
Research and Applications

Development and validation of predictive models for

COVID-19 outcomes in a safety-net hospital population

Boran Hao1,2, Yang Hu1,2, Shahabeddin Sotudian1,3, Zahra Zad1,3, William G. Adams4,

Sabrina A. Assoumou5, Heather Hsu4, Rebecca G. Mishuris5, and

Ioannis C. Paschalidis1,2,3,6

1Center for Information and Systems Engineering, Boston University, Boston, Massachusetts, USA, 2Department of Electrical and

Computer Engineering, Boston University, Boston, Massachusetts, USA, 3Division of Systems Engineering, Boston University,

Boston, Massachusetts, USA, 4Department of Pediatrics, Boston Medical Center and Boston University School of Medicine, Bos-

ton, Massachusetts, USA, 5Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston,

Massachusetts, USA, and 6Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA

Corresponding Author: Ioannis C. Paschalidis, Division of Systems Engineering, Department of Electrical and Computer

Engineering, Department of Biomedical Engineering, and Faculty of Computing & Data Sciences, Boston University,

8 Saint Mary’s St., Boston, MA 02215, USA; yannisp@bu.edu http://sites.bu.edu/paschalidis

Received 16 November 2021; Revised 13 March 2022; Editorial Decision 10 April 2022; Accepted 14 April 2022

ABSTRACT

Objective: To develop predictive models of coronavirus disease 2019 (COVID-19) outcomes, elucidate the influ-

ence of socioeconomic factors, and assess algorithmic racial fairness using a racially diverse patient population

with high social needs.

Materials and Methods: Data included 7,102 patients with positive (RT-PCR) severe acute respiratory syndrome

coronavirus 2 test at a safety-net system in Massachusetts. Linear and nonlinear classification methods were

applied. A score based on a recurrent neural network and a transformer architecture was developed to capture

the dynamic evolution of vital signs. Combined with patient characteristics, clinical variables, and hospital occu-

pancy measures, this dynamic vital score was used to train predictive models.

Results: Hospitalizations can be predicted with an area under the receiver-operating characteristic curve (AUC)

of 92% using symptoms, hospital occupancy, and patient characteristics, including social determinants of

health. Parsimonious models to predict intensive care, mechanical ventilation, and mortality that used the most

recent labs and vitals exhibited AUCs of 92.7%, 91.2%, and 94%, respectively. Early predictive models, using

labs and vital signs closer to admission had AUCs of 81.1%, 84.9%, and 92%, respectively.

Discussion: The most accurate models exhibit racial bias, being more likely to falsely predict that Black patients

will be hospitalized. Models that are only based on the dynamic vital score exhibited accuracies close to the

best parsimonious models, although the latter also used laboratories.

Conclusions: This large study demonstrates that COVID-19 severity may accurately be predicted using a score

that accounts for the dynamic evolution of vital signs. Further, race, social determinants of health, and hospital

occupancy play an important role.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) has affected more than 450

million people globally. Although about 65% of the US population

has been vaccinated against severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2),1 rates of immunization have been uneven

especially among different racial/ethnic groups and between rural

versus urban communities.2 Limited vaccination rates and the emer-

gence of new variants suggests that COVID-19 will remain a con-

cern for health systems worldwide.3

Making predictions about disease severity is important in clinical

triage, resource allocation, staffing, and overall planning, within a

hospital system, and at the state/country scale. Artificial Intelligence

(AI) methods have been used to that end,4 including the prediction

of patient outcomes for COVID-19.5–11 However, these studies used

data from relatively few patients (the largest used 2,5006) and a lim-

ited collection of pre-existing conditions, laboratories, and in-

hospital data.

More importantly, no predictive models of hospitalization, dis-

ease severity, and mortality have been developed using data from a

safety-net hospital caring for a large percentage of racially/ethnically

diverse patients, including many lower-income individuals with

pressing needs associated with social determinants of health

(SDOH). In addition, no models have leveraged SDOH for patients

receiving clinical care. While work exploring disparities has consid-

ered aggregate nationwide data in the United States12 and Brazil,13

there is a need for more detailed analysis14 and a concern that, if not

properly adjusted, models may perpetuate biases.15 The present

study includes a large percentage of Black and Hispanic patients and

person-level information on SDOH, enabling a characterization of

specific race/ethnic and SDOH variables that influence the predic-

tive models.

An additional characteristic of the current study is the availabil-

ity of rich information on the daily/hourly evolution of vitals for

hospitalized patients. Most of the previously published predictive

models were static—they considered a snapshot of the patient’s con-

dition and made a forward prediction. In the current work, we lever-

aged neural networks with long short-term memory cells16 and a

transformer17 encoder to build a score of vitals that captures their

dynamic evolution. Models based just on this score perform surpris-

ingly well compared to more complex models that also use a host of

laboratories. In addition, access to hospital occupancy data reveals

how they may influence care decisions.

MATERIALS AND METHODS

Data description
We de-identified data for all 7,102 patients with a positive reverse

transcription polymerase chain reaction (RT-PCR) SARS-CoV-2 test

at the Boston Medical Center (BMC) between January 1 and De-

cember 31, 2020. As a tertiary care academic medical center, BMC

is the largest safety-net hospital in New England, providing care for

about 30% of Boston residents.18 Features extracted included demo-

graphics, SDOH variables, depression status, travel-contact infor-

mation, vital signs, radiological findings, past medical history,

symptoms, medications, laboratory tests, hospital occupancy, hospi-

talization course, admission to the Intensive Care Unit (ICU), me-

chanical ventilation, and mortality. SDOH variables were based on

answers to the THRIVE survey administered at BMC, which identi-

fies social needs in 8 domains: housing, food, medication, transpor-

tation, utilities, childcare, employment, and education.19 We also

used self-reported race and ethnicity in the electronic health records

and hospital occupancy, which was measured by the daily bed usage

percentage for surgeries, COVID, and non-COVID patients. The

Supplementary Material includes additional details. The study was

approved by the BMC Institutional Review Board.

Preprocessing and variable selection
We developed predictive models for the following outcomes: (1)

hospitalization, (2) ICU care, (3) mechanical ventilation, and (4)

mortality. For each patient, we built a profile containing all outcome

labels and extracted features. Instead of using computer vision tech-

niques to extract information from radiology images,20 we used nat-

ural language processing (NLP) to extract radiology findings from

text (see Supplementary Material). We applied “one-hot” encoding

to represent categorical features as 0 and 1. We retained variables

for which we had values from at least 350 patients, and we imputed

the missing values in a continuous-valued feature using the mean of

its nonmissing values. All features were standardized to zero mean

and unit standard deviation.

For the hospitalization model, we used the admission date as ref-

erence date, and the earliest positive SARS-CoV-2 test as the refer-

ence date for non-admitted patients. Features were extracted

according to the reference dates. We utilized all features except labo-

ratory results, medication, and radiological findings, which were

typically not available for non-hospitalized patients. The features we

used for predicting hospitalization include pre-existing conditions

and SDOH information from the patient’s hospital record, symp-

toms, and observed vital signs. All these features would have been

readily available to physicians in either the emergency room or the

outpatient clinics making these decisions.

For admitted patients, the closest records before their reference

date were extracted and we only included records that were within

48 h before the reference date. For non-admitted patients, we only

included records that were within 48 h before or after the reference

date. For ICU, mechanical ventilation and mortality prediction mod-

els, we only considered admitted patients. In addition to the features

utilized in the hospitalization model, laboratory results and radio-

logical findings were used, and we excluded symptoms since severe

COVID-19 patients were less likely to describe their symptoms. The

earliest and latest vitals and lab results to be used for ICU/Intuba-

tion/Mortality models depend on the timeline settings for models,

which will be introduced in “Timeline Strategy” section. For

patients with the identified outcomes (ICU care, mechanical ventila-

tion, death), the date of the outcome was used as the reference date.

For patients with absent outcomes, a random date during their hos-

pitalization was used as their reference date. In general, all input fea-

tures for predicting the various in-hospital outcomes would have

been readily available to physicians in advance of the predicted

outcome.

Timeline strategy
We introduced a timeline strategy to capture the dynamic evolution

of vital signs, labs, and radiological findings for predicting ICU, me-

chanical ventilation, and mortality. Given the reference date t and a

desired “drop time” s0, we first eliminated all features during the in-

terval ½t � s0; t�. Then, we defined k consecutive time windows with

length s each, tracing back from t � s0. The mean (for continuous

features) or maximum (for categorical features) of all feature records

in the ith time window ½t � s0 � is; t � s0 � ði� 1Þs� was computed

and defined as “feature – is.” We used the sequence “feature �
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1s,”. . .,“feature � ks” as a feature timeline to train the models. We

did not implement timelines for the hospitalization model, because

laboratory and radiology findings were not used and vital sign

records were sparse.

Classification methods
We applied linear and nonlinear classifiers to predict outcomes. Lin-

ear methods included logistic regression (LR) and support vector

machines (SVM).21 Nonlinear methods included XGBoost22 and

Random Forest (RF).23 We introduced regularizations to prevent

the influence of outliers in data.24,25 Furthermore, we used LSTM-

Transformer neural networks to compute a score capturing the dy-

namic evolution of vitals over the timeline.

We applied statistical feature selection (SFS), removing variables

with high p-value. We removed one from each pair of features with

absolute correlation coefficient >0.8. We further implemented ‘1-

regularized LR recursive feature elimination (RFE). Features

retained from RFE were used to derive a parsimonious LR model

(see Supplementary Material for details).

Model evaluation
We evaluated model performance using 2 metrics: area under the

curve (AUC) of the receiver-operating characteristic (ROC) and

Weighted-F1 score. ROC plots the recall (or sensitivity) against the

false positive rate, and AUC can be interpreted as the probability

that a randomly chosen sample from the positive class will score

higher than a randomly chosen sample from the negative class. The

F1 score is the harmonic mean of recall and precision. The

weighted-F1 score is calculated by weighting the F1 score of each

class by the number of samples in that class. Values for both metrics

are between 0 to 1 and a higher value implies a better model.

We split patients into a training (80%) and test set (20%). We

trained the models on the training set and evaluated them on the test

set. We repeated this procedure 5 times, each with a different ran-

dom split. The average and standard deviation on the test set over

the 5 random splits are reported. For each split we further applied 5-

fold cross-validation on the training set to find the best hyperpara-

meters of each model; therefore, the test set is completely indepen-

dent and kept separate from the training process. We performed

external validation to assess the generalizability of our hospitaliza-

tion models. We trained hospitalization models using all BMC sam-

ples and evaluated their performance on data from Mass General

Brigham used in our earlier work.6 We did not attempt external vali-

dation for other models because they rely on clinical variables and it

was not possible to match those across the 2 data sets.

We compared our models with the NEWS226 score for predict-

ing deterioration and the sepsis score qSOFA.27 These are computed

from vital signs, so we compared them with our LSTM-Transformer

vital score. In addition, we trained the “BMC protocol,” which is a

classifier using a group of labs and vital signs chosen for evaluating

COVID-19 severity by BMC physicians (see Supplementary

Material).

RESULTS

Among 7,102 patients, 19.5% were admitted. Among the hospital-

ized, 23.3% required ICU care, 13.8% received mechanical ventila-

tion, and 9.65% died. The mean age of all patients was 47.9 and

35.1% were Black. Representative statistics are in Supplementary

Table S1 (see Supplementary Material).

Hospitalization models
Prediction models

The hospitalization model used the entire data set, labeling patients

as hospitalized (class 1) or non-hospitalized (class 0). About 126

variables for each patient were retained after preprocessing. The av-

erage of the obtained metrics over 5 random splits is reported in Ta-

ble 1. We compared the performance of linear (ie, best performing

SVM and LR) and nonlinear (ie, XGBoost and RF) methods using

all 126 variables. After SFS, 70 variables were retained and RFE

retained 20 variables. The latter “parsimonious” model was en-

hanced by adding 2 hospital utilization variables, while controlling

for additional relevant variables. Specifically, for each patient we

added “Total Non-COVID Percentage” and “Total COVID

Percentage,” indicating the ratio of the number of patients treated

for non-COVID diseases and COVID, respectively, over the total

number of BMC beds, computed at the patient’s reference time. This

resulted into parsimonious models with 22 variables.

The parsimonious models performed almost as well as the mod-

els with all 126 features. Table 1 also reports the composition of an

‘2-regularized LR model. Larger values of the variables with posi-

tive (respectively, negative) coefficient increase (respectively, de-

crease) the likelihood of hospitalization. For instance, the likelihood

of hospitalization decreases with increased hospital occupancy. Two

SDOH variables (Food insecurity and need for Transportation) were

observed to increase hospitalization likelihood.

External validation

We trained the model with the 20 variables retained after RFE on all

BMC patients and evaluated its performance on patients from 5 hos-

pitals in the Mass General Brigham system used in earlier work6

(Table 1).

Analysis focused on racial bias

We retained 249 Black and 251 White patients for testing and

trained a model (with the 22 features of the parsimonious model) on

the rest of the patients. Table 1 presents the performance of this

model on the 2 cohorts. We used a treatment equality28 definition to

evaluate the fairness of the hospitalization treatment, which requires

the ratio of the false positive rate (FPR) over the false negative rate

(FNR) to be equal among the 2 cohorts. This ratio is 73.6% higher

for black patients than for whites. Note that we are controlling for

the most important variables associated with a hospitalization,

hence, this bias is due to unmeasured factors not used by the model,

or possibly from missing values of variables the model uses that may

more severely affect one of the cohorts.

To resolve this racial bias, we modified the prediction threshold

of the LR model (to which the predicted likelihood is compared).

The default value for this threshold is 0.5. We selected 2 different

thresholds, 1 for black patients and 1 for white patients, seeking to

equalize the FPR/FNR ratio while keeping the FNR relatively low

(around 0.25). Table 1 reports these thresholds and the resulting

metrics.

ICU models
The ICU prediction results are in Table 2. We first trained one im-

mediate model (0-drop), using the features in the past 36 h to predict

need for immediate ICU care. For vitals we used a k¼6, s¼6 h

timeline, while for laboratory and radiology findings we only used

one s¼36 h window, since most laboratory data and imaging

were taken at most once a day. After combining the vitals into the
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Table 1. Hospitalization prediction models

Algorithm AUC F1-weighted

Models using all 126 features

LR-L1 86.5% (0.9%) 87.0% (0.5%)

SVM-L1 86.3% (0.9%) 86.8% (0.8%)

XGBoost 93.1% (0.6%) 90.1% (0.8%)

RF 92.4% (0.5%) 90.0% (0.7%)

Models using 70 statistically selected features

LR-L1 86.1% (1.0%) 87.3% (0.7%)

SVM-L1 86.0% (1.0%) 87.1% (0.6%)

XGBoost 92.5% (0.5%) 90.2% (0.7%)

RF 92.2% (0.5%) 89.9% (0.7%)

Parsimonious Model using 22 features

LR-L1 83.5% (1.7%) 85.3% (0.7%)

SVM-L1 83.4% (1.8%) 84.7% (1.0%)

XGBoost 92.0% (0.6%) 89.6% (0.6%)

RF 91.3% (0.6%) 89.4% (0.5%)

Variables for the Parsimonious Model

Variable Coef OR OR 95% CI Y1-mean Y0-mean Y-corr p-value

Intercept �0.7 – – – – – – –

Dyspnea 1.28 3.98 3.3 4.8 0.36 0.08 0.32 1.60E-47

PMH-Transplantation 0.72 3.36 2.06 5.5 0.04 0.01 0.09 1.32E-06

Vomiting 0.52 1.86 1.26 2.74 0.05 0.02 0.07 1.88E-03

PMH-CHF 0.42 1.64 1.17 2.3 0.1 0.02 0.16 4.50E-03

PMH-Hepatitis 0.55 1.54 1.14 2.09 0.07 0.04 0.05 5.05E-03

SpO2 �0.83 0.68 0.65 0.72 96.09 98 �0.33 8.06E-56

SDOH-Food 0.28 1.4 0.87 2.24 0.03 0.02 0.02 1.61E-01

PMH-CKD 0.39 1.35 1.02 1.79 0.14 0.04 0.16 3.65E-02

PMH-Stroke 0.35 1.32 0.9 1.94 0.06 0.02 0.1 1.50E-01

PMH-COPD �0.16 0.79 0.56 1.11 0.06 0.03 0.06 1.75E-01

Abdominal Pain 0.23 1.26 0.9 1.77 0.06 0.03 0.07 1.75E-01

PMH-Arrhythmia 0.28 1.25 0.9 1.75 0.08 0.03 0.12 1.88E-01

Contact-COVID-Travel 0.23 1.24 1.06 1.45 0.37 0.28 0.08 6.24E-03

Respiratory Rate 0.45 1.18 1.14 1.22 20.07 18.07 0.28 4.87E-25

Diarrhea 0.14 1.1 0.81 1.5 0.07 0.04 0.06 5.39E-01

SDOH-Transportation 0.23 1.06 0.58 1.95 0.02 0.01 0.03 8.43E-01

BMI 0.08 1.04 1.02 1.06 30.01 29.12 0.1 1.65E-05

Diastolic BP �0.15 0.97 0.96 0.98 75.28 77.63 �0.13 2.56E-12

Age 0.52 1.03 1.03 1.04 57.31 45.62 0.26 1.13E-44

PMH-Cirrhosis 0.1 1.02 0.52 2.01 0.02 0.01 0.03 9.52E-01

Total non-COVID percentage �0.55 0.991 0.989 0.994 69.05 73.71 �0.08 1.11E-10

Total COVID percentage �0.59 0.992 0.99 0.994 40.72 38.26 0.04 2.43E-11

Performance evaluation on MGH Brigham data

Algorithm AUC F1-weighted

Models using all 20 features

LR-L1 81.30% 77.10%

SVM-L1 82.20% 77.80%

XGBoost 83.00% 77.80%

RF 79.10% 75.30%

Racial disparity in the LR-L2 parsimonious hospitalization model

Threshold FPR FNR FPR/FNR AUC F1-weighted

Black patients 0.5 0.199 0.288 0.691 81.90% 78.93%

White patients 0.5 0.148 0.372 0.398 80.44% 82.39%
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LSTM-Transformer score, we selected at most 10 features using SFS

and RFE (reported in Table 2) and trained a parsimonious model.

The parsimonious model yielded an average AUC of 92.7%, which

is close to the best full model AUC of 94.8%. Using only NEWS2 or

qSOFA scores as the feature yielded AUC of 84.3% and 71.7%, re-

spectively, lower than the AUC of 90.9% using the LSTM-

Transformer vital score as the only feature.

We further trained 2 extreme models to predict if a patient

would need ICU care after 12 h (12-h drop model) and 24 h (24-

h drop model). By changing the drop time in the timeline to 12 and

24 h, respectively, the model is not using any information for the pa-

tient in the 12/24 h before ICU admission. The parsimonious models

maintained a high AUC of 86.5% and 81.1%, respectively, which

match and exceed the corresponding best nonlinear full models with

AUC of 86.6% and 79.9%, respectively. While for these early pre-

dictions NEWS2 and qSOFA-based models performed poorly, the

LSTM-Transformer score remained a strong predictor. Apparently,

for immediate predictions all models did relatively well, whereas for

longer term predictions the LSTM-Transformer score and other

models including it show significant advantage.

Mechanical ventilation models
The mechanical ventilation prediction results are in Table 3. As with

the ICU models, we trained one immediate model (0-drop), using

the past 36 h features to predict if a patient needs to be intubated im-

mediately. For vitals we used a k¼6, s¼6 h timeline, while for lab-

oratory and radiology findings we only used one s¼36 h window.

After combining vitals into the LSTM-Transformer score, we se-

lected 10 features using RFE and trained a parsimonious model. The

top features are reported in Table 3. The parsimonious model

obtained an average AUC of 91.2%, close to the AUC of the best

full model (93.8%). Using only NEWS2 or qSOFA scores yields an

AUC of 66.0% and 63.1%, respectively, lower than the AUC of

90.0% obtained by using just the LSTM-Transformer vital score.

We further trained 2 extreme models to predict if a patient

would need intubation after 12 h (12-h drop model) and 24 h (24-

h drop model); the corresponding parsimonious models have AUC

of 90.3% and 84.9%, respectively. NEWS2- and qSOFA-based

models do considerably worse in these advance predictions.

Mortality models
Due to the relatively longer mean time gap between hospitalization

and death, we built different timelines for the mortality models. The

first mortality model only uses features within 3 d after admission

(adm-based model), and k¼3, s¼24 h are applied in this timeline.

Consequently, we can predict a patient’s mortality at the very early

stage of hospitalization. Another model uses a drop time of 24 h

prior to death (24-h drop model), using k¼7 and s¼48 h for the

timeline. For both settings, the LSTM-Transformer vital score is

used in parsimonious models. Performance and top features are

reported in Table 4.

For adm-based models, the best full model achieved 91.4%

AUC, while the parsimonious model using LR with only 13 features

did better (AUC of 92.0%). The AUC of qSOFA and NEWS2 mod-

els did not exceed 69%, and the LSTM-Transformer score yielded a

model with AUC of 84.3%. For the 24-h drop model, the best non-

linear model achieved 96.2% AUC, and the parsimonious model us-

ing 13 features achieved an AUC of 94.0%. When the outcome

draws near, the advantage of the LSTM-Transformer score over the

NEWS2 score remains significant.

DISCUSSION

The best AUCs achieved by the 4 models are between 93% and

96%, indicating strong predictive power. Strong predictions are

achieved with relatively few features used by parsimonious models.

These models use no more than 22 features each for hospitalization

and mortality prediction, and no more than 10 features each for

ICU and ventilation prediction, yielding similar (or better) perfor-

mance with an AUC differential of �2.6% to þ1.2% compared to

the best models. This indicates the possibility of implementing sim-

ple, actionable predictive models to aid triage, staffing, and resource

planning. The models produced outperformed related models in the

literature (eg, the ventilation model outperforms an earlier model

with a 74% AUC29).

Patients’ vital signs were the most important factors for ICU,

ventilation, and mortality prediction. These vital signs imply the se-

verity of the disease and the potential need for cardiorespiratory re-

suscitation. Most of the prior studies use vital signs as “static”

independent predictive variables.6–9 In this study, we used an

LSTMþTransformer encoder deep neural network to develop a sin-

gle score combining all vitals and capturing their dynamic evolution

over time. Models for ICU and ventilation (short-term and longer

term) predictions using just the LSTM-Transformer vital score have

an AUC within 1.2–4.9% from the corresponding parsimonious

models which also use other clinical variables; essentially, for these

models, vital sign trends alone suffice! For mortality predictions, the

LSTM-Transformer score is the top variable but other clinical varia-

bles significantly enhance performance.

Long-term predictions are more challenging than short-term:

ICU, ventilation, and mortality predictions deteriorate as we move

Controlling for racial disparity in the LR-L2 parsimonious hospitalization model

Threshold FPR FNR FPR/FNR F1-weighted

Black patients 0.45 0.242 0.237 1.021 77.36%

White patients 0.41 0.239 0.233 1.025 78.71%

Note: The values inside the parentheses denote the standard deviation of the corresponding metric. SVM-L1 and LR-L1 refer to the ‘1-norm regularized SVM

and LR models. We report the composition of an ‘2-norm regularized LR model, including the coefficient of each variable (Coef), the correlation of the variable

with the outcome (Y-corr), the mean of the variable (Y1-mean) in the hospitalized, and the mean of the variable (Y0-mean) in the non-hospitalized. For each vari-

able, we also report the corresponding p-value, the odds ratio (OR), and its 95% confidence interval (CI).

SpO2: oxygen saturation; BP: blood pressure; BMI: body mass index; PMH: past medical history; CKD: chronic kidney disease; COPD: chronic obstructive

pulmonary disease; CHF: congestive heart failure; SDOH: social determinants of health; Total non-COVID percentage: (Total number of non-COVID patients at

the hospital/Total number of beds)�100; Total COVID percentage: (Total number of COVID patients at the hospital/Total number of beds)�100.

Table 1. Continued

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 7 1257



further from the time of the outcome. While most models do rela-

tively well for short-term predictions, the parsimonious models

which include the LSTM-Transformer score increase their advantage

to baseline models (eg, NEWS2 and qSOFA) when longer term pre-

dictions are sought. Specifically, the AUC differential between the

parsimonious model and the best of the NEWS2 and qSOFA-based

models increases from 8.4–25.2% for short-term predictions to

17.3–32.2% for longer term predictions. Incidentally, the protocol

used at BMC fares better and is closer to the parsimonious model

for both short and long-term predictions.

Some of the variables included in the ICU prediction model have

previously been identified in the literature. Patient age and past med-

ical history like renal disease (CKD), cardiac disease (CAD) have ex-

tensively been described as factors influencing disease severity.30

Laboratory data such as CRP and ferritin31 are acute phase reac-

tants and have also previously been associated with COVID-19 dis-

ease severity. The large and diverse population used in our work

strongly supported these findings, and our interpretable LR model

coefficients further numerically show their relative importance. The

mortality model also includes laboratory data that have also previ-

ously been identified in the literature as being associated with dis-

ease severity such as CRP, ferritin, and LDH.6,32 Since mortality

prediction models use multiple time windows for labs as well, the

most informative period of a certain lab is further revealed.

Analyzing data from a safety net hospital with a high proportion

of Black patients and information on SDOH needs, gave us an op-

portunity to assess the effect of racial bias and socioeconomic varia-

bles. We elected to consider potential racial bias only between Black

Table 2. ICU prediction models

0-drop 12 h-drop 24 h-drop

AUC F1-weighted AUC F1-weighted AUC F1-weighted

Best full models before SFS XGBoost XGBoost XGBoost

94.8% (1.2%) 89.2% (1.8%) 86.6% (1.2%) 82.4% (0.9%) 78.3% (2.0%) 76.0% (2.3%)

Best full models after SFS XGBoost (112 features) XGBoost (104 features) XGBoost (95 features)

94.3% (1.4%) 88.0% (2.3%) 86.3% (1.8%) 82.2% (1.2%) 79.9% (3.2%) 76.8% (3.4%)

Parsimonious models

LR-L1-LSTM-Trans-

former

92.7% (1.5%) 86.7% (1.3%) 86.5% (1.6%) 81.6% (2.1%) 81.1% (2.5%) 79.4% (0.8%)

BMC-Protocol

LR-L1

89.0% (2.2%) 86.1% (2.0%) 73.0% (2.0%) 73.7% (1.0%) 67.4% (1.7%) 70.8% (1.7%)

BMC-Protocol XGBoost 94.8% (0.8%) 89.1% (1.7%) 86.2% (1.0%) 83.2% (1.0%) 77.1% (2.5%) 74.0% (1.4%)

NEWS2 score 84.3% (2.0%) 83.5% (1.8%) 48.6% (2.5%) 72.2% (1.4%) 46.5% (2.3%) 70.4% (1.6%)

qSOFA score 71.7% (3.0%) 79.3% (1.7%) 54.3% (2.1%) 69.1% (1.8%) 52.1% (2.4%) 68.1% (2.0%)

LSTM-Transformer score 90.9% (2.0%) 85.2% (1.8%) 84.5% (2.0%) 81.3% (1.2%) 76.8% (3.9%) 73.6% (1.5%)

Variable Coef Y1-mean Y0-mean p-value Y-corr

0-drop parsimonious model 10 features

LSTM-Transformer vital score 3.42 3.44 �4.70 5.63E-163 0.82

Intercept �2.44 – – – –

Glucose 0.52 182.20 129.24 5.52E-13 0.26

PMH-DVT 0.46 0.09 0.04 2.12E-02 0.08

LDH 0.45 496.37 356.83 2.19E-32 0.24

Total COVID percentage �0.41 40.76 42.16 3.41E-01 �0.03

PMH-HLD 0.31 0.32 0.24 2.94E-02 0.08

CO2 �0.24 22.62 24.13 2.53E-07 �0.19

NRBC Percentage 0.23 0.23 0.22 4.25E-03 0.01

Lung Opacity on X-Ray 0.2 0.68 0.29 2.35E-33 0.33

CRP 0.1 123.53 70.81 1.87E-28 0.30

12 h-drop parsimonious model 10 features

LSTM-Transformer vital score 1.81 0.83 �1.18 1.79E-74 0.50

Intercept �0.88 – – – –

Total COVID percentage �0.33 40.45 41.97 3.16E-01 �0.03

PMH-Arrhythmia 0.22 0.12 0.07 2.71E-02 0.08

LDH 0.22 431.34 358.87 1.49E-30 0.19

BUN 0.2 21.32 18.41 5.47E-20 0.09

Age 0.16 60.09 56.47 2.20E-03 0.09

CRP 0.14 100.25 72.09 4.97E-33 0.19

Ferritin 0.12 1758.64 990.79 4.78E-29 0.15

PMH-CKD 0.11 0.20 0.12 1.14E-02 0.09

PMH-CAD 0.11 0.09 0.04 1.19E-02 0.09

Note: For each full model, we only report results from the algorithm with the highest AUC out of LR, SVM, XGBoost, and RF. We present the LR coefficients

of each variable (Coef), the correlation of the variable with the outcome (Y-corr), the p-value, the mean of the variable (Y1-mean) in the ICU patients, and the

mean of the variable (Y0-mean) in the non-ICU patients.

LDH: lactate dehydrogenase; BUN: blood urea nitrogen; NRBC: nucleated red blood cell; CKD: chronic kidney disease; PMH: past medical history; CAD: cor-

onary artery disease; DVT: deep vein thrombosis; HLD: hypersensitivity lung disease; Total COVID percentage: (Total number of COVID patients at the hospi-

tal/Total number of beds)�100.
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and White patients, avoiding to also examine bias involving His-

panic or Latino, which is another racial group with sufficient num-

ber of patients for such analysis. Several reasons for this choice: (1)

there is considerable ambiguity on how people self-identify as His-

panic or Latino33; (2) in our data set about 44% of the patients have

a missing race variable and the majority of those also identified as

Hispanic/Latino (about 80%); and (3) there are disparities even be-

tween Black and White Hispanic/Latino individuals.34

Food insecurity and need for transportation became the top pre-

dictive features in the hospitalization model, possibly because they

serve as a marker for severe economic hardship. Food is the most ba-

sic need and is related to patients’ lifestyles and state of health. The

COVID pandemic further expanded food insecurity worldwide,

making it harder for vulnerable households to address their needs.

Similarly, patients with transportation needs rely more on the most

affordable public transit, which increases their risk for exposure to

the SARS-CoV-2 virus, while people with private cars and those

who work from home can avoid exposure. Further, delayed access

to care leads to a possibly worse clinical condition when arriving in

acute settings. The other SDOH variables, such as housing insecurity

were not as predictive as “Food” and “Transportation,” possibly be-

cause the homeless rate in Boston has dropped sharply in recent

years; specifically, 97–98% of the homeless population has been

sheltered according to the latest homeless census.35

The percentage of Black patients in the data set is 35.1%, yet

their percentage in the admitted, ICU patients, mechanically venti-

lated, and deceased ranges from 43.1% to 45.5%. Predictive models

exploit biases in the underlying data.36 The hospitalization model

exhibits bias, being more likely to falsely predict that a Black patient

will be hospitalized. This reinforces the consideration of race as a

social construct; persons who identify as Black being adversely

affected by structural racism, and associated with a host of

Table 3. Mechanical ventilation prediction models

0-drop 12 h-drop 24 h-drop

AUC F1-weighted AUC F1-weighted AUC F1-weighted

Best full models before SFS XGBoost RF RF

93.6% (0.9%) 91.6% (0.8%) 90.6% (1.2%) 87.8% (1.0%) 86.3% (1.1%) 85.0% (2.1%)

Best full models after SFS XGBoost (90 features) XGBoost (104 features) XGBoost (107 features)

93.8% (1.2%) 91.8% (1.5%) 90.3% (1.4%) 88.8% (0.7%) 86.1% (1.1%) 85.9% (1.4%)

Parsimonious models

LR-L1-LSTM-Transformer

91.2% (2.0%) 90.7% (0.9%) 90.3% (1.4%) 87.6% (1.0%) 84.9% (1.5%) 84.7% (0.5%)

BMC-Protocol

LR-L1

82.3% (0.9%) 85.0% (1.7%) 63.4% (3.1%) 79.9% (0.6%) 56.7% (1.5%) 79.9% (0.7%)

BMC-Protocol XGBoost 90.0% (1.0%) 88.7% (0.9%) 88.1% (1.1%) 88.3% (0.3%) 84.0% (1.1%) 80.3% (0.8%)

NEWS2 score 66.0% (6.5%) 84.2% (1.3%) 65.7% (2.8%) 80.0% (0.0%) 67.6% (2.8%) 80.0% (0.0%)

qSOFA score 63.1% (5.1%) 80.0% (0.4%) 52.3% (2.0%) 80.0% (0.0%) 52.3% (2.0%) 80.0% (0.0%)

LSTM-Transformer score 90.0% (2.3%) 88.4% (1.6%) 85.9% (2.8%) 86.3% (1.2%) 80.0% (2.5%) 79.9% (0.2%)

Variable Coef Y1-mean Y0-mean p-value Y-corr

0-drop parsimonious model 10 features

LSTM-Transformer vital score 2.26 2.25 �3.44 4.97E-104 0.68

Intercept �2.15 – – – –

Immature Granulocytes 0 Percentage �0.63 0.26 0.50 1.79E-08 �0.17

Gender (male) 0.43 0.68 0.53 3.17E-03 0.10

Venous PH �0.42 7.32 7.35 6.15E-06 �0.11

Absolute Lymphocytes �0.4 1.35 1.47 7.22E-07 �0.06

Red cell Distribution Width 0.3 14.54 14.25 1.14E-03 0.06

Glucose 0.3 166.23 130.88 5.32E-21 0.18

Total Elective Surgery �0.3 6.68 9.65 3.05E-03 �0.08

CRP 0.21 118.04 71.76 1.06E-29 0.22

Age 0.19 59.76 56.92 4.72E-02 0.05

12 h-drop parsimonious model 10 features

LSTM-Transformer vital score 1.54 2.42 0.18 5.05E-62 0.52

Intercept �1.41 – – – –

CRP 0.6 92.16 72.83 3.32E-29 0.11

Immature Granulocytes 0 Percentage �0.55 0.09 0.44 2.76E-18 �0.25

Hemoglobin 0.47 12.45 12.34 1.96E-12 0.02

Red Cell Distribution Width 0.41 14.38 14.29 2.86E-14 0.02

Total Elective Surgery percentage �0.4 6.61 9.75 3.56E-03 �0.08

Calcium �0.37 8.82 8.87 1.52E-10 �0.04

CO2 �0.36 23.65 24.04 1.51E-12 �0.05

Age 0.31 59.76 56.92 4.72E-02 0.05

Gender (male) 0.26 0.68 0.53 3.17E-03 0.10

Note: For each full model, we only report results from the algorithm with the highest AUC out of LR, SVM, XGBoost, and RF. We present the LR coefficients

of each variable (Coef), the correlation of the variable with the outcome (Y-corr), the p-value, the mean of the variable (Y1-mean) in the intubated patients, and

the mean of the variable (Y0-mean) in the nonintubated patients.

CRP: C-reactive protein; Total Elective Surgery percentage: (Total number of Elective Surgeries/Total number of beds)�100.
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circumstances, conditions and comorbidities that increase hospitali-

zation risk.37 As discussed earlier, it is possible to correct for this

bias by employing different decision thresholds for Black and White

patients.

Hospital census, such as the percentage of COVID-19 and non-

COVID-19 patients and elective surgeries performed, affect the

prediction results. This implies that an oversaturated hospital does

affect resource allocation for new patients and further exacerbates

the risk of future decompensation without adequate medical sup-

port.

Our hospitalization prediction model can be useful in any outpa-

tient or emergency care setting given that the variables used are

readily available to clinicians. This includes information on SDOH

which is regularly collected at BMC. We note that such SDOH in-

formation gathering practices are becoming more widespread.

Patients from underrepresented groups with potential SDOH needs

are in fact more likely to present to an emergency care setting with

ambulatory sensitive conditions compared to others.38

An FNR on the order of 0.25 achieved by the modified models

corresponds to a reasonable compromise between false positive and

Table 4. Mortality prediction models with features extracted within 3 days after admission

Adm-based 24 h-drop

AUC F1-weighted AUC F1-weighted

Best full models before SFS XGBoost XGBoost

91.4% (0.8%) 91.9% (0.7%) 96.2% (0.7%) 94.6% (0.6%)

Best full models after SFS XGBoost XGBoost

91.1% (2.0%) 91.8% (1.3%) 94.7% (1.2%) 94.3% (1.0)

Parsimonious models

LR-L1-LSTM-Transformer

92.0% (2.9%) 92.4% (1.3%) 94.0% (0.6%) 92.7% (0.9%)

BMC-Protocol

LR-L1

88.9% (4.1%) 91.2% (0.7%) 89.5% (2.2%) 91.5% (0.6%)

BMC-Protocol XGBoost 89.3% (2.4%) 90.8% (0.7%) 92.3% (1.1%) 92.6% (1.4%)

NEWS2 score 66.8% (5.0%) 85.8% (0.9%) 72.4% (2.9%) 87.2% (1.1%)

qSOFA score 68.2% (3.0%) 86.6% (0.9%) 73.3% (5.1%) 87.1% (0.6%)

LSTM-Transformer score 84.3% (4.4%) 89.0% (0.9%) 87.1% (2.0%) 91.0% (1.5%)

Variable Coef Y1-mean Y0-mean p-value Y-corr

Adm-based parsimonious model 13 features

LSTM-Transformer vital score 1.55 1.88 �3.32 0.00Eþ 00 0.53

Intercept �1.98 – – – –

Age 0.48 69.96 55.96 1.11E-16 0.23

CRP23s 0.36 140.83 80.83 1.55E-08 0.26

PMH-CAD 0.34 0.19 0.04 2.74E-11 0.19

Red Cell Distribution Width21s 0.31 15.56 14.27 3.06E-06 0.19

Poly Neutrophils23s 0.29 74.55 65.77 1.42E-09 0.22

Alkaline Phosphatase (total)22s 0.27 111.91 87.40 3.36E-03 0.13

Blood Component Type (Red Cell Group)21s 0.23 0.31 0.10 9.77E-12 0.20

Calcium23s �0.22 8.51 8.76 4.85E-05 �0.16

Potassium21s 0.22 4.44 4.01 2.89E-15 0.23

Ferritin21s 0.16 2846.19 1026.75 2.41E-06 0.20

Platelets22s �0.15 226.14 245.33 1.13E-02 �0.06

Glucose22s 0.13 149.06 129.09 4.39E-05 0.11

24 h-drop parsimonious model 13 features

LSTM-Transformer vital score 2.67 2.81 �3.01 0.00Eþ 00 0.63

Intercept �3.67 – – – –

PH Arteria21s �1.32 7.34 7.38 1.16E-12 �0.28

White Blood Cells23s 1.13 10.53 8.27 8.88E-16 0.21

Platelets23s �1.07 230.18 253.84 4.71E-14 �0.11

LDH24s 0.93 691.01 537.40 2.57E-06 0.18

CRP23s 0.83 159.66 112.24 9.11E-10 0.27

Age 0.81 69.96 55.96 1.11E-16 0.23

PHM-CHF 0.67 0.23 0.08 6.86E-07 0.15

Absolute Lymphocytes23s �0.59 1.29 1.45 5.06E-05 �0.03

Fibrinogen23s �0.56 512.74 521.48 5.66E-04 �0.03

PCO2 Arterial22s 0.42 46.14 42.43 1.27E-09 0.26

Poly Neutrophils26s 0.20 74.76 72.14 1.36E-09 0.18

Hemoglobin Blood27s �0.10 10.88 11.16 4.41E-07 �0.15

Note: For each full model, we only report results from the algorithm with the highest AUC out of LR, SVM, XGBoost, and RF. We present the LR coefficients

of each variable (Coef), the correlation of the variable with the outcome (Y-corr), the p-value, the mean of the variable (Y1-mean) in the deceased, and the mean

of the variable (Y0-mean) in the nondeceased.

PMH: past medical history; CHF: congestive heart failure; CAD: coronary artery disease; CRP: C-reactive protein; LDH: lactate dehydrogenase.
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false negative decisions. Not hospitalizing/not transferring soon

enough can lead to increased overall resource utilization as patients

will present with more severe disease. This will have implications on

the spread of the disease while they remain outside the hospital,

length of the hospitalization and recovery if they end up being hospi-

talized, and associated economic consequences such as loss of

wages. On the other hand, hospitalizing patients who may not need

it leads to increased resource utilization and can result in hospitals

been full and not having the ability to treat other patients who re-

quire care. Due to the novelty of COVID-19, including emerging

variants, the related costs are not well characterized and vary greatly

in different regions/hospitals, depending also on the local epidemio-

logical conditions; therefore, hospitals may set this threshold based

on their specific local situations.

A potential limitation of the study is that even though the hospi-

talization model has been externally validated, it has not been possi-

ble to do the same with the remaining models, particularly using

data from other safety-net hospitals. In addition, although the pa-

tient past medical history data we used has no time limitations, un-

derlying comorbidities may not be recorded in the EHR, which can

potentially influence the performance or introduce bias in our

models.

CONCLUSION

Our COVID-19 prediction models that are based on a large diverse

patient population can accurately predict outcomes, potentially aid-

ing in triage, resource allocation, and staffing determinations. Addi-

tionally, the use of dynamic variables such as vital signs improves

the predictive ability of models and should be considered in future

model development. This study highlights the importance of ensur-

ing diverse patient populations are represented in advanced analytics

development and suggests how to careful consider and interpret race

within predictive models.
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