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Abstract

Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged
together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms,
merging or meta-analysis, works better. In this article, three joint analysis methods, Z-score normalization, ComBat and the
inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients.
The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints,
overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using
Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z-score normalization had
a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and
hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory
complexity, Z-score normalization is a simple method for joint analysis of microarray gene expression data sets. The
derived findings suggest further assessment of this method in future survival prediction and cancer classification
applications.
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Introduction

Microarray data are (i) noisy owing to missing or erroneous val-
ues; (ii) high dimensional owing to a large number of genes ver-
sus a low number of samples in which their expression levels
are measured; (iii) costly owing to expensive microarray experi-
ments. As the number of samples is few, specifically in cancer
studies, the learning ability of machine learning methods
depends on the sample size of the training set, and the robust-
ness of their prognosis is based on the sample size of the testing
set; microarray gene expression data must be jointly analyzed
to increase prognosis performance.

Two types of methods have been used for this purpose:
Meta-analysis and data integration or data merging. While the

former increases sample size by combining the results of differ-
ent studies [1–12], the latter pools the gene expression data into
a single set [13–30]. As the results of studies are aggregated in
meta-analysis, no data adjustment or transformation is
required, and heterogeneity between studies is often taken into
account by the assumption of random effect. In data integra-
tion, however, heterogeneity in the data source is a more com-
plicated issue that needs to be addressed to avoid biases. To
this end, data merging methods adjust data generated from dif-
ferent sources or batches before their combination into a single
set.

Various data integration methods have been developed to
remove batch effects. Singular Value Decomposition (SVD) [31]/
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Principal Component Analysis (PCA), Distance Weighted
Discrimination (DWD) [32], ComBat [33] and Z-score normaliza-
tion [34] can be recognized among these methods. SVD/PCA,
DWD and ComBat are known to be complex, more so than Z-
score normalization. DWD requires large batch sizes, whereas
Z-score normalization and ComBat can be applied to the data
ensembles containing few samples per batch. There may be two
other disadvantages with DWD: This method is applied to two
data sets at a time, and its application to many data sets can be
time-consuming and tedious. Furthermore, DWD may not
adjust data if the data population is strongly spread [32].

In previous studies, only one joint analysis method, either data
merging or meta-analysis, was applied to ensemble of data sets
generated from different sources or batches in subtype tumor
classification or survival prediction [1–4, 11, 13–23, 35–48]. Few of
these studies applied a joint analysis method to predict survival
as a quantitative outcome [2, 4, 12, 29, 30, 35–37, 46]. In this article,
three joint analysis methods, namely, Z-score normalization,
ComBat and meta-analysis, were applied to the simulated and
breast cancer data sets for cross-comparison of joint analysis
methods and to investigate their performance in identifying gene
signatures in survival prediction and risk assessment. These
approaches were evaluated by using identical feature selection
and bias reduction methods so that the results would mainly re-
flect the differences of the joint analysis methods.

Results and Discussion
Simulation

To test and compare the different strategies, four survival data
sets were simulated. Each combined a number of gene expres-
sions together with a randomly generated survival time. The
characteristics of the survival time were a function of a known
linear combination, a gene signature. The best fitting gene sig-
natures were selected from the single and merged data sets
adjusted by ComBat and Z-score normalization. Their perform-
ance was evaluated in pair-wise manner and leave-one-data
set-out (for more details, see ‘Methods’ section).

In both the cases, whether the genes were highly corre-
lated (correlation¼ 0.8) or whether the genes were (linearly)
independent (correlation¼ 0), the performance generated
from the merged data sets was significantly higher than the
performance obtained from the single data sets
(Supplementary Table S1–S8). This outperformance was more
pronounced when there was correlation among the genes
compared with the case where the genes were not correlated.
While the selection of predictive genes from the single data
sets was often misled by the correlation among the genes, the
increase of sample size achieved by merging helped to iden-
tify the true survival genes.

By increasing the size of the gene signatures being con-
sidered from 1000 to 5000, the performance slightly decreased
for the merged data sets but considerably for the majority of
single data sets, both for correlated and uncorrelated genes. In
the case of single data sets, when the genes were correlated, the
area under the receiver operating characteristic (ROC) curve
(AUC) decreased by up to 28% and the Hazard Ratio (HR)
decreased by up to 4.75 units. In the case of uncorrelated genes,
the AUC decreased by up to 25% and the HR decreased by up to
2.52 units, respectively. While the AUC and HR derived from the
single data sets adjusted by ComBat or Z-score normalization
decreased as the number of genes increased from 1000 to 5000,
the performance obtained from the merged data sets adjusted

by the three methods remained similar in the case of correlated
genes. This may be explained by the fact that the increase from
1000 to 5000 leads to increased correlations and thus to deteri-
oration, whereas the sample size of the merged data sets is suf-
ficient to resist such deteriorating effects.

Among the data merging methods, the two variants of
Z-score normalization (Z-score1 normalizations and Z-score2
normalization) systematically outperformed ComBat when the
genes were strongly correlated (increase of the AUC: 20–30%, in-
crease of the HR: 0.60–2.38, Supplementary Tables S1–S4). In the
case of uncorrelated genes, however, the performance of the
genes signatures derived from the three merged data sets
remained comparable (Supplementary Tables S5–S8).

Data integration

To evaluate the reproducibility of the performance obtained
from the data sets generated from different microarray plat-
forms, the breast cancer data sets were analyzed in a pair-wise
manner and leave-one/two-data set(s)-out (see bias estimation
section). The results generated from the single data sets and the
merged data sets adjusted by ComBat and Z-score1 normaliza-
tion were presented in Yasrebi et al. 2009 [49]. In this article, the
results obtained from the merged data sets adjusted by Z-score2
normalization are presented.

Survival prediction and risk association were partially im-
proved when the results derived from the merged data set
adjusted by Z-score2 normalization (Table 1). While the perform-
ance obtained from the merged data sets was improved compared
with the performance obtained from some individual data sets, it
remained similar or decreased compared with the prognosis built
from the other individual data sets. With respect to Overall
Survival (OS), the survival prediction based on Z-score normaliza-
tion (performed by Zscore1 normalization [49] or Zscore2 normal-
ization) was higher than the prognosis accuracy achieved with
ComBat [49] (difference of AUCs: 0.02–0.10 for four of five data
sets and 0.05–0.10 for two of five data, Table 1 and Figure 1). The
difference of AUCs is less significant than the difference of AUCs
obtained from simulation. With respect to bias estimation, the
performance based on independent validation (Table 1) was
higher than the performance derived from cross-validation [49]
(difference of AUCs: 0.04–0.10 for four of five data sets).

The overlap between the gene signatures derived from the
three data integration methods can be compared in Figure 2.
Based on Figure 1, it was interesting to know whether there
would be a large overlap between the gene signatures built from
the merged data sets adjusted by ComBat or Z-score1 normal-
ization and a poor overlap between the gene signatures derived
after the application of Z-score2 normalization and the two
other methods. This expectation was based on the ROC curves
and the AUC values obtained from the data sets adjusted by
ComBat or normalized by Z-score1 normalization, which were
similar but different from the results obtained from the merged
data set normalized by Z-score2 normalization. As shown in
Figure 2, this is indeed the case.

As the prediction accuracy can be different at different time
points, the performance of the breast cancer gene signatures
prognostic of OS was evaluated based on different time points
ranging from 0 to 10 years [49] by independent validation
(Figure 3). The trends are consistent with the trends observed in
Figure 1. The performance accuracies obtained from the merged
data sets adjusted by ComBat or normalized by Z-score1 nor-
malization are similar to each other but different from Z-score2
normalization. As none of the methods provided the highest

772 | Yasrebi

in order 
In order 
the 
Additional file, 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv092/-/DC1
to 
&percnt;-
-
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv092/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv092/-/DC1
paper
to 
to 
-
out of five 
 to 
 sets out of five
-
 out of five


results for at least the majority of the data sets (three of five),
none of them were preferred for survival prediction with respect
to different time points.

The partial improvement of the survival prediction and risk
assessment that was observed for the OS endpoint was also
obtained with respect to Relapse Free Survival (RFS) (Table 2).
Between the merged data sets, Z-score2 normalization provided
better results than ComBat [49] (difference of AUCs: 0.03–0.11 for
four of seven data sets) even though the difference is not signifi-
cant for the majority of data sets. The similarity between the
results generated from Z-score1 normalization and ComBat was
also observed with respect to RFS [49].

It was intriguing to observe how the integration methods
would perform if the testing set is pooled from the combination
of different data sets. To this end, two data sets with the OS
endpoint were pooled together to compose the testing set, and
the remaining data sets with the same clinical endpoint were
merged together to constitute the training set (Table 3). Among
the three methods, i.e. Z-score2 normalization, Z-score1 nor-
malization and ComBat normalization, Z-score1 normalization
provided better results (higher AUC and/or HR) for the majority
of data sets (6 out of 10 combinations of testing sets) compared
with Z-score2 normalization.

Finally, it was interesting to assess the significance of the
survival prediction derived from the merged data sets. This
interest was motivated from the fact that there are so many
genes whose expression levels are significantly associated with
survival of breast cancer patients that most random gene sets
can predict breast cancer outcome [50]. In effect, there are an
enormous number of genes that are correlated with cell prolif-
eration, and cell proliferation is strongly correlated with prog-
nosis (estrogen receptor expression is strongly associated with
outcome and prognosis and there are thousands of estrogen
receptor target genes) (http://www.ncbi.nlm.nih.gov/myncbi/
richard.simon.1/comments/). Hence, random signatures were
generated for testing the significance of the breast cancer gene
signatures prediction generated from the merging data sets
with respect to OS.

For the majority of data sets (four of five data sets), the non-
random gene signatures fall in the third quartile of the random
gene signatures distributions illustrating their outperformance
compared with the performance of the random gene signatures
(Figures 4–6). The AUCs derived from the random gene signa-
tures built from the data sets merged by Z-score2 and assessed
by independent validation ranged on average from 0.57 to 0.67
(standard deviation, SD¼ [0.04,0.05]) (Figure 4). Up to 45% AUCs
generated from the random gene signatures was equal to or

higher than the AUCs obtained by the non-random gene signa-
tures. For the merged data set adjusted by Z-score1, the AUCs
derived from the random gene signatures ranged from 0.60 to
0.71, on average (SD¼ [0.02,0.05]) (Figure 5). Up to 46% of these
AUCs was equal to or higher than AUCs obtained from the non-
random gene signatures. As for ComBat, the AUCs derived from
the random gene signatures ranged from 0.58 to 0.70, on aver-
age (SD¼ [0.03,0.05]) (Figure 6). Up to 33% AUCs was equally well
or higher than the AUCs obtained from the non-random gene
signatures.

It should be noted that for the majority of the testing sets
(three or four of five data sets) and for all merging data sets nor-
malized by different methods, the maximum of 15% AUCs pre-
dicted by the random gene signatures was equally well or
higher than the AUCs provided by the non-random gene signa-
tures. The prediction on only one data set of five adjusted by
different normalization methods represented around 40%
equally well or higher than the prediction obtained from the
non-random gene signatures. These findings demonstrate the
reliability of the survival prediction of the breast cancer gene
signatures owing to the selection of the genes strongly associ-
ated with survival based on the lowest Cox P-value.

Meta-analysis

Meta-analysis was applied to the breast cancer data sets with
respect to two clinical endpoints, OS and RFS, so that the per-
formance generated from this joint analysis method can
be compared with the performance obtained from the data
integration methods. The aim was to find out which method
(meta-analysis or merging) would outperform when applied to
the breast cancer data sets.

Overall, the results are comparable with the results of the
data integration methods (Tables 1 and 2). For the breast can-
cer data sets, both data integration and meta-analysis achieve
similar performance. Here, Z-score2 normalization provided
higher HR than meta-analysis for the majority of data sets
with respect to OS and RFS (three of five OS data sets and four
of seven RFS data sets, respectively). The difference of AUC is
not significant.

It is worth noting that the two types of joint analysis
methods, data integration and meta-analysis, stratified the
patients differently into high versus low risk: While the risk
score threshold was based on the median score of the ‘train-
ing’ samples for data merging [49], the risk score threshold
was set based on the median score of the ‘testing’ set in meta-
analysis. The HR, which was calculated based on the risk

Table 1. Cross-data set performance of the breast cancer predictors (top 100 ranked) trained on the combined data sets
with respect to OS

OS

Z-score2 Meta-analysis

Testing set AUC HR AUC HR

GSE1456 0.72 3.17 (1.53–6.58) P¼0.0019 0.74 10.23 (3.09–33.82) P¼0.00014
GSE1992 0.77 4.19 (1.68–10.45) P¼0.0021 0.71 3.49 (1.4–8.72) P¼0.0073
GSE4335 0.78 6.48 (2.96–14.21) P¼3e-06 0.72 2.78 (1.4–5.52) P¼0.0034
Vijver 0.74 2.73 (1.66–4.46) P¼6.4e-05 0.79 5.95 (3.27–10.85) P¼5.5e-09
GSE3143 0.59 1.90 (1.02–3.53) P¼0.042 0.64 P> 0.05

Significant AUC (�0.60) and HR (P � 0.05) are shown in bold. Z-score2 normalization refers to the separate application of Z-score normalization

to the training and the testing sets. The predictor was trained from all data sets (GSE1456, GSE1992, GSE4335, Vijver and GSE3143) except the

testing set.
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score, might then not be comparable between data merging
and meta-analysis. The AUC was, however, independent of
this difference.

Conclusions

Joint analysis methods, namely, data merging and meta-
analysis were evaluated on the simulated and breast cancer
data sets. Because of data sets heterogeneity, it was expected
that meta-analysis provide better results, as it combines the
findings generated from different data sets and it does not
require data adjustment or transformation. However, it was
Z-score normalization that provided overall the higher AUC and
HR despite (i) the heterogeneity of microarray technologies, (ii)
the heterogeneity of patients cohorts, (iii) the heterogeneity of
patients treatments and (iv) the heterogeneity of breast cancer
disease. This might be owing to the fact that Z-score normaliza-
tion homogenizes the data, and this homogenization may re-
duce the effect of bias introduced by the heterogeneity. On
comparing the findings obtained from data merging methods,
the survival prediction, risk assessment and the gene signatures
generated from ComBat and Z-score1 normalization were found
to be more similar than the performance and gene signatures
obtained from Z-score2 normalization.

Random gene signatures were generated to assess the per-
formance of the gene signatures derived from the breast cancer
data sets. The survival prediction derived from the non-random
gene signatures of the breast cancer data sets with respect to OS
was overall reliable, as it was systematically>50% of the AUCs

predicted by the random gene signatures. These findings are
noteworthy, as the non-random gene signatures outperformed
the random gene signatures despite (i) the heterogeneity of
microarray technologies, (ii) the heterogeneity of patients
cohorts, (iii) the heterogeneity of patients treatments and (iv)
the heterogeneity of breast cancer disease.

It should be noted that the methods used in this study can be
applied to one or more cohorts of patients but are not applicable
for the prognosis of a new individual patient. This is owing to the
facts that (i) the principle of these methods is based on the ad-
justment of the expression values of different samples and (ii)
their performance evaluation relies on population averages.

To summarize and conclude, the Z-score normalization
method is attractive, as (i) it is simple, (ii) it does not require any
assumption on data distribution and (iii) its time and memory
complexity is less than it is for ComBat. This method should be
applied in survival prognosis of other cancer types as well as
cancer classification to validate whether it could also provide
high prognosis for other types of cancer and outcome. For
bias estimation, independent validation outperformed cross-
validation, as it generated better and more robust prediction.

Methods

Statistical analysis was performed using R [51], version 3.1.1
and BioConductor [52], release 3.1. All the methods applied in
Yasrebi et al. 2009 [49] were used for the breast cancer data sets
if not specified otherwise. These methods were implemented in
the R survJamda package [53].

Figure 2. Venn diagrams of the 100-gene signatures derived from the merged data sets with respect to the OS endpoint assessed by independent validation.

Four data sets (of five, GSE1456, GSE1992, GSE4335, Vijver and GSE3143) were merged by ComBat, Z-score1 normalization (Z-score1 for short) or Z-score2 normalization

(Z-score2 for short) and validated on the remaining fifth data set, i.e. testing set. The testing set is indicated at the top of each diagram.
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Data

Eight breast cancer data sets comprising 1324 samples with two
clinical endpoints OS and RFS were used [49] (Table 4). The data
sets were selected based on the following criteria:

1. Availability of the two clinical endpoints, namely OS and RFS.
2. Platform heterogeneity. The data from three different plat-

forms, cDNA, Affymetrix and Agilent, were selected for this
study.

3. Quality of the data sets, i.e. with the least amount of miss-
ing/incorrectly annotated values in both gene expression
data and clinical outcomes.

4. Two most frequently used data sets in breast cancer studies,
namely, GSE4335 [54] and Vijver [55].

5. Comparison of the results generated by Z-score2 normaliza-
tion (presented in this study) with the results derived from
ComBat and Z-score1 normalization presented in Yasrebi
et al. 2009 [49].

Time to Overall Survival is defined as the time between sur-
gery and death from breast cancer or the last date of follow-up.
Time to Relapse-Free Survival is defined as the time between sur-
gery and the first recurrence of local, regional or distant-meta-
static breast tumor or the last date of follow-up. If OS or RFS time
refers to death or recurrence of disease, the corresponding sam-
ples have a censoring status of 1 (event happened) or 0 otherwise.
Note that throughout this document, clinical endpoints, clinical
outcomes or prediction outcomes refer to OS and/or RFS.

Simulation

The aim of data simulation was 2-fold: (i) To compare the per-
formance derived from the merged data sets adjusted by dif-
ferent merging methods and (ii) to determine if the benefits of
data merging are countered by the correlation among genes.
The latter expectation was inspired from real microarray
gene expression data in which the genes are (highly) corre-
lated. To these ends, gene signatures were built from artificial
data to predict survival time and risk assessment using the
Cox regression model. The derived gene signatures generated
from the single and merged data sets were evaluated by inde-
pendent validation, and their performance was measured by
AUC and HR with the respective confidence interval and
P-value.

The Weibull model was used to generate survival times, as it
is a more general (parametric) survival model compared with
the exponential model. The survivor and hazard functions of
the Weibull model are defined as follows:

SðtÞ ¼ expð�ktcÞ (1)

hðtÞ ¼ kctc�1 (2)

where t denotes survival time, k and c (with k > 0; c > 0) are
scale and shape parameters on which the mean and variance of
the Weibull distribution depend. When we replace k by
kexpðb:xÞ, where b and x are the vectors of Cox coefficients and

Table 2. Cross-data set performance of the breast cancer predictors (top 100 ranked) trained on the combined data sets with respect to RFS

RFS

Z-score2 Meta-analysis

Testing set AUC HR AUC HR

GSE1456 0.76 6.61 (2.77–15.77) P¼2e-05 0.73 4.83 (2.22–10.49) P¼7.06e-05
GSE1992 0.66 2.49 (1.22–5.10) P¼0.012 0.69 3.39 (1.62–7.08) P¼0.0012
GSE4335 0.60 2.83 (1.24–6.47) P¼0.013 0.64 2.06 (1.04–4.06) P¼0.038
Vijver 0.73 5.17 (2.84–9.41) P¼7.6e-08 0.72 2.91 (1.96–4.33) P¼1.22e-07
GSE2034 0.60 1.97 (1.3–2.99) P¼0.001 0.60 1.75 (1.19–2.57) P¼0.004
GSE2990 0.71 4.43 (2.43–8.07) P¼1.2e-06 0.66 1.86 (1.08–3.19) P¼0.02
GSE4922 0.63 2.34 (1.48–3.71) P¼0.00028 0.64 2.38 (1.54–3.69) P¼0.0001

Significant AUC (�0.60) and HR (P � 0.05) are shown in bold. Z-score2 normalization refers to the separate application of Z-score normalization to the training and the

testing sets. The predictor was trained from all data sets (GSE1456, GSE1992, GSE4335, Vijver, GSE2034, GSE2990 and GSE4922) except the testing set.

Table 3. Cross-data set performance of the breast cancer predictors trained and tested on the combined data sets with respect to OS

Z-score2 Z-score1 ComBat

Testing set AUC HR AUC HR AUC HR

GSE4335 GSE1992 0.64 2.32 (1.22–4.43) P< 0.05 0.69 3.51 (2.03–6.05) P< 0.05 0.70 3.42 (1.92–6.11) P< 0.05
GSE4335 GSE3143 0.79 7.77 (2.39–25.29) P< 0.05 0.65 2.25 (1.42–3.58) P< 0.05 0.70 4.45 (2.82–7.02) P< 0.05
GSE4335 GSE1456 0.82 5.01 (2.59–9.72) P< 0.05 0.75 4.24 (2.45–7.36) P< 0.05 0.68 2.72 (1.67–4.44) P< 0.05
GSE4335 Vijver 0.70 2.62 (1.39–4.96) P< 0.05 0.76 4.51 (2.83–7.20) P< 0.05 0.75 4.07 (2.68–6.16) P< 0.05
GSE1992 GSE3143 0.70 5.05 (1.74–14.69) P< 0.05 0.66 2.51 (1.54–4.09) P< 0.05 0.61 2.58 (1.67–3.99) P< 0.05
GSE1992 GSE1456 0.78 3.17 (1.43–7.01) P< 0.05 0.74 4.74 (2.55–8.84) P< 0.05 0.72 3.39 (1.94–5.93) P< 0.05
GSE1992 Vijver 0.71 3.40 (1.36–8.48) P< 0.05 0.74 4.00 (2.51–6.38) P< 0.05 0.75 6.49 (3.86–10.91) P< 0.05
GSE3143 GSE1456 0.57 1.33 (0.76–2.33) P> 0.05 0.69 2.97 (1.84–4.80) P< 0.05 0.71 2.55 (1.52–4.29) P< 0.05
GSE3143 Vijver 0.59 1.93 (1.07–3.51) P< 0.05 0.72 3.30 (2.18–5.00) P< 0.05 0.71 4.58 (2.85–7.35) P< 0.05
GSE1456 Vijver 0.63 2.08 (0.95–4.58) P> 0.05 0.76 4.71 (3.02–7.36) P< 0.05 0.71 3.44 (2.34–5.05) P< 0.05

AUC (�0.60) and HR (P � 0.05) are considered as significant. Z-score2 normalization refers to the separate application of Z-score normalization to the training and the

testing sets. The predictor was trained from all data sets (GSE1456, GSE1992, GSE4335, Vijver and GSE3143) except the testing set, which was pooled from the two data

sets indicated in the Testing set column.
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gene expression values, respectively, we obtain a Cox model
with baseline risk kctc � 1 [61].

Simulation of survival times can be started with the gener-
ation of random values following a uniform distribution in
[0,1] (using the runif function in the R stats package). Then,
having the source random variable U, the target random vari-
able representing survival time, T can be obtained based on the
following result:

Lemma: Let the random variable U be uniformly distributed
between 0 and 1 and define

T ¼ �1
k

logðUÞ
� �1

c
(3)

It then follows that T has a Weibull distribution with param-
eters k and c.

To demonstrate the effect of the correlation between the
genes on the performance derived from data merging, four arti-
ficial data sets containing different numbers of genes (1000 or
5000) with 100 samples were generated. In one analysis, the
genes had a constant pairwise correlation of 0.8, and in another
analysis, they had no correlation with each other (correl-
ation¼ 0). The corgen function in the R ecodist package was
used to generate the gene expression values with a correlation
(0 or 0.8 in this study). This function generates random values
based on the rnorm function.

Shape and scale (c and k) were set to different values like 1,
1.5 and 2. Survival time points were simulated as described
above with components of b set as follows: all coefficients
except six were set to zero. These six coefficients were con-
sidered as the coefficients of the true survival genes. Three of
them were set to positive values (between 0.4 and 0.7), whereas
the remaining three were set to negative values (between �0.7
and �0.4). The purpose of this analysis was to recover the true
Cox coefficients through model fitting.

The censoring status denoted by c was initialized randomly
between the minimum and 90 percentile of the maximum sur-
vival time. The choice of 90 percentile was determined experi-
mentally so as not to generate more than 30 percent censoring.
The censoring status was then set as follows:

Ti ¼minðTi; ciÞ (4)

censoring status ¼ 1 if Ti�ci (5)

censoring status ¼ 0 if Ti > ci (6)

The gene expression values, the survival time points and the
censoring status were then fitted in a Cox model (the coxph

function in the R survival package). The genes were fitted in a
univariate model, and the top-6 ranked were selected based on
the smallest Cox P-value.

Preprocessing data

The data analysis was limited to 10 years of follow-up, as the
majority of breast cancer patients had a follow-up of maximum
10 years. All patients having an OS or RFS >10 years were cen-
sored and their respective clinical endpoint was set to 10 years.
All patients in GSE4335 deceased from any other cause than
breast cancer were also censored. Fibroadenoma or normal
breast samples were discarded from the study (GSE4335,
GSE1992). Replicate samples in GSE1992 were eliminated from
the study too. Note that throughout this document, GSE1456
refers to the merged data set of GSE1456A and GSE1456B,
GSE4922 to the merged data set of GSE4922A and GSE4922B, re-
spectively. GSE4335 and Vijver are data sets from clinical trials.

The data sets used in this study were pre-normalized in vari-
ous ways by the authors of the original studies. The data sets
were pre-normalized in the following ways: Global mean nor-
malization was used for GSE1456A&B and GSE4922A&B. The

Table 4. Survival breast cancer data sets with the OS and RFS endpoints

Data set Platform Pre-normalization Gene nb Sample size Ref. Treatment Survival
outcome

GSE3143 Affymetrix,
HG-U95A

MAS5.0 8660 158 Bild 06 [56] Unknown OS

GSE1456A&B Affymetrix,
HG-U133A&B

MAS5.0,
global mean

15848 159 Pawitan 05 [57] Adj. Chemotherapy
(incl. Tamoxifen)

OS, RFS

GSE4335 cDNA Scaling 12793 122 Sorlie 03 [54] Neoadj. Chemo/chemo
(Tamoxifen)-82 patients

OS, RFS

GSE1992 Agilent LOWESS 15528 170 Hu 06 [22] Treated OS, RFS
Vijver Agilent Scaling 13628 295 Van de Vijver 02 [55] Chemo/hormonal

therapy (90 patients)
OS, RFS

GSE2990 Affymetrix,
HG-U133A

RMA 12010 189 Sotiriou 06 [58] Tamoxifen (64 patients) RFS

GSE2034 Affymetrix,
HG-U133A

MAS5.0 12010 286 Wang 05 [59] None RFS

GSE4922A&B Affymetrix,
HG-U133A&B

MAS5.0,
global mean

15848 289 Ivshina 06 [60] Systemic/endocrine therapy
(147 vs. 66 patients)

RFS

Merged OS Affymetrix,
Agilent, cDNA

7049 849 OS

Merged RFS Affymetrix,
Agilent, cDNA

9181 1324 RFS

Gene nb refers to the number of genes. MAS 5.0 refers to Affymetrix Microarray Suite version 5.0 and LOWESS stands for LOcally WEighted Scatterplot Smoothing and RMA for

Robust Microarray Analysis, respectively. Adj. stands for adjuvant and chemo for chemotherapy. Merged OS refers to merged data sets with OS endpoint and Merged RFS refers

to the merged data sets with RFS endpoint. The expression values of dual channel data were already log2-transformed. Among the data sets generated by Affymetrix, the abso-

lute intensity values of GSE3143, GSE2034 and GSE2990 were log2-transformed for this study as the rest of Affymetrix data sets were already log2-transformed by the authors.

Comparative study of joint analysis of microarray gene expression data | 781

[
,
6 
6 
-
-
greater than 
,


probe set values were natural log-transformed followed by an
adjustment of the mean intensity to a target signal value of log
500. The pre-normalization of Vijver data set was performed on
an array-by-array basis. Raw intensities from each channel
(red or green) were divided by the mean intensity (in linear
scale) of the corresponding channel. The other data sets were
pre-normalized as described in the legend to Table 4.

K Nearest Neighbor (KNN) imputation [62] was used to
impute missing expression values in the source data sets, using
the impute.knn function of the R impute package with default
parameters (including k¼ 10). When multiple probes/probe sets
were mapped to the same gene, the expressions of multiple
probes/probe sets were averaged (after KNN imputation).

Feature selection

Genes were selected based on univariate Cox P-value ranking
using the coxph function in the R survival package. In this fea-
ture selection method, the genes were ranked based on their
likelihood ratio P-value, and the 100 genes with the smallest
P-values were retained as the gene signature for the breast can-
cer data, as it was experimentally found to be the best cutoff
[49]. The random gene signatures were generated by first fitting
the genes in a Cox model and then, selecting randomly 100
genes in 500 iterations. The top-6 ranked genes were used for
the simulated data.

Prediction method

Patient risk score was calculated as the linear combination of
the Cox coefficients estimated from the training set and the cor-
responding gene expression values (Equation 7).

lpðx; bÞ ¼
XG

i¼1

bixi (7)

where G is the total number of genes.
The advantage of linear prediction is 2-fold: (i) It is simple,

and (ii) It can be easily interpreted by clinicians by dichotomizing
the patients into two groups for example high- versus low-risk.

Performance measures

Survival prediction and risk assessment were expressed by
time-dependent AUC [49, 63] and HR, respectively [49].

Time-dependent ROC curves [63] were used to evaluate the
prediction accuracy at the average of time points for the testing
data set(s) using the nearest neighbor estimator (the R survival

ROC package). The AUC � 0.60 was considered as significant.
The association of the gene signatures to survival (OS or RFS)

was measured by a HR. To this end, the patients of the testing set
had to be stratified into predicted high- and low-risk groups
based on the median score of the patients in the training set [49].
The HR with P-value � 0.05 was considered as significant.

Bias estimation

1. Pair-wise method: Two data sets are selected at a time. One
data set was used as the training set and the other one as
the testing set. This process was iterated until all data sets
were used as the training set and the testing set [49, 53].

2. Independent validation or leave-one/two-data set(s)-out: All
data sets except one/two were merged together to constitute
the training set, and the left-out set(s) constituted the

testing set (see the ‘Joint analysis methods’ section). This
process was iterated until all data sets were used in the
training and testing sets [49, 53]. Leave-one-data set-out was
used in the simulation study.

Joint analysis methods

1. Merging methods
1.1. ComBat [33, 53].
1.2. Z-score normalization [34]. Z-score normalization was

applied in two ways as described in [53]:

1.2.1. In Z-score1 normalization, all data sets were Z-
score normalized before their selection for the
training and testing sets. Then, the data sets
composing the training set were merged to-
gether, and the left-out set was used as the test-
ing set. This method was applied in Yasrebi et al.
2009 [49]. When two data sets were used for the
testing set, they were pooled together, and the
combined set was subsequently used as the test-
ing set.

1.2.2. Z-score2 normalization. In Z-score2 normal-
ization, the data sets were first selected for the
training and testing sets. Then, the data sets
composing the training set were merged to-
gether and Z-score normalized subsequently.
The testing set composing of one or two data
sets was also Z-score normalized but inde-
pendently and separately from the training
set. When the testing set was composed of two
data sets, the two data sets were merged to-
gether and Z-score normalized subsequently,
independently and separately from the train-
ing set.

Z-score normalization was first applied to the samples and
then to the genes. Scale in the R stats package was used for
Z-score normalization.

1. Meta-analysis The inverse normal method [64] was used for
meta-analysis. This approach integrates the Z-tests or
Z-scores of different studies by averaging them. Different
scales of data from different studies were adjusted by stand-
ardization (division of Z-scores by standard error). The
aggregation of Z-scores is defined as the sum of the different
Z-scores divided by the square root of the number of studies
(Equation 8).

Z ¼

XS

s¼1

Zs

ffiffiffi
S
p (8)

where S is the number of studies.
This method transforms the combined Z-score to a P-value.

p ¼ U�1ðjZjÞ (9)

A null hypothesis is rejected if the P-value is less than a, the
level of significance.

In this study, the Z-tests or Z-scores represent the standar-
dized univariate Cox coefficients. Standardization of Cox coeffi-
cients refers to the division of Cox coefficients by their standard
error. The null hypothesis used for meta-analysis suggests that
the Cox coefficient is zero and consequently, the associated
covariate has no effect on OS or RFS. The alternative hypothesis
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suggests that the Cox coefficient is not null and therefore, the
related covariate has an effect on OS or RFS.

For each gene, the Z-test was calculated. Then, the Z-tests
from different studies were combined as described above. Note
that this combined Z-test was used as a Cox coefficient in the
calculation of the patient’s risk score. The patient’s risk score
is the linear predictor described in linear predictor section. The
combined Z-test of each gene was transformed to a P-value
(Equation 9), which was subsequently used for feature
selection.

While in the data integration methods, the patients in the
testing set were stratified into high- versus low-risk based on
the median score of the patients in the training set [49] to be
used for HR, in meta-analysis, the patients in the testing set
were stratified into high- versus low-risk based on the median
score of the patients in the testing set.

The coxph function in the R survival package was used to
calculate the gene Z-scores.

Key Points

• Microarray gene expression data can be merged to
increase statistical power.

• Among Z-score normalization, ComBat and the
inverse normal method, Z-score in overall outper-
formed in the survival prediction of breast cancer data
sets.

• With a lower time and memory complexity, Z-score
normalization is a simple method that could be used
for survival prediction and cancer classification
applications.

Supplementary Data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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