fluid Resource Center VAWest Los Angeles Healthcare Center (Los Angeles, Cali-
fornia) and Banner Sun Health Research Institute[59] (Sun City, Arizona). Twenty Hunting-
ton's disease (HD) samples and forty nine neurologically normal control samples were selected
for the study (See Tables 1 and 2). Age at death and RIN were significantly different between
cases and controls (p = 0.01 and p = 0.006, respectively, by Welch two sample t-test). The HD
subjects had no evidence of Alzheimer or Parkinson disease comorbidity based on neuropa-
thology reports. All samples were male. Neuropathological information for the HD samples
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includes the Vonsattel grading[4], as well as striatal and cortical scoring recently described by
Hadzi et al.[11]. Additionally, CAG repeat size and age at onset were known for the HD sam-
ples (Table 1).

Human Subjects
This study has been designated exempt (Protocol # H-28974) by the Boston University School
of Medicine Institutional Review Board, as no human subjects were studied and all data are
derived from post-mortem human brain specimens.

mRNA Sample Preparation and Sequencing
For each brain sample, grey matter from the cortical ribbon was dissected by hand with a target
mass of 0.08 g and used for RNA extraction. 1 ug of RNA was used to construct sequencing
libraries using Illumina’s TruSeq RNA Sample Prep Kit according to the manufacturer’s protocol.
All sample dissections and RNA extractions were performed by the same individual. RNA Integ-
rity Number (RIN) was measured by the Agilent Bioanalyzer to assess RNA quality prior to
sequencing. In brief, mRNAmolecules were polyA selected, chemically fragmented, randomly
primed with hexamers, synthesized into cDNA, 3’ end-repaired and adenylated, sequencing
adapter ligated and PCR amplified. Each adapter-ligated library contained one of twelve TruSeq
molecular barcodes. Multiplexed samples were equimolarly pooled into sets of three samples per
flowcell lane and sequenced using 2x101bp paired-end runs on Illumina’s HiSeq 2000 system at
Tufts University sequencing core facility (http://tucf-genomics.tufts.edu/). Demultiplexing and
FASTQ file generation (raw sequence read plus quality information in Phred format) were
accomplished using Illumina’s Consensus Assessment of Sequence and Variation (CASAVA)
pipeline. Sequences were aligned against the hg19 reference genome[60] using tophat v2.0.6[61],
with non-default parameters (see S1 Text).

Gene Expression Quantification, Data Cleaning, and DE Analysis
Aligned reads were mapped to the Gencode v17 annotation[12] using the htseq-count tool in
the HTSeq v0.5.3p9 package[62] with the intersection non-empty strategy. Genes that had less
than half of HD and control samples with nonzero counts were filtered from the analysis due
to low signal. No samples were identified as outliers, and extreme gene measurements consid-
ered outliers were adjusted as described in S1 Text. Outlier-trimmed raw counts were used in
subsequent analyses. DESeq2[63] was used to identify DE genes between HD and control,
adjusting for age at death binned into intervals 0–45, 46–60, 61–75, and 90+ and a categorical
RNA Integrity Number (RIN) variable indicating RIN>7 as covariates. Genes with FDR<0.05
were considered DE.

DAVID, GO, and MsigDB Enrichment Calculation
The DAVID[13,14] functional enrichment clustering tool set to the lowest clustering strin-
gency was used on the top 3000 DE genes to identify groups of enriched functions. DAVID
limits the number of genes submitted for analysis to 3000. Clusters were considered significant
if the cluster score was greater than–log10(0.05). Separate enrichment analyses were performed
using the Gene Ontology (GO) annotation database[15], the MsigDB[16] C2 Canonical Path-
ways gene sets, and the MsigDB C3 Transcription Factor target gene sets. Enrichment was cal-
culated for subsets of top DE genes separately, i.e. enrichment analysis was performed on the
top 25 genes, then on the top 50, and so on. GO term enrichment was performed using topGO
[17] with the “weight01” algorithm and “fisher” statistic, and custom scripts in the R statistical
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environment[64]. Enrichment of MsigDB Canonical Pathways and Transcription Factor gene-
sets was performed with custom R scripts using the “fisher.test” and “p.adjust” routines. Once
enrichment profiles for each geneset was computed, the genesets were ranked based on the
most significant enrichment found in any gene group. The top 15 most significant geneset
enrichment profiles from each database were selected and concatenated into a single enrich-
ment matrix with genesets as rows and gene groups as columns. The rows of this matrix were
clustered using agglomerative hierarchical clustering with Ward linkage. Further processing of
enrichment results was performed using custom scripts to generate plots in python with mat-
plotlib[65], ipython notebook[66], and pandas[67].

Association with Clinical Covariates
DESeq2 normalized counts were transformed using the Variance Stabilizing Transform (VST)
available in the same package to produce approximately normally-distributed gene expression
values. After the normal transformation, the standard linear regression model becomes appro-
priate for evaluating association with covariates. Linear models predicting VST transformed
counts from each clinical covariate after adjusting for RIN were run for each gene in the R sta-
tistical environment. P-values were adjusted using the “p.adjust” function in R using the FDR
method. To assess which DE genes were associated with H-V cortical score, DESeq2 was used
to model read counts as predicted by H-V cortical score adjusting for RIN for each gene,
adjusted for multiple hypothesis with the “p.adjust” function in R using the FDR method.

Replication of DE Genes by RT-qPCR in an Independent Sample Set
An independent set of 33 HD and 31 control prefrontal cortex brain samples not used in the
sequencing study were subjected to RT-qPCR to replicate the findings of this study. RNA was
reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad). Reverse transcriptase quanti-
tative polymerase chain reaction (RT-qPCR) was carried out for all genes of interest in each
sample using TaqMan Gene Expression Assays (Life Technologies) on an ABI 7900HT Real-
Time PCR system, according to the manufacturer’s protocol. All probes were human and cov-
ered all transcripts: HOXC10 (Assay ID Hs00213579_m1) and NFKBIA (Assay ID
Hs00355671_g1) probes were used. Peptidylprolyl isomerase A (PPIA, catalog #4333763F) and
beta glucuronidase (GUSB, catalog # 4333767F) were used as endogenous controls. Samples
were run in triplicate at 200ng mRNA per reaction. For HOXC10, presence or absence of tran-
scripts was assessed by whether a critical threshold (CT) value was determined or undeter-
mined, respectively, at the threshold chosen by Applied Biosystems SDS software v2.4. For
NFKBIA, wells that caused the variance of the corresponding set of replicates to exceed 0.2
were marked as outliers and excluded from the analysis (9 such replicates from unique sample/
assay combinations were excluded). To normalize sample input, deltaCT values were calculated
for each sample by subtracting the average CT for a target gene by the averaged CT for both
control genes. Two sample t-tests assuming equal variance with deltaCT values were used for
statistical analysis.

Validation of DE Genes by RT-qPCR
The RNA used in the RT-qPCR was from the same extraction as submitted for sequencing and
thus was intended to be a technical validation of the sequencing results. Validation samples
were prepared and processed for RT-qPCR in the same manner as the replication samples,
described above. All probes were human and covered all transcripts: AHNAK nucleoprotein
(AHNAK, Assay ID Hs01102463_m1), paired-like homeodomain (PITX, Assay ID
Hs00267528_m1), aquaporin 4 (AQP4, Assay ID Hs00242342_m1), solute carrier family 38,
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member 2 (SLC38A7C, Assay ID Hs01089954_m1), gap junction protein, alpha 1, 43kDa,
(GJA1, Assay ID Hs00748445_s1), and tumor protein p53 inducible nuclear protein 2
(TP53INP2, Assay ID Hs00894008_g1) probes were used. As with the replication study, PPIA
and GUSB were used as endogenous controls. Samples were run in triplicate at 30ng per reac-
tion. Wells with critical threshold (CT) values higher than 3 standard deviations were removed
from analysis. To normalize sample input, deltaCT values were calculated for each sample by
subtracting the average CT for a target gene by the averaged CT for both control genes. Wells
that were undeterminable were replaced with the maximum number of cycles (40) in order to
calculate deltaCT. Two sample t-tests assuming equal variance with deltaCT values were used
for statistical analysis.
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