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Abstract: The variability in clinical trial results on memantine treatment of Alzheimer’s disease
remains incompletely explained. The aim of this in silico study is a virtual memantine therapy for
Alzheimer’s disease that provides a different perspective on clinical trials; An in silico randomised
trial using virtual hippocampi to treat moderate to severe Alzheimer’s disease with doses of me-
mantine 3–30 µM compared to placebo. The primary endpoint was the number of impulses (spikes).
Secondary endpoints included interspike interval and frequency; The number of virtual moderate-AD
hippocampal spikes was significantly lower, at 1648.7 (95% CI, 1344.5–1952.9), versus those treated
with the 3 µM dose, 2324.7 (95% CI, 2045.9–2603.5), and the 10 µM dose, 3607.0 (95% CI, 3137.6–4076.4).
In contrast, the number of virtual spikes (spikes) of severe AD of the hippocampus was significantly
lower, at 1461.8 (95% CI, 1196.2–1727.4), versus those treated with the 10 µM dose, at 2734.5 (95% CI,
2369.8–3099.2), and the 30 µM dose, at 3748.9 (95% CI, 3219.8–4278.0). The results of the analysis of
secondary endpoints, interspike intervals and frequencies changed statistically significantly relative
to the placebo; The results of the in silico study confirm that memantine monotherapy is effective in
the treatment of moderate to severe Alzheimer’s disease, as assessed by various neuronal parameters.

Keywords: NMDA antagonists; memantine; Alzheimer’s disease; neural networks; computer simulation;
virtual therapy; in silico trials

1. Introduction

Dementia is a very serious health problem affecting not only patients but also bur-
dening families and ageing societies worldwide. Currently, approximately 47 million
people worldwide experience dementia, and projections for the next 10 years indicate that
it will affect nearly 80 million people. Of these cases, Alzheimer’s disease (AD) is the most
common cause [1].

Alzheimer’s disease is a neurodegenerative disorder characterised by a progressive
loss of cognitive function, memory, difficulty in understanding spatial relationships and
problems in performing everyday tasks [2,3]. New therapeutic strategies, with particular
emphasis on methods closely related to the pathogenetic background of AD, which, by
limiting the accumulation of amyloid β (Aβ) and tau protein, may modify the natural
course of the disease [4,5].

Memantine, which received European marketing approval in 2002 and US Food and
Drug Administration (FDA) approval in 2003, is mainly used to treat moderate to severe
forms of AD [6]. The results of several clinical trials show that memantine exerts neu-
roprotective effects [7–9]. Memantine shows beneficial effects in conditions of excessive
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glutamatergic neurotransmission by inhibiting toxicity [10–12]. Studies show that meman-
tine, especially in terms of its effects on functioning, appears to be more effective in patients
with more advanced stages of dementia [13], but its effects on cognitive function are also
observed in all stages of dementia [7,8,14]. The results of a meta-analysis comparing the
efficacy of different treatment regimens and placebo in AD show that the combination of
memantine and donepezil had a better effect on cognitive function, among other things, but
was less tolerated by patients compared to memantine or placebo alone [15]. The results of
another meta-analysis show that galantamine and rivastigmine, like memantine, can delay
cognitive impairment in patients with mild to severe AD [16].

Computer models can be used in many different ways to reduce, refine and partly
replace animal and human experiments [17,18]. The efficacy of a drug and its value in
clinical practice are assessed during phase III trials using randomisation and a control
group. The benefits of in silico clinical trials are a reduction in human trials, possible
replacement of, e.g., phase III trials, confirmation of model predictions as a way to increase
confidence before investing in a trial, lower development cost and/or shorter time to
market for new medical products [19]. Memantine has the best pharmacological profile and
tolerability according to preclinical investigations and clinical trials using noncompetitive
NMDA receptor antagonists [6,20–22].

Because of the limitations of modern research methods, we cannot examine the nervous
system in natural conditions. Computer models of neurons [23] and neural networks [24,25]
are two methods for studying the nervous system’s functioning. Understanding the process
of neurodegeneration in Alzheimer’s disease is aided by computer models of synaptic
degradation in the hippocampus for various stages of synaptic loss [26]. Other simulation
experiments, on the other hand, demonstrate that generating gamma oscillations in the
hippocampus can help with the pathophysiology of Alzheimer’s disease [27]. Artificial
neural networks have been successfully applied in nuclear medicine and in the detection
of Alzheimer’s disease based on cerebral perfusion single-photon emission computed
tomography (SPECT) data [28,29]. A computer simulation environment of the N-methyl-
D-aspartate receptor encompassing biological principles of channel activation by high
extracellular glutamic acid concentration was used in three models of excitotoxicity sever-
ity [30,31].

In our study, we are undertaking an in silico clinical trial with a randomised virtual
hippocampus, testing the efficacy of a drug in moderate to severe dementia in Alzheimer’s
disease. Our simulation study opens up remarkable new scenarios in which a medical
product, drug or device, can be developed and tested for in silico efficacy.

2. Results
2.1. Number of Spikes in CA1, CA3 and DG

The mean number of spikes of area CA1 in the virtual moderate-AD hippocampal
group treated with memantine at doses of 3–30 µM was statistically significantly different
(p < 0.000001). The number of spikes of virtual hippocampal AD was significantly lower, at
1648.7 (95% CI, 1344.5–1952.9), compared to the number of spikes of virtual hippocampal
AD treated with the 3 µM dose, 2324.7 (95% CI, 2045.9–2603.5), and the 10 µM dose, 3607.0
(95% CI, 3137.6–4076.4). Furthermore, the number of virtual AD spikes of the hippocampus
treated with the 3 µM dose was significantly lower compared to the number of spikes
treated with the 10 µM and 30 µM doses. In contrast, the number of spikes was significantly
higher in the group treated with the 10 µM dose relative to those treated with the 30 µM
dose (Figure 1A).
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CA3 region moderate AD, (D) CA3 region severe AD, (E) DG region moderate AD, (F) DG region 
severe AD (**p < 0.01, ***p < 0.001). 

The mean number of CA1 area spikes in the virtual severe hippocampal AD group 
treated with memantine at doses of 3–30 µM was statistically significantly different (p < 
0.000001). The number of spikes of virtual hippocampal AD was significantly lower, 
1461.8 (95% CI, 1196.2–1727.4), compared to the number of spikes of virtual hippocampal 
AD treated with the 10 µM dose, 2734.5 (95% CI, 2369.8–3099.2), and the 30 µM dose, 
3748.9 (95% CI, 3219.8–4278.0). There were no statistically significant differences in the 
number of hippocampal virtual AD spikes against those treated with memantine at a dose 
of 3 µM. In addition, the number of spikes of virtual hippocampal ADs treated with the 3 

Figure 1. Comparison of number of spikes in virtual therapy of memantine treatment at three
concentrations: 3 µM, 10 µM and 30 µM. (A) CA1 region moderate AD, (B) CA1 region severe AD,
(C) CA3 region moderate AD, (D) CA3 region severe AD, (E) DG region moderate AD, (F) DG region
severe AD (** p < 0.01, *** p < 0.001).

The mean number of CA1 area spikes in the virtual severe hippocampal AD group
treated with memantine at doses of 3–30 µM was statistically significantly different
(p < 0.000001). The number of spikes of virtual hippocampal AD was significantly lower,
1461.8 (95% CI, 1196.2–1727.4), compared to the number of spikes of virtual hippocampal
AD treated with the 10 µM dose, 2734.5 (95% CI, 2369.8–3099.2), and the 30 µM dose, 3748.9
(95% CI, 3219.8–4278.0). There were no statistically significant differences in the number of
hippocampal virtual AD spikes against those treated with memantine at a dose of 3 µM. In
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addition, the number of spikes of virtual hippocampal ADs treated with the 3 µM dose was
significantly lower, 1533.0 (95% CI, 1333.1–1732.9), versus those treated with the 10 µM and
30 µM doses. The virtual AD group of hippocampi treated with memantine at a dose of
10 µM had a significantly higher number of spikes compared to those treated with a dose
of 30 µM (Figure 1B).

The mean number of spikes of area CA3 in the virtual moderate-AD hippocampal
group treated with memantine at doses of 3–30 µM was statistically significantly different
(p < 0.000001). The number of spikes of virtual hippocampal AD was significantly lower,
2863.4 (95% CI, 2505.4–3221.4), versus the number of spikes of virtual hippocampal AD
treated with a 3 µM dose, 3465.7 (95% CI, 3118.7–3812.7), and 10 µM dose, 5676.5 (95%
CI, 5360.7–5992.3). However, the number of spikes treated with the 30 µM dose was
significantly lower, 0.4 (95% CI, −0.5–1.3), compared to the moderate-AD group. In
contrast, the 10 µM treatment group had a significantly higher number of spikes compared
to the 30 µM treatment group (Figure 1C).

The mean number of spikes of area CA3 in the virtual severe-AD hippocampal
group treated with memantine at doses of 3–30 µM was statistically significantly different
(p < 0.000001). The number of spikes of virtual hippocampal AD was significantly lower,
2747.3 (95% CI, 2237.5–3257.1), compared to the number of spikes of virtual hippocampal
AD treated with the 10 µM dose, 4316.6 (95% CI, 3846.1–4787.1), and the 30 µM dose, 4769.1
(95% CI, 3800.7–5737.5). There were no statistically significant differences in the number of
hippocampal virtual AD spikes against those treated with memantine at a dose of 3 µM. In
addition, the number of spikes of virtual hippocampal ADs treated with the 3 µM dose was
significantly lower, 2785.1 (95% CI, 2361.9–3208.3), versus those treated with the 10 µM and
30 µM doses. The group of virtual hippocampal ADs treated with memantine at a dose of
10 µM showed no significant differences in the number of spikes compared to those treated
with a dose of 30 µM (Figure 1D).

The mean number of DG area spikes in the virtual moderate-AD hippocampal
group treated with memantine at doses of 3–30 µM was statistically significantly dif-
ferent (p < 0.000001). The number of spikes of virtual hippocampal ADs was significantly
higher, 4896.1 (95% CI, 4517.3–5274.9), versus the number of spikes of virtual hippocampal
ADs treated with the 30 µM dose, 2686.5 (95% CI, 2650.8–2722.2). In contrast, the number of
spikes treated with a dose of 3 µM was significantly lower, 4375.3 (95% CI, 4130.7–4619.9),
compared to the group treated with a dose of 10 µM, 5886.2 (95% CI, 4716.7–7055.7). In
contrast, the number of pulses was significantly lower in the 30 µM-dose-treated group
compared to the 3 µM- and 10 µM-dose-treated groups (Figure 1E). No statistically signifi-
cant differences were found for the other comparisons. The mean number of spikes of the
DG area in the virtual severe-AD hippocampal group treated with memantine at doses of
3–30 µM was not statistically significantly different (p = 0.6051) (Figure 1F).

2.2. Interspike Interval and CA1 Frequency

The mean ISI of area CA1 in the hippocampal virtual moderate-AD group treated with
memantine at doses of 3–30 µM was statistically significantly different (p < 0.000001). The
moderate-AD group had a significantly higher ISI of 0.054 s (95% CI, 0.043–0.065) compared
with those treated with the memantine 3 µM dose of 0.036 s (95% CI, 0.032–0.041), the
10 µM dose of 0.024 s (95% CI, 0.021–0.026) and the 30 µM dose of <0.001 (95% CI, not
evaluable). Similar results were obtained in the 3 µM-dose-treated group, where the ISI
was significantly higher compared with the 10 µM- and 30 µM-dose-treated groups and in
the 10 µM- versus 30 µM-dose-treated group (Figure 2A).
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Figure 2. Comparison of ISI and frequency in virtual therapy of memantine treatment at three
concentrations: 3 µM, 10 µM and 30 µM of CA1 region. (A) ISI of moderate AD, (B) ISI of severe AD,
(C) frequency of moderate AD, (D) frequency of severe AD (** p < 0.01, *** p < 0.001).

The mean ISI of area CA1 in the virtual severe-AD hippocampal group treated with
memantine at doses of 3–30 µM was statistically significantly different (p < 0.000001). In the
severe-AD group, the ISI was significantly higher, at 0.061 s (95% CI, 0.048–0.074), compared
with those treated with the 10 µM memantine dose, at 0.031 s (95% CI, 0.027–0.036), and the
30 µM dose, at 0.022 s (95% CI, 0.019–0.025). The same was obtained in the group treated
with the 3 µM dose, where the ISI was significantly higher at 0.055 s (95% CI, 0.048–0.062)
compared with those treated with the 10 µM and 30 µM doses (Figure 2B).

The mean value of the CA1 area pulse frequency in the hippocampal virtual moderate-
AD group treated with memantine doses of 3–30 µM was statistically significantly different
(p < 0.000001). In the moderate-AD group, the frequency was significantly lower at 19.9 Hz
(95% CI, 16.1–23.7) versus those treated with the 3 µM memantine dose at 28.2 Hz (95%
CI, 24.9–31.6) and the 10 µM dose at 43.2 Hz (95% CI, 38.0–48.4). However, against those
treated with the 30 µM dose, CA1 pulse frequency <0.1 (95% CI, not possible to assess) was
significantly higher. A similar result was obtained in the group treated with the 3 µM dose,
where the frequency was significantly lower against those treated with the 10 µM dose, but
significantly higher against those treated with the 30 µM dose. The frequency of pulses
treated with the 10 µM dose was significantly higher compared to those treated with the
30 µM dose (Figure 2C).

The mean value of the pulse frequency from area CA1 in the virtual severe hippocam-
pal AD group treated with memantine at doses of 3–30 µM was statistically significantly
different (p < 0.000001). In the severe-AD group, the frequency was significantly lower at
17.7 Hz (95% CI, 14.3–21.1) compared with subjects treated with memantine at 10 µM at
32.9 Hz (95% CI, 28.4–37.5) and at 30 µM at 46.5 Hz (95% CI, 40.1–52.8). The same was
obtained in the group treated with the 3 µM dose, where the frequency was significantly
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lower at 18.7 Hz (95% CI, 16.2–21.2) compared to those treated with the 10 µM and 30 µM
doses. The frequency of the pulses treated with the 10 µM dose was significantly higher
compared to those treated with the 30 µM dose (Figure 2D).

2.3. Assessment of Relations of the Number of Spikes CA1, CA3 and DG Regions

Positive and statistically significant correlations were found for the number of spikes
of CA1 and CA3 in the group of virtual hippocampal AD moderates (correlation coefficient
r = 0.94, p < 0.0001) and those treated with the 3 µM dose (correlation coefficient r = 0.96,
p < 0.0001). In contrast, there was no statistically significant relationship in the virtual
moderate-AD hippocampal group treated with the 10 µM dose (correlation coefficient
r = 0.27, p = 0.4541) (Figure 3A).
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Figure 3. The correlation analysis of the number of spikes and CA1, CA3 and DG regions in virtual
therapy of memantine treatment at three concentrations: 3 µM, 10 µM and 30 µM of CA1 region
(red—AD, green—3 µM, blue—10 µM and violet—30 µM). Information in the hippocampus flows in
the direction of DG→ CA3→ CA1. The flow of information in CA3→ CA1 (A,B) and DG→ CA3
(C,D). Relationships between number of spikes CA3, CA1 regions and DG, CA3 regions. (A) CA1
and CA3 of moderate AD, (B) CA1 and CA3 of severe AD, (C) DG and CA3 of moderate AD, (D) DG
and CA3 of severe AD.

Correlation analysis showed positive and statistically significant correlations of the
number of spikes of CA1 and CA3 areas in the virtual severe-AD hippocampal group
(correlation coefficient r = 0.88, p < 0.0001), treated with a dose of 3 µM (correlation
coefficient r = 0.85, p = 0.0020), a dose of 10 µM (correlation coefficient r = 0.90, p = 0.0004)
and 30 µM (correlation coefficient r = 0.73, p = 0.0173) (Figure 3B).

Positive and statistically significant correlations were found for the number of DG and
CA3 area spikes in the hippocampal virtual moderate-AD group (correlation coefficient
r = 0.87, p = 0.0012) and those treated with the 3 µM dose (correlation coefficient r = 0.81,
p = 0.0046). In contrast, there was no statistically significant relationship in the virtual
moderate-AD hippocampal group treated with the 10 µM dose (correlation coefficient
r = 0.41, p = 0.2355) (Figure 3C).
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Correlation analysis showed positive and statistically significant correlations of the
number of DG and CA3 area spikes in the virtual severe-AD hippocampal group treated
with the 3 µM dose (correlation coefficient r = 0.95, p < 0.0001), treated with the 10 µM
dose (correlation coefficient r = 0.92, p = 0.0001) and the 30 µM dose (correlation coefficient
r = 0.97, p < 0.0001). In contrast, there was no statistically significant relationship in
the hippocampal virtual severe-AD group (correlation coefficient r = 0.42, p = 0.2325)
(Figure 3D).

3. Discussion

Clinical trials testing monotherapy in Alzheimer’s disease have been conducted in
the USA, Japan, Austria, the UK, China, and multiple other countries, including a dozen
European countries [32–40]. In clinical trials, the primary endpoint is cognitive function
as measured by SIB, ADAS, SMMSE [41]. Five studies showed no statistically significant
differences in cognitive function versus placebo [33–35,37,39]. The mean cognitive function
scores of patients with AD and the control group were −4.10 to 2.41 vs. −2.80 to 5.60,
respectively. In four studies, memantine monotherapy improved cognitive function scores
in the group of patients with AD relative to placebo, from −0.80 to 4.00 vs. 1.10 to 10.10,
respectively. The result of a meta-analysis of the aforementioned studies showed that
memantine monotherapy was statistically significant and improved cognitive function.
In addition, the results of the meta-analysis of the secondary endpoint showed that daily
living activities, global function assessment scores and stage of dementia assessment scores
were significantly improved.

In our in silico study, we obtained confirmation of the efficacy of memantine in
moderate to severe dementia in the course of Alzheimer’s disease. The performed model
together with the virtual therapy confirm the results obtained in clinical trials. In areas
CA3-CA1, we obtained a statistically significant improvement in the number of spikes
relative to moderate AD with virtual therapy at doses of 3–10 µM. In contrast, in a model
of severe AD we obtained an improvement of virtual therapy with doses of 3–30 µM. In
studies that used animal models, it has been shown that exceeding a dose of 20 mg/kg
can cause side effects [42]. Experiments suggest that memantine inhibits pathological
alterations in the hippocampi [42], and that it prevents neuronal death in rats when given
before NMDA injections [43]. In our study, we confirm that the use of memantine in models
of excitotoxicity severity (moderate and severe) resulted in shortened ISI and increased
number of spikes, or frequency. We obtained statistically significant differences in the
number of spikes, interspike intervals and frequency when treated with memantine at
doses of 3–30 µM.

Memantine’s favourable effects on cognitive function in Alzheimer’s patients have
been proven in multiple multicentre studies involving individuals with moderate to severe
Alzheimer’s disease who received memantine monotherapy [44]. Our simulation experi-
ments confirm that the use of memantine in models of excitotoxicity with severity from
moderate to severe, as measured by number of spikes, results in a statistically significant
correlations with drug dose.

The results of clinical trials suggest that memantine monotherapy is effective in the
treatment of AD when assessed using various scales. The available tools assessed cognitive
function, behavioural impairment, activities of daily living, and stage of dementia, among
others. Our simulation study also evaluates the efficacy of virtual memantine therapy
based on various parameters, including spikes, frequency, and ISI.

4. Materials and Methods
4.1. Virtual Hippocampus of AD Population

Virtual hippocampi of AD patients with moderate to severe severity were included
in the study. Inclusion criteria included the degree of synaptic decay and the severity
of excitotoxicity. In the moderate and severe disease arm of the study, the respective
synaptic decays in the hippocampus were defined for a phase of 9% and 18% synapse
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loss by modelling AD dynamics. The process of modelling the severity of AD involved
disabling one-by-one the connections to entorhinal cortex layer 2 (EC2) and connections to
EC2 on inhibitory interneurons of dentate gyrus (DG) granule cells and CA3 pyramidal
neurons. The methodology for simulating the degree of synaptic decay describing AD
disease dynamics was based on the formalism of previous studies [23–27,30,31]. Similarly,
potentiation of excitotoxicity was modelled by increasing extracellular glutamate concentra-
tion and over-stimulation of NMDA receptors. Using the formalism from previous studies
in moderate to severe disease, the parameter “powerA” was progressively changed in the
following equation to model the phenomenological event:

power = powerA(M − ReP), (1)

where powerA = 9 is a parameter and M is the actual value of synaptic function SF(t) for
excitatory postsynaptic potentials (ln(9) = 2.197 for control, ln(63) = 4.143 for moderate AD
and ln(135) = 4.905 for severe AD).

4.2. Scheme of the Study

The study used 80 virtual AD models of the hippocampus, which were divided,
according to the degree of synaptic decay and the severity of excitotoxicity, into two groups:
moderate AD and severe AD, with 40 in each (Figure 4). Each group was randomised
to one of four subgroups, where one was a control and the other three received virtual
memantine therapy at doses of 3–30 µM. The final study design included 140 virtual
simulations of hippocampal AD models, including 80 that matched AD pathology and
60 treated with memantine.

4.3. Virtual Memantine Therapy

Virtual memantine therapy of AD patients was performed using three concentrations:
3 µM, 10 µM and 30 µM. Modelling exploited the fact that memantine inhibits NMDA
receptor currents in a concentration-dependent manner with IC50 values (concentration
causing 50% inhibition) in the range 0.5–30 µM at hyperpolarised membrane potentials
(−30 to −70 mV). The activation of NMDA receptors and the opening of ion channels
depend on the synaptic membrane potential. During the period of resting membrane
potential, magnesium ions (Mg2+) that are present in the extracellular space enter the
channel, and by closing its lumen, temporarily inhibit the flow of calcium ions (Ca2+)
and sodium ions (Na+). However, when at the same time there is a strong stimulation
of postsynaptic receptors by glutamic acid and the value of the total potential is higher
than the NMDA channel opening threshold for calcium ions (−68 mV), then the unblocked
channel becomes permeable to Na+ and Ca2+ ions, which penetrate the cell and cause its
stimulation. Using the ability to control the NMDA channel opening threshold in our model
and the knowledge that memantine is a voltage-dependent NMDA receptor antagonist, a
virtual treatment in the concentration range 3–30 µM was performed.

4.4. The Model of Hippocampus

The DG-CA3-CA1 mathematical–computational model used the formalism from pre-
vious studies. What is new is the increased number of neurons, which is 33 in the current
study (Figure 5).

The DG region was composed of eight granule cells and three interneurons, two
basket cells and an O-ML cell. In contrast, the CA3 and CA1 regions each contained eight
pyramidal cells and three interneurons, two basket cells and one O-LM cell. All cells were
sixteen-compartmented. Each dendrite had both excitatory and inhibitory synapses. Using
register methodology, excitatory synaptic inputs had two registers associated with the
glutamine receptors AMPA and NMDA. In contrast, the inhibitory synaptic input contained
one register associated with the GABA receptor. In our model, each CA3 pyramidal cell
received inhibitory synapses from basket cells and O-LM cells. In contrast, CA3 pyramidal
cells received excitatory inputs from the second layer of the entorhinal cortex and the
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dentate gyrus. Basket cells received excitatory inputs from distal dendrites of the second
layer of the entorhinal cortex and from neurons of the dentate. Inputs from EC2 and EC3
were phase-shifted relative to each other so that strong excitation from one was matched by
weak excitation from the other. Each O-LM cell had excitatory inputs from CA3 pyramidal
cells and inhibitory inputs from the septum, and the sources of inputs to CA1 were fibres
from the third layer of the entorhinal cortex and Schaffer collaterals from the CA3 sector. In
addition, our model simulated theta oscillation arriving through the septal–hippocampal
pathway running through the vault and described by frequencies in the 4 Hz to 12 Hz band,
temporally anchored in faster gamma oscillations [23–27,30,31].
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Figure 4. Simulation diagram of hippocampal network. Each group was randomised to one of four
subgroups, where one was a control and the other three received virtual memantine therapy at doses
of 3 µM (green), 10 µM (blue) and 30 µM (violet). Activation of the receptor caused by neurotoxic
factors results in the release of Mg2+ and an uncontrolled influx of Ca2+ into the cell—red circle on
the left. The depolarization caused by a strong stimulus is sufficient to remove the blockade of the
memantine channel and to allow the influx of calcium ions into the cell—black circle on the right.



Pharmaceuticals 2022, 15, 546 10 of 12Pharmaceuticals 2022, 15, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 5. DG-CA3-CA1 hippocampal formation microcircuit, with the dentate gyrus (DG) region 
on the left, CA3 on the right and CA1 bottom. Major cell types and connectivity: (G1–G8)—granule 
cells, (P1–P16)—pyramidal cells, (B1–B6) basket cells, O-LM1 and O-LM2 cells, (MC) mossy cell, 
(T1–T9)—GABAergic cells in the medial-septum–diagonal band (MS-DB) which provides the disin-
hibitory inputs on hippocampal GABAergic interneurons at theta rhythm. 

4.5. The Assessed Parameters 
For all simulations of virtual AD models of the hippocampus, the number of spikes 

was measured in three areas of the hippocampus: DG, CA3 and CA1. The interspike in-
terval (time between subsequent action potentials) and frequency of action-potential gen-
eration in area CA1 were also assessed. Information flow in the hippocampus is from DG 
to CA3 and from CA3 to CA1, which receives processed information from both the medial 
(MEC) and lateral (LEC) entorhinal cortex via CA3 input. 

4.6. Statistical Analysis 
The description of computer simulation parameters used arithmetic means together 

with 95% confidence intervals. Graphical presentation in the form of box and whiskers 
plots used mean values, the box was the area mean ± standard error and the whiskers 
were the 95% CI for the mean. Shapiro–Wilk and Leven’s (Brown–Forsythe) tests of con-
cordance were used to check for population origin with normal distribution and homoge-
neity of variance, respectively. The results of virtual memantine treatment were assessed 
by ANOVA, using Tukey’s post hoc test for statistical significance. Pearson correlation 
analysis was used to assess the degree and strength of association. Statistical analysis was 
performed using TIBCO Software Inc. (Palo Alto, CA, USA) (2017). Statistica (data analy-
sis software system), version 13. http://statistica.io (accessed on 1 January 2020). A signif-
icance level of α = 0.05 was adopted. 

  

Figure 5. DG-CA3-CA1 hippocampal formation microcircuit, with the dentate gyrus (DG) region on
the left, CA3 on the right and CA1 bottom. Major cell types and connectivity: (G1–G8)—granule cells,
(P1–P16)—pyramidal cells, (B1–B6) basket cells, O-LM1 and O-LM2 cells, (MC) mossy cell, (T1–T9)—
GABAergic cells in the medial-septum–diagonal band (MS-DB) which provides the disinhibitory
inputs on hippocampal GABAergic interneurons at theta rhythm.

4.5. The Assessed Parameters

For all simulations of virtual AD models of the hippocampus, the number of spikes
was measured in three areas of the hippocampus: DG, CA3 and CA1. The interspike
interval (time between subsequent action potentials) and frequency of action-potential
generation in area CA1 were also assessed. Information flow in the hippocampus is from
DG to CA3 and from CA3 to CA1, which receives processed information from both the
medial (MEC) and lateral (LEC) entorhinal cortex via CA3 input.

4.6. Statistical Analysis

The description of computer simulation parameters used arithmetic means together
with 95% confidence intervals. Graphical presentation in the form of box and whiskers
plots used mean values, the box was the area mean± standard error and the whiskers were
the 95% CI for the mean. Shapiro–Wilk and Leven’s (Brown–Forsythe) tests of concordance
were used to check for population origin with normal distribution and homogeneity
of variance, respectively. The results of virtual memantine treatment were assessed by
ANOVA, using Tukey’s post hoc test for statistical significance. Pearson correlation analysis
was used to assess the degree and strength of association. Statistical analysis was performed
using TIBCO Software Inc. (Palo Alto, CA, USA) (2017). Statistica (data analysis software
system), version 13. http://statistica.io (accessed on 1 January 2020). A significance level
of α = 0.05 was adopted.

http://statistica.io
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5. Conclusions

The results of this in silico study confirm that memantine monotherapy is effective
in the treatment of moderate to severe Alzheimer’s disease, as assessed by various neu-
ronal parameters.

The most important limitation of in silico research is the realisation of what a mathe-
matical and computer model can do. The predictions and results of the model are always a
consequence of the knowledge we used to build such a model.
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