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identify group-specific non-
catalytic pockets of human kinome for drug
design†

Huiwen Wang,a Zeyu Guan,a Jiadi Qiu,a Ya Jia,a Chen Zengab and Yunjie Zhao *a

Kinase proteins have been intensively investigated as drug targets for decades because of their crucial

involvement in many biological pathways. Most kinase drugs target the catalytic ATP pocket, which is

highly conserved across the kinome, and as such often leads to potential side effects. It is thus highly

desirable to develop non-ATP-competitive drugs that inhibit kinase activity via allosteric interactions.

However, to elucidate the complex allosteric mechanism, it is essential to build a novel method to

characterize a comprehensive non-catalytic pocket for the structurally well-covered human kinome. In

this work, we developed a hybrid approach of sequence, structure and network analysis on 168

representative kinases to identify group-specific non-catalytic pockets. The geometric analysis was

performed to cluster these pockets and to identify group-specific non-catalytic pockets based on their

shape and location characteristics. Subsequent sequence evolutionary analysis reveals the crucial

residues of each pocket that will likely interact with inhibitors binding to the pocket. These residues thus

serve as potential biomarkers of each pocket for inhibitor design. Moreover, the residue–residue

interaction network analysis was performed to elucidate the complex allosteric mechanism of these

non-catalytic pockets. The final list of 14 group-specific non-catalytic pockets and their characterized

structural, sequence and network features can be an enabling dataset for drug design effort at the

human kinome level. The developed hybrid approach is able to identify group-specific non-catalytic

pockets and will benefit the research related to human kinome drug design.
1. Introduction

Human kinase proteins are one class of the most important
regulators for cellular pathways, which are associated with
biological processes such as cell-cycle regulation, metabolism,
differentiation and apoptosis.1,2 Aberrant kinase activity may
cause a large diversity of diseases, such as cancer, psoriasis,
alopecia areata, and chronic neurodegenerative disease.3 Thus,
the identication of potentially druggable pockets on human
kinase proteins would be essential to new kinase drug
development.4,5

Kinase proteins have been intensively investigated as drug
targets for decades.6–8 Currently, 518 kinases encoded in the
human genome9,10 are classied into eight groups (CK1, STE,
CAMK, AGC, CMGC, TK, TKL, and RGC). Structurally, most of
the kinase proteins share a similar topology that consists of N-
terminal and C-terminal lobes.11 The N-terminal lobe,
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containing ve b strands and at least one a C-helix, is highly
conserved in the human kinome, while the C-terminal lobe,
which is composed of a helix, activation loop, and substrate
binding groove, shows more sequence variation.

At present, kinase inhibitors are broadly classied into two
classes depending on whether an inhibitor is ATP-competitive
or allosteric.12 The former is further rened as type I or II for
targeting active or inactive ATP pocket, respectively, while the
latter as type III or IV for targeting non-catalytic pockets near or
far away from the ATP pocket, respectively. The vast majority of
kinase drugs currently in clinical use are ATP-competitive
inhibitors. While the pockets targeted by some allosteric
inhibitors remain unknown, a few are known to target certain
allosteric pockets near the ATP pocket.12,13 Volkamer et al.9

systematically analyzed the geometric characteristics of the ATP
pocket in the human kinome. It is found that the geometric
characteristics of the ATP pocket are highly conserved. Thus,
the ATP-competitive drugs may cause undesirable side effects
such as hand-foot skin reaction, hypertension and acute renal
failure.14–16 Therefore, the highly selective allosteric inhibitors
(type III and IV) with minimal side effects are widely needed.
There are some case studies reported for allosteric inhibitors.
For example, the inhibitor trametinib targets the non-catalytic
pockets for MEK and BRAF kinase proteins.17 Cobimetinib is
This journal is © The Royal Society of Chemistry 2020
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another MEK allosteric inhibitor currently in clinical trials as an
anticancer agent.18 Chen et al.19 developed some peptide
inhibitors binding to the allosteric pocket. The experiments
show that these peptides can break the CDK2/Cyclin interface
and decrease the kinase activity. Hu et al.20 identied some
novel allosteric inhibitors that interrupted the interaction
between CDK2 and Cyclin A3. Wylie et al.21 developed the allo-
steric inhibitor ABL001 experimentally. This inhibitor binds to
the allosteric pocket of the ABL1 kinase. This binding leads to
the C-terminal helix formation and decreases the kinase
activity. However, both the number of known allosteric inhibi-
tors and kinase targets were very limited.

It is easier to develop or screen for new drugs to target known
pockets.22 Barnash et al.23 believed that target-oriented drug
development not only complements a disease-focused approach
but also reduces the risk of side effects. Several studies have
attempted to identify specic non-catalytic pockets for drug
design. For example, Chen et al.24 identied one non-catalytic
pocket on CDK2 and developed corresponding peptides to
inhibit CDK2 activity. Ma et al.4 proposed some potentially non-
catalytic pockets in six human kinase proteins by correlation
analysis between allosteric sites and catalytic sites. Given that
the kinome is now well covered structurally, a comprehensive
analysis of all potentially allosteric pockets may shed light on
generic mechanisms of allosteric kinase inhibition.

In this article, we performed cluster analysis to identify the
group-specic non-catalytic (GSNC) pockets by location
distance and shape distance. The group-specic non-catalytic
(GSNC) pockets are highly conserved only in one or several
groups but share little shape similarity in other kinase groups. A
total of 29 GSNC pockets were identied in seven groups. Then,
we further clustered these GSNC pockets into 14 pockets at the
kinome level. Some of the 14 pockets are shared by one or
Fig. 1 The difference between the traditional method and our method
kinome tree. (A) The difference between the traditional method and our m
analyzing pockets of one or several proteins. We first obtained all pockets
features to identify specific pockets. Then the network analysis was perf
distribution of 168 human kinases in struKin dataset on kinome tree. The
the CDK2 structure (PDB ID: 4ACM41). The CDK2 structure is colored
residues), and blue (variable residues), respectively. The ATP pocket is high
helix are variable.

This journal is © The Royal Society of Chemistry 2020
several groups. The inhibitors targeting these pockets will have
minimal side effects for the diseases that involve in one or a few
groups only. Moreover, we performed sequence conservation
and network analysis to explain the allosteric mechanism of
these GSNC pockets. The developed hybrid approach is able to
identify group-specic non-catalytic pockets and will benet the
research related to human kinome drug design.
2. Results
2.1. Structural coverage of human kinases

We have built a kinase structure dataset (struKin dataset) from
the human kinome. The RGC was removed due to no crystal
structures in this group. Therefore, there are seven groups
(AGC, CK1, STE, CAMK, CMGC, TK, TKL) containing 168 kinase
structures in our dataset (struKin dataset) (see the Method
section for details). The kinase family is well covered by crystal
structures (Fig. 1B).

Structurally, the N-terminal conformations including ATP
pocket are highly similar in the entire human kinome. However,
the C-terminal conformations are different. In addition, we also
performed sequence evolutionary analysis to infer the crucial
residues and projected the evolutionary scores of each residue
onto the tertiary structures. The highly conserved ATP pocket
(colored in red) indicates that the ATP pocket maintains the
structure for biological function while some non-catalytic
pockets are variable (Fig. 1B).
2.2. Signatures of the ATP pocket

To obtain the structural values, we extracted all ATP pockets
from struKin dataset using DoGSiteScorer.25,26 Fig. S1† shows
the volume, depth, and surface area values of all ATP pockets for
168 kinase structures. The average volume value is 626 (�206)
, and the distribution of 168 human kinases in struKin dataset on the
ethod. The traditional method is to design and screen drugs directly by
of a class of proteins and clustered these pockets with pocket structure
ormed to explain the allosteric mechanism of specific pockets. (B) The
red dots represent each structure. For example, one red dot represents
in conservation scores with red (conserved residue), green (average
ly conserved while T-loop, C-terminal helix, and the area below the C-
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�A3. The mid-value volumes of ATP pockets in each group are
spread similarly including slightly larger (STE groups, 614 �A3),
similar (CAMK groups, 600 �A3) and slightly smaller pockets
(TKL groups, 593�A3; CMGC groups, 591�A3; TK groups, 567�A3;
AGC groups 565�A3; CK1 groups, 542�A3). The results agree with
the previous ndings reported by Volkamer et al.9 The average
depth and surface area values are 17.34 (�3.58) �A and 718.89
(�239.96) �A2, respectively.

In terms of sequence features, we performed an evolutionary
analysis of all ATP pockets using ConSurf.27,28 The continuous
conservation scores are divided into a discrete scale of 9 grades
with grade 1 indicating the most variable positions and grade 9
the most conserved positions. Table S1† shows the ATP pockets
have a mean value of 7.34 (�0.16). The high conservation scores
and small standard deviation values suggest that ATP pockets
are highly conserved. For example, there are 42 residues in the
ATP pocket of MAP2K2 kinase (PDB ID: 1S9I29). We re-numbered
column positions of the 42 residues from the 168 kinase
sequences alignment. Fig. S2A† shows the sequence variations
for ATP binding sites by analyzing 15 available kinase/ATP
complex structures in struKin dataset. We divided the binding
sites into hydrogen bonds and hydrophobic interactions (see
Datasets S1, S2, and S3 for details†). The hydrogen bonding
residues are mainly located at four positions. Two charged
residues are located at positions 11(K) and 22(D/E). Another two
residues are located at positions 34 and 37 (mostly N/D) form
ATP interactions via magnesium or manganese ions (Fig. S3†).
The hydrophobic interaction residues are mainly located at
eight positions. The residues in position 1 are mainly L or I,
positions 2/4 are G, position 8 is V, position 9 is A, position 21
are M, F or T, position 23 are F, L or Y, and position 35 are L
or M, respectively. These residues, which interact with ATP to
form hydrogen bonds and hydrophobic interactions, are mainly
uniformly distributed in the three phosphate groups and
adenosine regions of ATP respectively (shown in Fig. S2B†).
2.3. Group-specic non-catalytic (GSNC) pockets in different
kinase groups

We collected the information related to kinase-disease associ-
ations from KinMap website.30 The KinMap website is an online
tool that facilitates interactive navigation through kinase
knowledge by linking biochemical, structural, and disease
association data to the human kinome tree. And the kinase-
disease associations are from the Center for Therapeutic
Table 1 The first to fifth columns list the group name, reference kinase na
pockets, and non-GSNC pockets of respective groups

Group Kinase PDB ID GSNC p

CMGC CLK1 1Z57 (ref. 56) p2, p3, p
AGC AKT1 4GV1 (ref. 59) p1, p3, p
TKL PIPK2 5J7B60 p1, p3, p
TK JAK1 3EYG58 p1, p2, p
CAMK CaMK1a 4FG8 (ref. 61) p1, p2, p
STE MST3 3A7I62 p5, p9
CK1 CK1a 5FQD63 p1, p2, p

2006 | RSC Adv., 2020, 10, 2004–2015
Target Validation (CTTV) platform.30 To explain the kinase-
related side effects, we selected four kinds of diseases: cancer,
lymphoblastic, brain disease, and endometriosis. Cancer and
lymphoblastic leukemia involve in most kinase groups (Fig. S4A
and B†). However, brain disease and endometriosis only involve
in one or a few groups (Fig. S4C and D†). Thus, identifying
group-specic non-catalytic pockets for one or several groups
but not for the entire kinome would be helpful to reduce
potential drug's side effects in treatment.

The group-specic non-catalytic (GSNC) pockets were iden-
tied by pocket location and shape similarity. We rst aligned
kinase structures to a reference structure for each group. Then,
we detected all pockets using DoGSiteScorer.25,26 The group-
specic non-catalytic pockets (GSNC pockets) were clustered
by the following criterion.

(a) Location distance (LD) of 8 �A between geometric centers
of two pockets was used to quantify the position similarity of
two pockets.

(b) Shape distance (SD) of 2.5 was used to measure the shape
similarity of two pockets. The volume, depth, and surface values
in SD are able to help screen the drug size, length, and inter-
action groups, respectively.

(c) The coverage rate of the similar pocket for each group is
greater than 80%.31

Thus, a total of 29 typical GSNC pockets and 49 non-GSNC
pockets (the coverage rates of the similar pockets for a given
group are not greater than 80%.) were identied as listed in
Table 1. And the 29 typical GSNC pockets were visualized as
shown in Fig. 2.
2.4. Typical shape characteristics of GSNC pockets

To obtain the shape features for GSNC pockets, we analyzed the
volume, depth, and surface area values. Volume is the most
important characterization in QSAR calculation for drug
design.32 As in the lock and key model,33,34 a drug will not bind
to a pocket if the drug cannot physically t within the size of the
pocket. The result shows that the average volume value of 29
GSNC pockets is 205 (�124) �A3 (Fig. 3A). Depth of pocket plays
an important role in drug design. If the depth of the drug is
greater or less than that of the pocket, the drug cannot be rmly
integrated with the pocket. The result shows that the average
depth value of 29 GSNC pockets is about 10.0 (�3.9)�A (Fig. 3B).
When the size of the drug matches the volume and depth of the
pocket, surface area value is able to help dene the interaction
me, and reference kinase PDB ID, group-specific non-catalytic (GSNC)

ockets Non-GSNC pockets

4, p6, p7 p1, p5, p8
4, p5, p8 p2, p6, p7, p9, p10, p11, p12, p13, p14
5 p2, p4, p6, p7, p8, p9, p10, p11
3, p6, p8 p4, p5, p7, p9
3 p4, p5, p6, p7, p8, p9, p10, p11

p1, p2, p3, p4, p6, p7, p8, p10, p11, p12, p13
3, p6, p7, p12 p4, p5, p8, p9, p10, p11

This journal is © The Royal Society of Chemistry 2020



Fig. 2 A total of 29 group-specific non-catalytic (GSNC) pockets in seven kinase groups. The kinase structures and identified GSNC pockets are
shown as cartoon and surface, respectively.
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types for drug design. The average surface area value of 29 GSNC
pockets is about 368 (�185) �A2 (Fig. 3C).

Unlike the large ATP-binding pockets with volume around
600 �A3, the identied GSNC pockets are smaller with volume
around 200 �A3. Previous research reported that the small non-
Fig. 3 The geometric structure characteristics of 29 group-specific non-
average of volume (A), depth (B), and surface area (C) values of 29 GSNC p
(D) The average conservation scores of ATP pockets, GSNC pockets, a
respectively.

This journal is © The Royal Society of Chemistry 2020
catalytic pockets may act as allosteric sites for kinase inhibi-
tion. For example, Ma et al.4 identied 13 non-catalytic pockets
in 6 human kinases (CDK2, CK2, Chk1, MAP14, MAP8, and c-
Abl). The average volume, surface area and depth values of
these 13 non-catalytic pockets are 263.27 (�110.58) �A3, 414.64
catalytic (GSNC) pockets and conservation analysis for all pockets. The
ockets are 205 (�124)�A3, 10.0 (�3.9)�A and 368 (�185)�A2, respectively.
nd non-GSNC pockets are 7.34 � 0.16, 5.79 � 1.24 and 4.95 � 1.13,

RSC Adv., 2020, 10, 2004–2015 | 2007
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(�148.25) �A2 and 10.23 (�4.75) �A (Table S2†). Another experi-
ment performed by Comess et al. demonstrated a small non-
catalytic pocket (volume ¼ 140.67 �A3, surface area ¼ 182.60
�A2, depth ¼ 8.59�A) in JNK1a1 is able to bind an inhibitor (PDB
ID: 3O2M35). This pocket is located at the same position as p2 of
CLK1 kinase in the CMGC group. In addition, some allosteric
inhibitors (such as PDB ID: 4M12 (ref. 36)) were developed to
target a non-catalytic pocket of ITK kinase. This pocket is
located at the same position as p6 (volume ¼ 158.85�A3, surface
area ¼ 334.14�A2, depth ¼ 11.79�A) of JAK1 in TK group. Taken
together, these results show that the identied GSNC pockets
may act as allosteric sites for inhibitor binding.

2.5. Sequence evolutionary analysis of GSNC pockets

Capra et al.37 showed that tertiary structural information
combined with sequence evolutionary characteristics are able to
predict ligand-binding sites. Therefore, we also analyzed the
sequence variations of the GSNC pockets.

First, we compared the sequence conservation scores of
identied GSNC pockets and non-GSNC pockets on the protein
surface (Fig. 3D and Table S1†). The identied GSNC pockets
(average conservation score ¼ 5.79 � 1.24) are less conserved
than the ATP pockets, but more conserved than non-GSNC
pockets (average conservation score ¼ 4.95 � 1.13). These
results suggest that there may be somemore conserved residues
within each GSNC pocket that can serve as the biomarkers for
the GSNC pockets.

Then, we identied the crucial residues for different GSNC
pockets using WebLogo.38,39 For example, p7 (TL) pocket from
CLK1 kinase in CMGC group is able to accommodate a new
Fig. 4 Sequence variation analysis of p7 (TL) pocket from CLK1 kinase (P
kinome level and (B) CMGCgroup level shows specificity. The network rep
(position 4) and Pro271 (position 12) may be the crucial residues for p7 (TL
with previous experiments.24,40

2008 | RSC Adv., 2020, 10, 2004–2015
class of inhibitors distinct from the traditional ATP-competitive
inhibitors. We performed sequence variation analysis of this
pocket using all kinase sequences (Fig. 4A) and CMGC group
sequences (Fig. 4B). Residue Tyr180 (position 4) is highly
conserved in CMGC group but shows variation in the entire
kinome. This result indicates that Tyr180 may be a crucial
residue for p7 (TL) pocket of CLK1 kinase in CMGC group. This
observation agrees with previous experiment.24 In addition,
Yang et al.40 demonstrated that the Glu–Arg pair serves as
a center hub of connectivity between these two structurally
conserved elements in EPKs. Mutations of either residue would
disrupt communication between the two segments as well as
the rest of the protein, leading to altered catalytic activity and
enzyme regulation. Residue Pro271 (position 12) in CDK2 (PDB
ID: 4ACM41) shields the Glu–Arg ion pair from solvent, which
suggests that Pro271 (position 12) may also be a crucial residue
served as biomarker for the p7 (TL) pocket of CLK1 kinase in
CMGC group.

2.6. Network analysis of GSNC pockets and experimental
verication

In a connected network, the closeness of a node is dened as
the inverse of the sum of its shortest distances to all other nodes
(see to the sectionMethods). Previous researches suggested that
closeness analysis is able to identify critical residues for
binding.42,43 Indeed, benchmark tests showed that the closeness
values successfully identied 70% of the protein binding sites.43

Thus, we performed a closeness analysis to infer binding
pockets. The pocket closeness is dened by the average close-
ness of all residues in the pocket. The identied closeness value
DB ID: 1Z57 (ref. 56)) in the CMGC group. The differences between (A)
resentation (C) and surfacemodel (D) of p7 pocket indicate that Tyr180
) pocket from CLK1 kinase in the CMGC group. This observation agrees

This journal is © The Royal Society of Chemistry 2020
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of GSNC pockets (0.35 � 0.02) is smaller than ATP pockets (0.37
� 0.01) but larger than non-GSNC pockets (0.33� 0.03) (Table 2
and Fig. 5A). These results suggest that there may be a small
portion of residues in the GSNC pockets that are highly
conserved. These crucial residues can thus serve as biomarkers
of GSNC pockets.

We hypothesize that the closeness analysis is able to quali-
tatively identify the non-catalytic pockets, and more suitable for
drug design. To do this, we constructed the protein network
from the kinase crystal structures, and then computed the
closeness values of all surface residues (without ATP pockets)
and classied the pockets into three categories: (1) most likely
drug binding pockets (high closeness values), (2) likely drug
binding pockets (intermediate closeness values), and (3)
unlikely drug binding pockets (small closeness values). Fig. 6
shows the top 10 high closeness residues on kinase surface for
most likely drug binding pockets identication with experiment
validations. The residues colored in red, purple and green are
located at inhibitor binding GSNC pockets with experimental
validation, GSNC pockets without inhibitor, and surface resi-
dues, respectively. For example, for the p38a kinase, nine high
closeness residues are located at four GSNC pockets (p2, p3, p4
and p6 from CLK1 kinase in the CMGC group) as shown in
Fig. 6A. Five of the nine high closeness residues are located at
p2 pocket from CLK1 kinase in CMGC group that are able to
bind a molecule (molecule name: 46A; Kd ¼ 16 000 nM; PDB ID:
3O2M35). Fig. 6B shows another example in the TK group. Seven
high closeness residues are located at four GSNC pockets (p1,
p2, p6 and p8 from JAK1 kinase of TK group). Two out of the
seven high closeness residues are located at p2 pocket from
JAK1 kinase in the TK group which are able to bind molecule
(molecule name: 0O7; IC50 ¼ 4200 nM; PDB ID: 4EBV44). Two of
Table 2 The closeness scores of ATP pockets, group shared non-catalyti
closeness is defined by average closeness of all residues in the pocket.
groups are CLK1 (PDB ID: 1Z57 (ref. 56)), Akt1 (PDB ID: 4GV1 (ref. 59)), RIPK
(ref. 61)), MST3 (PDB ID: 3A7I62) and CK1_alpha (PDB ID: 5FQD63), respec
according to the closeness of these pockets for drug design

Group Reference kinase PDB ID ATP pocket GSNC pocket's

CMGC CLK1 1Z57 p0 (0.350) p3(0.371) > p4
p2(0.321) > p7

AGC AKT1 4GV1 p0(0.360) p1(0.371) > p5
p8(0.331) > p3

TKL PIPK2 5J7B p0(0.362) p1(0.368) > p3

TK JAK1 3EYG p0(0.374) p2(0.408) > p1
p8(0.356) > p3

CAMK CAMK1a 4FG8 p0(0.372) p2(0.357) > p1

STE MST3 3A7I p0(0.375) p9(0.375) > p5

CK1 CK1a 5FQD p0(0.364) p1(0.386) > p7
p2(0.347) > p6

This journal is © The Royal Society of Chemistry 2020
the seven high closeness residues are able to bind a molecule
(molecule name: 1YZ; Kd ¼ 900 nM; PDB ID: 4M12 (ref. 36))
located at p6 pocket from JAK1 kinase in TK group. The results
suggest that the closeness analysis is able to qualitatively
identify the useful GSNC pockets for drug design. Other GSNC
pockets with high closeness residues are potential binding
pockets.
2.7. Quantitative analysis of the druggable pocket

The druggability calculation predicts the pocket druggability by
analyzing the pocket topology characteristics (volume, surface,
depth) and protein structure similarity.25,26 The druggability
results of ATP, GSNC, and non-GSNC pockets are 0.59 � 0.15,
0.34 � 0.16, and 0.34 � 0.18, respectively (Table S3†). The
results show that the druggability model can distinguish the
ATP and non-ATP pockets but cannot distinguish the GSNC and
non-GSNC pockets. To further detail analyze, we collected all
the available small molecules binding to allosteric sites (Table
S4†). None of the highest druggability pockets have available
small molecules. The druggability rankings are 11th out of 14
pockets in the AGC group, 3rd and 9th out of 9 pockets in the TK
group, 2nd and 3rd out of 8 pockets in the CMGC group.
Therefore, it is difficult to predict the very druggable pocket
using druggability calculation.

The closeness calculation predicts the druggable pocket by
average the closeness values of all residues to the corresponding
pocket. The previous conclusion shows that the closeness of
GSNC pockets (0.35 � 0.02) is smaller than ATP pockets (0.37 �
0.01) but larger than non-GSNC pockets (0.33 � 0.03) (Table 2
and Fig. 5A). The closeness rankings are 4th out of 14 pockets in
the AGC group, 1st and 3rd out of 9 pockets in the TK group, 5th
c (GSNC) pockets and non-GSNC pockets in seven groups. The pocket
The reference kinases of CMGC, AGC, TKL, TK, CAMK, STE, and CK1
2 (PDB ID: 5J7B60), JAK1 (PDB ID: 3EYG58), CaMK1_alpha (PDB ID: 4FG8
tively. The GSNC and non-GSNC pockets for each group were ranked

ranking Non-GSNC pocket's ranking

(0.339) ¼ p6(0.339) >
(0.320)

p1(0.333) > p8(0.290) > p5(0.272)

(0.367) > p4(0.350) >
(0.313)

p12(0.363) > p13(0.360) > p7(0.347) >
p10(0.310) > p6(0.308) > p14(0.307) >
p11(0.299) > p9(0.296) > p2(0.285)

(0.356) > p5(0.325) p8(0.351) > p11(0.350) > p7(0.346)
p4(0.343) > p10(0.335) > p9(0.325)
p2(0.322) > p6(0.291)

(0.370) > p6(0.369) >
(0.324)

p4(0.343) > p7(0.319) > p9(0.315) >
p5(0.275)

(0.346) > p3(0.325) p5(0.375) > p7(0.371) > p6(0.367) >
p10(0.362) > p4(0.356) > p8(0.336) >
p9(0.328) > p11(0.298)

(0.326) p12(0.395) > p8(0.371) > p4(0.367) >
p7(0.347) > p1(0.332) > p13(0.331) >
p3(0.328) > p10(0.324) > p6(0.323) >
p11(0.315) > p2(0.301)

(0.356) > p3(0.351) >
(0.344) > p12(0.339)

p10(0.391) > p11(0.382) > p4(0.353) >
p8(0.349) > p5(0.323) > p9(0.318)

RSC Adv., 2020, 10, 2004–2015 | 2009



Fig. 5 The network (closeness and shortest paths) analysis of pockets. (A) The pocket closeness is defined by the average closeness of all
residues in the pocket. The results show that the average closeness values of ATP pockets, group-specific non-catalytic (GSNC) pockets, and
non-GSNCpockets are 0.37� 0.01, 0.35� 0.02 and 0.33� 0.03 respectively. (B and C) The average shortest paths of the GSNC pockets (orange)
and the non-GSNC pockets (blue) to Asp–Phe–Gly (DFG) residues. A large conformational change for DFG residues at the N terminus of the
activation segment determines whether the kinase is active or inactive.45 The shortest path of one pocket to a residue is the average shortest path
of all residues in the pocket to the residue. (B) For p38a kinases, the results indicate that the average shortest path of GSNC pockets (2.10� 0.52)
is smaller than those of non-GSNC pockets (3.08� 0.43), and the shortest paths of 5 GSNC pockets to DFG residues are ranked as the following:
p6 < p2 < p4 < p3 < p7. (C) For JAK1 kinase, the results indicate that the average shortest path of GSNC pockets to DFG residues (2.02 � 0.83) is
less than those of non-GSNC pockets (2.33 � 0.34), and the average shortest path of 5 GSNC pockets to DFG residues are ranked as the
following: p2 < p1 < p6 < p8 < p3.

RSC Advances Paper
and 6th out of 8 pockets in the CMGC group. The performance
of closeness calculation is better than druggability calculation.
These two druggable pocket prediction strategies will provide
guidance for people working in the eld.
3. Discussion

The kinome is now well covered by tertiary structures, making it
possible to identify potential allosteric binding pockets to
reduce the side effect. However, a systematic study of non-
catalytic pockets at the kinome scale has not been performed.
There are only some case studies on the detection of allosteric
binding pockets. In this article, we systematically analyzed the
pockets of the entire human kinome by clustering pockets.

A large conformational change for Asp–Phe–Gly (DFG) resi-
dues at the N terminus of the activation segment determines
whether the kinase is active or inactive.45 Thus, we want to
calculate the correlations between all non-catalytic pockets and
the DFG residues. Based on the protein network, we calculated
the average shortest paths between all non-catalytic pockets and
DFG residues to quantify their correlation for p38a and JAK1
kinases. The shortest path of one pocket to a residue is the
average shortest path of all residues in the pocket to the residue.
2010 | RSC Adv., 2020, 10, 2004–2015
The shorter the average path of the pocket to DFG residues, the
stronger the ability of the pocket to regulate DFG residues. For
p38a kinases (Fig. 5B), the average shortest path of GSNC
pockets to DFG residues (2.10 � 0.52) is less than that of non-
GSNC pockets (3.08 � 0.43). And the average shortest path of
p2 pocket, to which a molecule binds (molecule name: 64A; Kd

¼ 16 000 nM; PDB ID: 3O2M35), to DFG residues is 1.75. The
shortest paths of 5 GSNC pockets to DFG residues are ranked as
follows p6 < p2 < p4 < p3 < p7. The results indicate that GSNC
pockets are more likely to regulate DFG residues than non-
GSNC pockets. For JAK1 kinase (Fig. 5C), the average shortest
path of GSNC pockets to DFG residues (2.02 � 0.83) is less than
that of non-GSNC pockets (2.33 � 0.34). And the average
shortest path of p2 pocket, to which a molecule binds (molecule
name: 0O7; IC50¼ 4200 nM; PDB ID: 4EBV44), to DFG residues is
1.37. The average shortest paths of 5 GSNC pockets to DFG
residues are ranked as follows p2 < p1 < p6 < p8 < p3. Again, the
results indicate that GSNC pockets are more likely to regulate
DFG residues than non-GSNC pockets.

We further clustered the 29 GSNC pockets at the kinome level
using cutoffs of LD¼ 8�A and SD¼ 2.5. Finally, a total of 14 GSNC
pockets (GSNCp1 to GSNCp14 pockets) were identied in the
entire human kinome as shown in Table S5† and Fig. 7. GSNCp1
This journal is © The Royal Society of Chemistry 2020



Fig. 6 The top 10 high closeness residues on kinase surface frommost
likely drug binding pockets. The residues colored in red, purple and
green are located at inhibitor binding GSNC pockets with experimental
validation, GSNC pockets without inhibitor, and surface residues,
respectively. (A) For the p38a kinase (PDB ID: 1R3C57), the nine high
closeness residues are located at four GSNC pockets (p2, p3, p4 and p6
from CLK1 kinase in CMGC group). Five out of the nine high closeness
residues are located at p2 pocket from CLK1 kinase in CMGC group
which are able to bindmolecule (molecule name: 46A; Kd¼ 16 000 nM;
PDB ID: 3O2M35). (B) Another example in the TK group. Seven high
closeness residues are located at the four GSNC pockets (p1, p2, p6, and
p8 from JAK1 kinase (PDB ID: 3EYG58)) of the TK group. Two out of the
seven high closeness residues are located at p2 pocket from JAK1 kinase
in the TK group which are able to bind molecule (molecule name: 0O7;
IC50 ¼ 4200 nM; PDB ID: 4EBV44). And two out of the seven high
closeness residues are located at p6 pocket from JAK1 kinase in the TK
group which are able to bind molecule (molecule name: 1YZ; Kd ¼
900 nM; PDB ID: 4M12 (ref. 36)). The results suggest that the closeness
analysis is able to qualitatively identify the useful non-catalytic pockets
for drug design. Other non-catalytic pockets with high closeness resi-
dues are potential druggable binding pockets.
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pocket is shared by four groups (CMGC, CK1, TK, and TKL). The
results show that drugs targeting this pocket may regulate the
kinase activities of these four groups. Similarly, three pockets
(GSNCp2, GSNCp3, and GSNCp4) are shared by three groups
(CMGC, TKL, AGC; CMGC, CK1, AGC; TK, CK1, CAMK), six
pockets (GSNCp5 to GSNCp10) are shared by two groups (CMGC,
AGC; TK, STE; TK, AGC; CMGC, TK; STE, CK1; AGC, CK1), four
pockets (GSNCp11 to GSNCp14) are shared by only one group
(CK1; TKL; CAMK; CAMK), respectively. The similarity analysis
would elucidate the drug effects and side effects for different
GSNC pockets. For example, the GSNCp8 pocket is shared by
CMGC and TK groups, and as such, drugs targeting GSNCp8
pocket for treating brain disease (Fig. S4C†) will induce fewer side
effects in comparison with ATP-competitive drugs. Similarly,
because the GSNCp12 pocket is shared within the TKL group
only, drugs targeting GSNCp12 pocket for treating endometriosis
(Fig. S4D†), will likely have minimal side effects.

To visualize the interaction network, we constructed a force-
directed graph from crystal structure using D3.JS (A JavaScript
library for producing dynamic, interactive data visualizations in
This journal is © The Royal Society of Chemistry 2020
web browsers).46 The users can drag the nodes to achieve
a dynamical effect. For example, we analyzed the p7 pocket from
CLK1 kinase in the CMGC group using the protein network. The
result shows that the two residues on positions 4, 12 are located at
the center of the network with high closeness and degree values
(Fig. 4C). These two residues are also highly conserved in the
CMGC group (Fig. 4B). The result shows that the two residues can
be the critical binding residues for inhibitor design. The locations
of the two residues are visualized in Fig. 4D. Similarly, we analyzed
other GSNC pockets in the CMGC group. The critical residues for
these GSNC pockets are listed in Table S6 and Fig. S5–S8.†

4. Methods

As shown in Fig. 1A, the traditional method for identication of
potential drug binding-pockets is to screen and evaluate protein
cavities. However, the specicity of the pockets remains
unknown and therefore leads to potential side effects. In our
work, we rst identify and compare the geometry similarity of
all kinome pockets to provide group-specic information. Then,
we further performed network analysis to elucidate the complex
allosteric mechanism for non-catalytic pockets.

4.1. Non-redundant human kinase structures

The human kinome dataset contains a total of 518 kinases
(Dataset S4.xls). The non-redundant human kinase structures
(structure of the highest resolution was selected if there are
several experimentally determined structures for a given
kinase.) were extracted from the human kinome dataset
Kinome Render2 as follows.

(1) Structures in the PDB database47 were extracted using the
kinome UniProt ID (Dataset S4.xls).

(2) Structures of less than 250 residues were removed
because 90% of kinases have more than 250 residues (Hanks
and Hunter, 1995).

(3) Structures of low resolution (>4 �A)48 were removed.
(4) The structure of the highest resolution was selected if

there are several experimentally determined structures for
a given kinase.

(5) All structures were optimized using the template-based
structure modeling tool SWISS-MODEL49 to ll in the missing
atoms.

This nally resulted in 168 structures contained in the
kinase structure dataset (struKin dataset, Fig. 1B).

4.2. Pocket detection and classication

Fig. S9† shows the workow of pocket detection and
classication.

(1) For each of the seven groups (Table 1), a typical kinase
structure was randomly selected as the reference structure to
which all other structures in that group were aligned using
PyMOL (http://www.pymol.org).

(2) All pockets of a given kinase structure were detected and
calculated using DoGSiteScorer.25,26 DoGSiteScorer is an active
site identication program that identies all pockets on the
surface of a given protein structure.
RSC Adv., 2020, 10, 2004–2015 | 2011



Fig. 7 The 14 group-specific non-catalytic (GSNC) pockets (GSNCp1 to GSNCp14 pockets) were identified in the entire human kinome level. The
kinase structure and identified GSNC pockets are shown as cartoon and surface, respectively.

RSC Advances Paper
(3) The reference ATP pocket was extracted from the CDK2/
ATP structure (PDB ID: 1FIN50).

(4) To classify the non-catalytic pockets, we dened two
similarity measures as location distance (LD) and shape
distance (SD) since similar pockets should share a similar
location and shape for the aligned kinases. The location
distance (LD) calculates the separation of the geometric centers
of two pockets with a low value indicating a similar position.

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2

q
(1)

where (x1, y1, z1) and (x2, y2, z2) are the geometric center coor-
dinates of two pockets, respectively. All 168 kinases have ATP
pockets because the ATP pocket is highly conserved in the
human kinome. Therefore, the probabilities of the ATP pocket
shared in different groups should be equal to 1. Fig. S10A†
shows probabilities of ATP pocket shared in different groups for
different location distance. The result shows that the proba-
bilities of ATP pocket shared in different groups remain
unchanged if the LD is larger than 8 �A. Previous research also
suggested a cutoff of 8�A for interaction calculation.51 Therefore,
we used 8�A as the LD cutoff. Two pockets with LD < 8�A are said
to have similar locations.

The shape distance computes the similarity of volumes,
surfaces, and depths of two pockets with a low value indicating
similar tertiary shapes.

SD ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V1 � V2

V1 þ V2

�2

þ
�
S1 � S2

S1 þ S2

�2

þ
�
D1 �D2

D1 þD2

�2
s

(2)
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where V1, S1, D1 and V2, S2, D2 are the volume, surface, and
depth of the two pockets separately. Fig. S10B† shows proba-
bilities of ATP pocket shared in different groups for different
shape distances when LD ¼ 8 �A. The result shows that the
probabilities of ATP pocket shared in different groups remain
unchanged if the distance is larger than 2.5. Two pockets with
SD < 2.5 are thus said to have similar shapes.

(5) Bandyopadhyay et al.31 inferred structure-based function
using protein family-specic ngerprints that were dened as
those subgraphs found in at least 80% of the family. Thus, we
dene the group shared non-catalytic pocket (GSNC pocket for
short) ifmore than 80%kinases of one group have a shared pocket.
4.3. Sequence conservation analysis

The sequence conservation analysis was performed to infer the
critical residues for pocket structure and function. The multiple
sequence alignment of 168 kinase sequences was obtained
using MAFFT.52 The evolutionary conservation scores were
calculated using the ConSurf.27,28 The pocket conservation is
dened by average scores of all residues in the pocket. The
LigPlot53,54 was used to identify the hydrogen bonds and
hydrophobic interactions between ATP and residues in ATP
pocket. The conservation was visualized by WebLogo.38,39
4.4. Network analysis

We performed a closeness analysis to identify drug-binding
pocket based on our previous work.13,42 First, a given kinase
was transformed into a connected network. A node in the
This journal is © The Royal Society of Chemistry 2020
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network denotes a single residue of the kinase. Two noncon-
secutive residues in a sequence are connected by an edge if
they contain a pair of heavy atoms, one from each residue, less
than 8 �A apart. Second, the closeness value of each node in
PDB structures of human kinase's network was calculated to
identify the drug-binding sites. In the construct of the
network, the closeness of a node is dened as the inverse of
the sum of its shortest distances to all other (n � 1) nodes as
the following:

CðxÞ ¼ n� 1P
dðx; yÞ (3)

where n is the total number of residues in the network, and
d(x,y) is the distance of the shortest path between the node x
and any other node y. The shortest paths between all pairs of
nodes are found using the Floyd–Warshall algorithm. The
degree of a node is dened as the number of edges attached to
the node, a measure that describes the local pocket connec-
tions. The surface residues were identied by GetArea55 (http://
curie.utmb.edu/getarea.html) and visualized with PyMOL
(http://www.pymol.org).

In addition, the correlations between non-catalytic pockets
and the DFG (Asp–Phe–Gly) residues were calculated. For
a given pocket, the correlation between the pocket and a residue
is dened as the average shortest path of all residues in the
pocket to the residue. Thus, the correlations between a given
pocket and the DFG residues is dened as the average shortest
path of all residues in the pocket to the three residues (DFG) as
the following:

Correlation ¼

XN
R¼1

ðdRD þ dRF þ dRGÞ

3
(4)

where N is the number of residues in a pocket, R is the residue
in the pocket, dRD, dRF and dRG are the shortest path of the R
residue to Asp, Phe, Gly residues respectively.

5. Conclusions

In summary, we systematically analyzed the pockets of the
structurally well-covered kinome to dene the group-specic
non-catalytic pockets for designing the specic drugs. We also
proposed a practical hybrid approach of sequence, structure
and network analysis to pinpoint the druggable non-catalytic
pockets and the corresponding key residues of each pocket
that may interact strongly with inhibitors targeting the pocket.
In addition, the network analysis was performed to elucidate
the complex allosteric mechanism. This system analysis
method for pockets of a class of proteins and the features of the
14 non-catalytic pockets will benet the research related to
human kinase drug design.
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