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Abstract
There is considerable epidemiological evidence indicating that air pollution has adverse effects on human health and is closely
related to respiratory diseases, including chronic obstructive pulmonary disease (COPD). These effects, which can be divided into
short- and long-term effects, can manifest as an exacerbation of existing symptoms, impaired lung function, and increased hos-
pitalization and mortality rates. Long-term exposure to air with a high concentration of pollutants may also increase the incidence of
COPD. The combined effects of different pollutants may become more complex in the future; hence, there is a need for more
intensive research on specific at-risk populations, and formulating corresponding protective strategies is crucial. We aimed to
review the epidemiological evidence on the effect of air pollution on COPD, the possible pathophysiological mechanisms un-
derlying this effect, as well as protective measures against the effects of air pollutants in patients with COPD.
© 2020 Chinese Medical Association. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Air pollution is a major public health issue that
affects all parts of the world. It is the leading cause of
morbidity and mortality and contributes to the global
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disease burden. The Global Burden of Disease (GBD)
study reported that exposure to PM2.5 led to 4.2 million
deaths and 103.1 million disability-adjusted life years
(DALYs) worldwide in 2015, accounting for 7.6% of
the total global deaths and 4.2% of the global DALYs.1

China is the fastest growing and largest developing
country; thus, air pollution in China is becoming
increasingly severe, making air pollution-related mor-
tality in China one of the highest worldwide. In addi-
tion, in 2017, ambient particulate matter (PM)
pollution became the fourth-largest health risk factor
contributing to the years of life lost among Chinese
residents.2
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Exposure to ambient air pollutants can cause dam-
age to multiple organs and systems of the human body,
thus adversely affecting health.3 The respiratory tract
has direct exposure to external surroundings and is
more vulnerable to pollutants than other systems.
Epidemiological and mechanistic studies have shown a
close relationship between air pollution and multiple
respiratory diseases, especially in patients with un-
derlying lung diseases such as chronic obstructive
pulmonary disease (COPD).

COPD is a heterogeneous disease characterized by
persistent respiratory symptoms and airflow limita-
tions. This disease is associated with significant
exposure to noxious particles or gases and influenced
by host factors, including abnormal lung develop-
ment.4 The incidence and mortality of COPD have
increased every year, leading to a serious economic
and social burden. The GBD study estimates that the
global prevalence of COPD is approximately 174
million.5 The China Pulmonary Health (CPH) study
showed that the prevalence of COPD was 13.7%
among individuals aged 40 years and older.6 According
to the World Health Organization (WHO), COPD will
become the third leading cause of death globally and
the fifth leading cause of economic disease burden
worldwide in 2020.7 Smoking, air pollution, occupa-
tional exposure, respiratory infection, and genetic
factors such as a1-antitrypsin deficiency are all risk
factors for COPD, with cigarette smoke being the
largest contributor to COPD development, followed by
air pollutants.6,8

In recent decades, many environmental epidemio-
logical and toxicological studies have been conducted
to explore the effects of air pollution on COPD. Here,
we aimed to review the epidemiological evidence on
the effect of air pollution on COPD, the mechanisms
underlying this effect, as well as the protective mea-
sures that may help reduce the effect of air pollution,
such as COPD development, among susceptible pa-
tients. This review will use epidemiological studies
focusing on ambient air pollution to demonstrate the
significant health effects of ambient air pollution on
COPD.

Epidemiology of air pollution and classification of
air pollutants

Owing to developments in global industrialization
in recent years, air pollution has become one of the
biggest environmental and public health problems
globally. Although pollution levels in high-income
countries have reduced over the past 25 years, the
levels in low- and middle-income countries (LMICs)
such as China and India have sharply increased over
the same period.9 According to the Global Air Quality
Report released by the WHO, nine out of ten people
around the world breathe air with high levels of pol-
lutants.10 With increased industrialization, air pollution
in China has become severe. In 2013, severe and
persistent haze-fog was observed in China.11 To
improve air quality, China formulated the national Air
Pollution Prevention and Control Action Plan in
2013.12 After a period of significant effort, the air
pollutant levels in key regions improved signifi-
cantly,13,14 but the overall air quality has not reached
an acceptable standard.

Air pollution is caused by a complex mixture of
particles, vapors, and gases emitted from natural and
synthetic sources and formed through the process of
photochemical transformation. The most commonly
monitored air pollutants are PM and gaseous pollut-
ants. PM is a complex mixture of solid and liquid
particles suspended in the atmosphere, and includes
particulate matter (PM10) and fine PM (PM2.5). In-
dustrial emission due to combustion, secondary inor-
ganic aerosols, and secondary organic aerosols are the
primary identified sources of fine PM.15 When inhaled,
PM10 mainly accumulates in the upper respiratory
tract, such as the nasal cavity, pharynx, and larynx,
while PM2.5 accumulates in both the lower and upper
respiratory tracts, and especially in the small air ducts
and lung bubbles.16 Ultrafine particles have a smaller
diameter, and their impact on human health has not
been well studied. In addition to directly damaging the
human body, PM can adsorb other allergens, micro-
organisms, fungi, dust mites, and other pathogenic
agents in the air, causing greater harm to the human
body. Gaseous pollutants include sulfur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), and
ozone (O3). The primary sources of SO2 in the atmo-
sphere are sulfur compounds produced by natural
processes such as burning of sulfur-containing fossil
fuels and volcanic eruptions. NOx mainly comes from
fossil fuel combustion, and vehicular emissions are a
major source of this pollutant, while O3 is produced by
photochemical reactions. All types of gaseous pollut-
ants can produce secondary aerosol pollution through
photochemical reactions at a certain temperature and
humidity, adding to the PM in the air.17

Air pollution and COPD: epidemiological evidence

The adverse effects of air pollution on health
include acute (short-term), chronic (long-term), and



Table 1

Selected studies of the association between exposure to air pollution and COPD.

Study/year Location Design Population sample Health effects Outcome (OR/HR,95% CI)

Schikowski et al./

200526
Germany

(1985e1994)

Consecutive-

cross sectional

study

4757 prevalence NO2 (1.33, 95% CI,1.03e1.72, per 16 mg/m3)

PM10 (1.43, 95% CI,1.23e1.66, per 7 mg/m3)

Schikowski et al./

201423
Europe (2008

e2011)

Cohort study 6550(NOx)

3692(PM)

prevalence No statistically significant correlation was found

Cai Y et al./201424 Europe (1998

e2011)

Cross-

sectional study

15,279(NO2)

10,537(PM)

prevalence No statistically significant correlation was found

Atkinson RW et al./

201590
England (2003

e2007)

Cohort Study 16,034 prevalence PM2.5 (1.05, 95% CI, 0.98e1.13, per 1.9 mg/m3)

SO2 (1.01, 95% CI, 0.97e1.07), per 2.2 mg/m3)

NO2 (1.06, 95% CI, 0.98e1.15, per 10.7 mg/m3)

Liu S et al./201728 China (2012

e2015)

Cross-

sectional study

5993 prevalence 2.416 (95%CI,1.417 to 4.118) for>35e75 mg/m3

and 2.530 (95%CI, 1.280 to 5.001) for>75 mg/m3

compared with the level of �35 mg/m3 for PM2.5

2.442 (95%CI,1.449 to4.117) for>50e150mg/m3

compared with the level of �50 mg/m3 for PM10

Dany Doiron et al./

201927
UK (2006

e2010)

Cross-

sectional

analyses

303, 887 prevalence PM2.5 (1.52, 95% CI 1.42e1.62, per 5 mg/m3)

PM10 (1.08, 95% CI 1.00e1.16, per 5 mg/m3)

NO2 (1.12, 95% CI 1.10e1.14, per 10 mg/m3)

Zanobetti A et al./

200891
USA (1985

e1999)

Cohort study 1,039,000 mortality PM10 (1.22, 95% CI: 1.17e1.27, per 10 mg/m3)

Kazemiparkouhi F

et al./201931
USA (2000

e2008)

Time-series

study

22,200,000 mortality O3 (1.065, 95% CI 1.060e1.069, per 10 ppb)

Junfang Cai et al./

201935
China (2013

e2015)

Time-series

study

41,815 mortality The excess risk (ER) is 8.24% (95% CI: 3.53

e13.17) for per 10 mg/m3 increase in PM2.5
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latent effects.18 Common research methods include
time series studies, cohort studies, caseecontrol
studies, cross-sectional studies, and panel studies.19,20

COPD prevalence

The incidence of COPD doubled after the great
London fog of 1952 (as demonstrated by autopsy),
suggesting that short-term exposure to ambient air
pollution may adversely affect the health of people with
COPD.21Whether chronic exposure to air pollution will
lead to COPD remains unknown, with different regions
reporting varying results, and sufficient confirmatory
evidence remains lacking. Developed western countries
have conducted large cohort studies to examine the
relationship between chronic air pollution and COPD
over the past decade, while only a few related studies
have been conducted in China; several key studies have
been summarized in Table 1. PM and NO2 are the most
studied pollutants, followed by O3 and SO2. The Euro-
pean Study of Cohorts for Air Pollution Effects
(ESCAPE) is a large European cohort study evaluating
the chronic health effects of air pollution and involves 13
countries with an average follow-up time of 14 years.22

Using data from ESCAPE and land regression models,
Schikowski et al23 analyzed the correlation between the
annual mean concentrations of PM and NOx and COPD
prevalence during a 3-year follow-up period
(2008e2011); NO2 and PM levels showed no significant
associationwithCOPDprevalence in either the cohort or
the meta-analysis. The team also analyzed some follow-
up ESCAPE data from 1998 to 2011, and no consistent
association between chronic bronchitis symptoms and
current traffic-related air pollution was observed in adult
European populations.24 The Health Survey for England
reported that living in close proximity to main roads had
no adverse effect on the risk of COPD.25 However, a 5-
year continuous cross-sectional study of non-smoking
women living near the major roads in Germany found
that those living less than 100 m away from busy roads
were 1.79 times more likely to develop COPD (95%
confidence interval [CI]: 1.06e3.02).26 Using the UK
Biobank database, Doiron et al27 performed a cross-
sectional analysis among 30,887 individuals aged
40e69 years who were exposed to air pollution and
found that PM2.5, PM10, and NO2 concentrations were
significantly associated with COPD prevalence (OR
1.52 [95% CI: 1.42e1.62] per 5 mg/m3; OR 1.08 [95%
CI: 1.00e1.16] per 5 mg/m3; and OR 1.12 [95% CI:
1.10e1.14] per 10 mg/m3, respectively), but PMcoarse
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concentrations were not. Compared with previous
studies, the main advantage of this study was its large
sample size. The findings were similar to those of pre-
vious cross-sectional studies conducted in China in
2017.28

Air pollution exposure not only increases the risk of
COPD in healthy people, but also in asthma patients,
who develop asthma-COPD overlap syndrome
(ACOS), which may contribute to the transition from
asthma to COPD. A cohort study in Canada followed
asthma patients aged 18 years and older diagnosed
between 1996 and 2009 through 2014. The concen-
trations of PM2.5 and O3 were obtained from fixed
monitoring sites, and Cox regression models were used
to assess the association of air pollutants with the risk
of ACOS. Results showed that asthma patients exposed
to higher levels of air pollution were nearly three times
more likely to develop ACOS.29

COPD mortality

Air pollution is the primary non-infectious factor
that causes an increase in the COPD-related mortality
rate. In 2012, 8% of global COPD deaths were attrib-
uted to air pollution, according to the statistics of the
WHO (2016 air quality report). In 2015, the number of
PM2.5-related premature deaths in 161 cities in China
was 652,000, accounting for 6.92% of the total deaths,
of which deaths due to COPD accounted for 11.77%.30

Long- and short-term exposure to air pollution can
affect COPD mortality. However, most studies have
only focused on evaluating the short-term effects of
exposure to air pollution, and most of them reported
short-term effects of air pollution on respiratory mor-
tality, rather than on COPD mortality.

The increased concentrations of various air pollut-
ants, such as O3,

31,32 NO2,
33 SO2,

34 PM2.5,
32,35,36 and

PMcoarse,
37 can increase the risk of mortality in patients

with COPD. Moreover, the impact of air pollutants on
the mortality rate of COPD patients is higher than that
observed in the population as a whole. Xu et al38 con-
ducted an impact assessment on the relationship be-
tween daily PM2.5 changes in urban areas and suburbs
of Beijing and the mortality rate from specific causes,
and showed that a 10 mg/m3 increase in PM2.5 was
associated with a 0.17% (95% CI: 0.05e0.29) increase
in non-accidental mortality, but a 0.96% (95% CI:
0.35e1.57) increase in COPD mortality. Wildfire smoke
contains a variety of substances that are harmful to
human health, including PM2.5, CO, NOx, and benzene,
which can cause varying levels of air pollution.39 A
previous United States study reported a 9.0% (95% CI:
0e18.0) increase in respiratory disease mortality on
wildfire smoke days, and a 14.0% (95% CI: 2.0e26.0)
increase in COPD mortality.40 In addition, different PM
sizes have different effects on COPD mortality. A pre-
vious survey conducted in Shanghai, China, found that
daily COPD mortality was significantly associated with
particle number concentrations for particles <0.5 mm,
and that the magnitude of associations increased with
decreasing particle size.41 In recent years, O3 has
become the main environmental pollutant affecting the
mortality rate of patients with COPD. In 2015, 8% of
the total deaths worldwide occurred due to exposure to
O3, and 254,000 of these deaths were due to COPD.1 A
large prospective cohort study in the United States
showed that long-term exposure to O3 significantly
increased the risk of death from COPD, with the risk of
death increasing by 1.09 (95% CI: 1.03e1.15) when the
annual mean concentration of O3 increased by 10 ppb.

42

Lung function and symptoms

Children43e46 and teenagers47,48 usually experience
developmental delays or reductions in lung function
when exposed to air pollution. However, few studies
have investigated the effects of air pollution on lung
function in adults with established lung diseases, such
as COPD. Whether air pollution can cause a decline in
lung function in patients with COPD remains unclear.

Kariisa et al49 studied 1218 patients with COPD
over a 5-year period, and reported that long-term
exposure to PM2.5 could aggravate the symptoms of
patients and significantly reduce their lung function. A
panel study from China investigated the effects of
short-term exposure to outdoor PM on lung function in
COPD patients and found that forced vital capacity
(FVC) decreased by 3.3% (95% CI: �5.8 to �0.8) and
2.1% (95% CI: 3.9e0.3) when PM2.5 and PM10 con-
centrations increased by 111.0 mg/m3 and 112.0 mg/m3,
respectively. Similar results were found for forced
expiratory volume per second (FEV1).

50 However, a
panel study in London investigated the short-term ef-
fects of exposure to outdoor air pollutants on lung
function and respiratory symptoms in 94 COPD pa-
tients. Their findings suggested that the increase in
pollution levels was not associated with either FVC or
FEV1, and exposure to PM10 was associated with
dyspnea.51 Similarly, a 3-month panel study found that
short-term exposure to PM10 increased the risk of
nocturnal chest discomfort in COPD patients, while no
correlation was found between NO2, SO2, and CO
concentrations and respiratory symptoms or lung
function.52
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Hospital admission

Exposure to air pollutants is related to an increase in
hospitalization rates for COPD patients, and previous
studies conducted in different countries and regions
showed consistent findings. PM2.5 and PM10 are the
main pollutants globally and are associated with an
increased risk of hospitalization in COPD patients. For
a 10 mg/m3 increase in PM2.5 concentration, the risk of
hospitalization increases by 1.61% in COPD patients in
the United States,53 by 0.82% in Beijing,54 and by
1.72% and 6.87% in cool and warm weather, respec-
tively, in Taiwan, China.55 A recent systematic review
and meta-analysis reported a temporal correlation be-
tween PM10 and COPD hospitalizations. After short-
term exposure to a 10 mg/m3 increase in PM10 con-
centration, the COPD hospital admission enrollment
increased by 1% in China, 2% in the United States, and
1% in the European Union.56 In addition to PM, a
variety of gaseous pollutants are also associated with
the COPD-related hospital admissions. A prospective
study conducted by the European Apache study (air
pollution and health, a European approach) found that
the levels of SO2, O3, NO2, black smoke, and total
suspended particulates were all associated with the
daily number of COPD-related hospitalizations in six
European cities, and there was a lag effect of 1e3
days.57

A study from Iran also showed that O3, NO2, and
SO2 had a significant impact on the number of hospital
admissions for COPD. The number of COPD-related
hospital admissions increased by 2.0% (95% CI:
0.8e3.1), 0.7% (95% CI: 0.1e1.8), and 0.5% (95% CI:
0e1.0) per 10 mg/m3 increase in O3, NO2, and SO2

concentrations, respectively.58 Epidemiological studies
evaluating the relationship between CO levels and
COPD admissions have yielded different results. A
retrospective study of 162,338 patients admitted to
hospitals for COPD exacerbation from 2004 to 2013 in
Spain found that higher CO levels was associated with
increased admission of COPD patients.59 However,
some epidemiological studies found that low concen-
trations of CO may have a protective effect under
certain conditions. A time series study in Hong Kong,
China, found that short-term exposure to CO was
associated with a lower risk of COPD hospitalizations,
which showing the protective effect of CO exposure on
COPD admissions, and after adjusting for NO2 and
PM2.5 levels, the negative correlation between CO
levels and COPD became stronger.60 A similar study
conducted in Shanghai also found that short-term
exposure to CO at low ambient concentrations may
be associated with a reduced risk of COPD-related
hospitalization.61 However, further studies are needed
to confirm the direct clinical effect of CO exposure in
patients with COPD.

Role of climatic factors on the effect of air pollution
and COPD

The impact of air pollutants on COPD varies with
climatic factors such as air temperature, air pressure,
wind speed, and relative humidity. Air temperature
plays an important synergistic role in the pathogenic
effects of pollutants on COPD, but the differences
between the effects of low and high temperature
remain controversial. Qiu et al found that low tem-
perature significantly increased the effect of PM2.5,
PM10, and SO2 levels on the COPD hospitalization
rate.62 A study conducted in Hong Kong, China also
showed that SO2, NO2, and O3 had a greater effect on
COPD admissions in the cold season than during the
warm season.63 Moreover, the effect of air pollutants
on the COPD hospitalization rate is greater in warm
seasons than in cold seasons. This could be because
higher temperatures increase the concentration of O3

and other pollutants in the air. Studies in Taiwan,
China have shown that PM2.5 and O3 have a more
significant effect on the COPD hospitalization rate
among older patients with COPD on days with high
temperature and large pressure differences.64 Gao
et al54 found that compared with the cold season
(November to March), the impact of air pollutants on
COPD admission was higher in the warm season
(August to October). Relative humidity can also have
an effect on COPD admission. In one study, for every
1% increase in relative humidity, the relative risk of
COPD hospitalization increased by 1.070 (95% CI:
1.054e1.086).65 In addition, there was a significant
interaction effect between temperature and humidity
in patients with COPD.

Effect of air pollution on the pathophysiology of
COPD and the possible underlying mechanism

The pathogenic effect of air pollution on COPD
remains unclear. However, current research focuses on
factors such as oxidative stress and inflammatory
damage, as well as DNA damage.

Inflammatory damage

COPD is characterized by chronic inflammation of
the airway and lung parenchyma; accumulation of
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inflammatory cells, including neutrophils, activated
macrophages, and lymphocytes; and increase in in-
flammatory factors such as interleukin-6 (IL-6), IL-8,
and tumor necrosis factor-a (TNF-a). A previous
study showed that acute exposure to PM2.5 induced
inflammatory cell infiltration and hyperemia in the
lung tissues and increased the number of inflammatory
cells in the bronchoalveolar lavage fluid.66 The inhaled
PM2.5 is engulfed by lung macrophages, stimulating
the release of inflammatory factors. However, these
inflammatory factors accumulate in the damaged area
and stimulate inflammatory cells to release more in-
flammatory factors, thus leading to a vicious cycle that
damages lung endothelial cells and further aggravates
lung injury.67

Oxidative stress damage

Free radicals produced by oxidative stress, espe-
cially oxygen free radicals, play an important role in
the pathogenesis of COPD. PM has the ability to
generate oxygen free radicals, which d after inhala-
tion d can stimulate cells to produce a large number
of reactive oxygen species (ROS). The large amounts
of metal components and organic matter carried by PM
can also induce ROS production in cells.68,69 Such
ROS-induced oxidative damage to lung cells may be
the primary cause of damage due to PM exposure.

Genetic damage

Exposure to air pollution can induce genotoxicity
and cause chromosome damage in cells, and there is a
dose-dependent relationship within a certain range of
concentrations. Exposure to PM2.5 can cause damage
to lung epithelial cells and alveolar macrophages and
increase the ROS production induced by oxidative
stress, which leads to DNA damage and changes in
gene expression.70 Epigenetic changes in gene
expression may occur through DNA modifications,
including DNA methylation, histone modification, and
non-coding RNA modification, without any change in
the DNA sequence. Air pollutants can also play a role
in the pathogenesis of COPD by altering epigenetic
modifications. Exhaled nitric oxide (FeNO) is consid-
ered a sensitive marker of airway inflammation, and
can reflect the state of airway inflammation in COPD
patients. A panel study conducted in Shanghai exam-
ined the relationship between PM2.5 and DNA
methylation in COPD, and found that PM2.5 may
regulate the production of FeNO by changing
methylation markers in the NOS2A promoter region
and further aggravating inflammation in the airway.71

Song et al72 found that PM2.5 can reduce the expres-
sion of miR-331 through the ROS/PI3K/AKT pathway,
resulting in increased expression of IKK-b and sus-
tained activation of NF-kB in human airway epithelial
cells.

Protective measures

Policy intervention

Government control plays a decisive role in
improving air pollution levels. The United States, for
example, previously had severe air pollution. Hence,
the United States government developed a series of air
pollution prevention and control measures, such as the
Clean Air Act Amendments in 1990 and the NOx State
Implementation Plans Call in 2002. After 1990, the
concentrations of PM2.5 and O3 in the United States
decreased significantly. Air quality improvements have
significantly decreased the COPD mortality burden.73

In the last decade, which saw rapid industrial devel-
opment and urbanization, China experienced the most
serious smog episodes. The government has promul-
gated a series of powerful prevention and control
measures to control air pollution in China. In 2013, the
state council formulated the Air Pollution Action
Prevention and Control Plan (2013e2017).12 In 2018,
the state council issued the Three-Year Action Plan to
Win the Blue Sky Defense War, which was used as a
guide for the next stage of air pollution prevention and
control.74 Provincial and municipal governments have
also issued corresponding policies, such as the Beijing
City Master Plan (2016e2035).75 Since 2013, the air
quality in most Chinese cities has improved, and
PM2.5, PM10, and SO2 concentrations have decreased
significantly.76 Moreover, these policies have had some
health benefits, and emission controls reduced the
PM2.5 mortality by 88.7%. Liang et al found that
compared with the levels in 2013, the SO2 and PM2.5

levels in 2017 were 68% and 33% lower, respectively.
In addition, there was a decreasing trend in the number
of cases of acute exacerbations of COPD advanced due
to PM2.5 exposure.77 Although air pollution has
decreased, air quality has not yet reached the standards
set by the WHO. PM concentrations are still high, the
O3 concentration has increased dramatically, and the
NO2 concentration remains the same. Therefore, the
government should formulate strong air pollution pre-
vention and control measures to reduce emission from
enterprise pollution sources, in order to achieve an
overall improvement in air pollution levels.
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Group intervention

Indoor air pollution is mainly caused by the burning
of solid fuel for cooking and is associated with a va-
riety of respiratory diseases. Approximately one-third
of the world's population uses biofuels such as wood
or charcoal for cooking or heating, especially in rural
areas in LMICs. Studies in many countries have linked
biofuel exposure to an increased risk of COPD.78e81 A
cohort study conducted in China followed up 277,838
Chinese individuals who had never smoked and had
not developed major chronic diseases in the last 9 years
to examine the association of solid fuel use with the
risks of acute and chronic respiratory diseases. Results
showed that compared with clean fuel users, solid fuel
users had an adjusted hazard ratio of 1.10 (95% CI:
1.03e1.18) for COPD. The use of clean fuel and
ventilation equipment can reduce the risk of respiratory
diseases.82 Moreover, the use of clean fuel or ventila-
tion kitchenware can effectively reduce the risk of
respiratory diseases.

Zhou et al83 conducted a non-randomized inter-
vention to assess the long-term impact of alternative
biomass fuel use and improved kitchen ventilation on
lung function in patients with COPD. Results showed
that the use of biogas instead of biomass cooking and
improved kitchen ventilation were related to the
reduction in the risk of poor FEV1 and COPD. More-
over, a doseeresponse relationship was observed: the
longer was the duration of improved cooking fuel
usage and kitchen ventilation, the greater was the
impact on reducing the decline in lung function. Use of
improved cookstoves also contributed to the reduction
in biofuel pollution and the incidence of respiratory
symptoms such as cough, expectoration, and wheezing,
and the risk of COPD.84,85 Therefore, improved
cookstoves, ventilated kitchenware, improved kitchen
ventilation, and clean fuel must be used to reduce the
risk of COPD.

Individual intervention

The time and intensity of outdoor activities should
be reduced as much as possible when smog levels are
high, and masks that are effective against PM2.5 par-
ticles should be worn to reduce the exposure to PM2.5

outdoors. Wearing of personal protective equipment
such as the N95 mask or an equivalent may help avoid
the harmful effects of ambient air pollutants.86 So far,
research on the protective effects of masks has mainly
focused on healthy adults or people of specific occu-
pations, and the number of studies conducted in
sensitive individuals such as COPD patients are
limited. Sundblad et al87 conducted a study involving
36 healthy volunteers. Results showed that compared
with the group without masks, the volunteers wearing
masks had lower levels of systemic inflammatory
factors and relatively higher lung function indicators.
The study demonstrated that the use of masks can
protect the respiratory system. For indoor air pollution,
indoor air purifiers can reduce the level of PM2.5 in the
air. However, whether this can really improve cardio-
pulmonary function remains unclear.88,89 Hence, a
more effective experimental study is needed to eval-
uate the actual protective effect of air purifiers and
masks in COPD patients.

Medical intervention

In addition to the above interventions, some medical
interventions such as nebulization therapies may help
to promote the elimination of PM from the lower res-
piratory tract in COPD patients and alleviate the
adverse effects of air pollution. But so far, there are no
recommended guidelines for reducing air pollutants
associated with atomizer inhalers.

Conclusion

There is a great deal of evidence to support the
notion that air pollution is associated with respiratory
diseases, including COPD. Epidemiological and clin-
ical studies have confirmed the link between air
pollution and COPD. Both short- and long-term
exposure to air pollution has a negative effect on the
occurrence and development of COPD. Air pollution,
one of the most important risk factors in the prevention
and treatment of COPD, is modifiable and should
attract more attention. In the future, comprehensive
clinical studies and in-depth research on basic mech-
anisms are needed, which will not only help improve
care for individual patients, but also help persuade
decision-makers to promote public health policies to
eliminate air pollution globally.
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