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ABSTRACT Climate change is causing shifts in precipitation patterns in the central
grasslands of the United States, with largely unknown consequences on the collec-
tive physiological responses of the soil microbial community, i.e., the metaphenome.
Here, we used an untargeted omics approach to determine the soil microbial comm-
unity’s metaphenomic response to soil moisture and to define specific metabolic sig-
natures of the response. Specifically, we aimed to develop the technical approaches
and metabolic mapping framework necessary for future systematic ecological stud-
ies. We collected soil from three locations at the Konza Long-Term Ecological Re-
search (LTER) field station in Kansas, and the soils were incubated for 15 days under
dry or wet conditions and compared to field-moist controls. The microbiome re-
sponse to wetting or drying was determined by 16S rRNA amplicon sequencing,
metatranscriptomics, and metabolomics, and the resulting shifts in taxa, gene ex-
pression, and metabolites were assessed. Soil drying resulted in significant shifts in
both the composition and function of the soil microbiome. In contrast, there were
few changes following wetting. The combined metabolic and metatranscriptomic
data were used to generate reaction networks to determine the metaphenomic re-
sponse to soil moisture transitions. Site location was a strong determinant of the re-
sponse of the soil microbiome to moisture perturbations. However, some specific
metabolic pathways changed consistently across sites, including an increase in path-
ways and metabolites for production of sugars and other osmolytes as a response to
drying. Using this approach, we demonstrate that despite the high complexity of the
soil habitat, it is possible to generate insight into the effect of environmental
change on the soil microbiome and its physiology and functions, thus laying the
groundwork for future, targeted studies.

IMPORTANCE Climate change is predicted to result in increased drought extent and
intensity in the highly productive, former tallgrass prairie region of the continental
United States. These soils store large reserves of carbon. The decrease in soil mois-
ture due to drought has largely unknown consequences on soil carbon cycling and
other key biogeochemical cycles carried out by soil microbiomes. In this study, we
found that soil drying had a significant impact on the structure and function of soil
microbial communities, including shifts in expression of specific metabolic pathways,
such as those leading toward production of osmoprotectant compounds. This study
demonstrates the application of an untargeted multi-omics approach to decipher
details of the soil microbial community’s metaphenotypic response to environmental
perturbations and should be applicable to studies of other complex microbial sys-
tems as well.
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Climate change is predicted to result in increasing drought frequency and more
infrequent, but higher-intensity, rainfall events in the highly fertile and agricultur-

ally productive grasslands of the central United States (1). The southwestern and
south-central grassland regions of North America are predicted to experience reduced
precipitation in contrast to predicted higher precipitation in the central and northern
grasslands (2, 3). As precipitation regimes with fewer, but larger, events amplify
fluctuations in soil water content, the consequences in mesic grassland ecosystems will
be prolonged dry periods between rainfall events and an increase in the length and
occurrence of drought stress (4). These grassland soils store large amounts of carbon,
up to 39% of the organic carbon stocks in the conterminous United States (5), and the
fate of this stored C is uncertain as climate changes. Reportedly, grasslands in the U.S.
Great Plains function as net carbon sinks (6, 7) but can become net carbon sources
under drought (7, 8). Results from a series of modeling experiments simulating various
drought magnitudes showed that short-term droughts caused greater carbon loss from
grassland ecosystems (9, 10). However, contrasting results were obtained from a
long-term rainfall intensity manipulation experiment at the Konza Long-Term Ecolog-
ical Research (LTER) field station in Kansas (11), where soil microbial biomass and
carbon use efficiency were higher in the treatments that had an extended duration
between rainfall events, compared to ambient rainfall frequency. This study suggested
that shifts in the soil microbiome following drying could result in a reduction in soil
carbon loss and hypothesized that this could be due to an ecological selection for
microbial species that are adapted to low-soil-water conditions (11).

It is well known that bacteria have evolved various life strategies to cope with soil
desiccation, such as osmoregulation, dormancy/reactivation, and extracellular enzyme
synthesis to accumulate substrates (12). As soil matric potentials become more nega-
tive, osmotic adjustments allow microbial cells to maintain turgor and function (13).
Therefore, we predicted that soil drying would result in shifts in metabolic pathways
and metabolites for osmoregulation (13). Understanding the physiological responses of
the soil microbiome to changes in soil moisture is ultimately important for predicting
and managing impacts of climate change on soil biogeochemistry (14) and grassland
ecosystem productivity (15–17).

To date, most studies of soil microbial responses to wetting and drying have largely
relied on bulk measurements of soil respiration, without knowledge of the underlying
details of metabolic pathways that result in the measured release of CO2. More recently,
16S rRNA gene sequencing (16S) and metagenomic (MG) sequencing have revealed the
identities and potential functions of members of soil microbial communities. However,
bulk DNA extraction methods can include DNA from dead cells and dormant cells that
are not actively growing at the time of extraction. Importantly, dormant cells represent
a seed bank that can be resuscitated to an active state if the environmental conditions
are suitable. Thus, a critical knowledge gap exists about how indigenous, active, and
naturally interacting members of soil microbial communities respond to changes in
soil moisture by changing levels of gene expression, as measured by metatran-
scriptomics (MT).

Here, we aimed to determine the metabolic pathways underpinning the soil micro-
bial community’s phenotypic response to wetting and drying, i.e., to determine the
metaphenome (18), using native prairie soils collected from three locations at
the Konza LTER field station in Kansas (see Fig. S1 in the supplemental material). The
moisture perturbations used in this study are particularly relevant as this central mesic
grassland region is at the crossroads of predicted precipitation regime changes (2, 19).
Our central hypothesis was that wetting and drying would result in consistent shifts in
specific metabolic pathways utilized by the soil microbiome across different prairie soil
field locations. Our simple experimental design, with three field locations and three
treatments (control, wet, and dry), enabled us to optimize the omics and modeling
approaches necessary to determine key metabolic pathways expressed by active
members of the prairie soil microbiome and to determine how those pathways were
impacted by changes in soil moisture. For example, we predicted that there would be
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similar shifts across field locations in expression of metabolic pathways and production
of metabolites for adaptation to soil drying, such as an increase in pathways for
osmolyte production (13), as also shown in studies using biocrust isolates (20). By
further integration across omics data types using reaction network approaches, we
aimed to use this information to help define the metaphenome.

RESULTS

Native prairie soils were collected in triplicate from three field locations (soils A, B,
and C; see Fig. S1 in the supplemental material) across a landscape gradient at the
Konza Long-Term Ecological Research (LTER) site in Kansas (11). The soil samples were
subjected to contrasting moisture perturbations, i.e., wetting to saturation or desicca-
tion by air drying, over a 15-day period. Soils from the three locations differed in their
initial gravimetric water contents and soil texture (Table S1). This allowed us to test the
influence of changes in soil moisture content on the soil metaphenome using soils with
different initial water contents, i.e., at time zero (Fig. S2a). Soil from site B had the lowest
water content (18%) and the highest clay content (74%). Soils A and C had similar water
contents (37% and 31%, respectively), although soil C had higher clay content than soil
A. Concentrations of nitrate (�0.06 ppm) and sulfate (2.77 to 5.45 ppm), two of the
major anions measured, were low in the three soils. Total carbon-to-nitrogen ratios
were comparable between the three soils and ranged from 12 to 18.

We measured soil respiration during the 15-day incubation (Fig. S2b). Carbon
dioxide release (�mol CO2 g�1 [dry weight] soil) was significantly (P � 0.05) higher in
response to drying than that in the wet and control treatments in soils B and C. The
amounts of CO2 released at each time point were similar in the wet and control
treatments. Although we did not measure soil oxygen levels, the increase in respiration
in the dry soils could be indicative of higher rates of oxidation of organic substrates due
to higher oxygen availability. Conversely, the lack of difference suggests that the
moisture levels in the control soils were sufficiently high that they could not be
distinguished from the wet treatments when additional water was added.

Soil microbial community shifts with change in soil moisture. Although we
detected both Bacteria and Archaea in our samples, based on 16S sequencing, the
majority of the sequences corresponded to Bacteria. We recognize that fungi are also
important in C cycling, but we did not target fungi in these experiments. Therefore, the
results presented below are focused on Bacteria.

By multivariate statistical analysis of the 16S data, we found that soil drying had a
significant impact on bacterial �-diversity, as shown on the second axis of the non-
metric multidimensional scaling (NMDS) plot, which clearly separates all of the dried
samples from the rest (Fig. 1a). In contrast, the wet samples clustered together with the
control soils in ordination space, indicating that excess soil moisture had negligible
impact on microbial community composition. Samples from the same soil location also
grouped together, indicating that soil-specific factors were likely driving community
composition.

Across all soil locations, there were significant (P � 0.01) shifts in specific taxa in
response to drying, with significant decreases in operational taxonomic units (OTUs)
corresponding to Acidobacteria, Bacteroidetes, Gemmatimonadetes, Nitrospirae, and Pro-
teobacteria (Fig. 1b). Taxa that significantly increased after drying included members of
the Actinobacteria, Chloroflexi, Proteobacteria, and WS3 candidate phylum. There were
fewer significant shifts in taxa following wetting. Taxa that decreased after wetting
included members of the Verrucomicrobia, Bacteroidetes, and Acidobacteria, while mem-
bers of the Proteobacteria significantly increased (Fig. 1b). Drying also resulted in
significant shifts in �-diversity (Kruskal-Wallis, P � 0.05) (Fig. 1c).

At a finer level of taxonomic resolution, the different field locations exhibited
site-specific shifts in several OTUs in response to wetting or drying. Figure S3 shows
specific OTUs that significantly (P � 0.01) increased or decreased in response to wetting
or drying for each of the three soil locations. For example, members of the Xanthomon-
adaceae, Sphingomonadaceae, and Chitinophagaceae families consistently decreased in
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abundance following drying across all 3 soil locations. These families are comprised of
common decomposers. Soil C had few OTUs that increased after drying, whereas soils
A and B had increases in members of commonly stress-tolerant Actinobacteria, such as
Micromonosporaceae, Gaiellaceae, Frankiaceae, Dolo_23, and an unidentified family
(Fig. S3a). Note that there were no significant shifts in taxa following wetting in soil
C (Fig. S3b, data not shown), whereas soils A and B exhibited few and inconsistent shifts
(Fig. S3b).

Transcriptional response to changes in soil moisture. We obtained an average of
1,857 transcripts, annotated as Enzyme Commission (EC) numbers, from soils A and C.
Unfortunately, we did not obtain sufficient RNA from site B to include that location in
the analysis. Ordination of the data revealed that gene expression was significantly
influenced by soil moisture changes in both soils A and C (Fig. 2a). The majority, �97%,
of the transcripts corresponded to rRNA, but there were sufficient transcripts to also
assess shifts in expression of the functional genes. A heat map of the top 20 most

FIG 1 Soil microbiome response to wetting and drying. (a) Nonmetric multidimensional scaling (NMDS) plot of Bray-Curtis dissimilarities showing the microbial
community structure estimated by 16S rRNA gene sequencing of soils collected from 3 Kansas prairie field locations. Site (A, circles; B, squares; C, triangles) and
treatment (blue, wet; red, dry; gray, ambient field-moisture control). The stress value for the NMDS is 0.076. All sequence count data were normalized to the
upper 75th quantile. (b) Differential abundances of OTUs within phyla that were observed to significantly shift in response to drying and wetting relative to
continuous moisture control conditions (log2 fold change, adjusted P value � 0.01). (c) Alpha diversity (Shannon’s index) of the soil microbiome in soils A, B,
and C, for control (gray), dry (red), and wet (blue) treatments.

FIG 2 Response of soil metatranscriptome to moisture perturbations. (a) Metatranscriptome data shown as a PCoA ordination of Bray-Curtis dissimilarities of
sequence data categorized by function, i.e., Enzyme Commission (EC) number. Site (A, circles; C, triangles) and treatment (blue, wet; red, dry). All sequence count
data were normalized to the upper 75th quantile. (b) Heat map showing the top 20 most abundant transcripts (ECs) observed under dry relative to wet
conditions. The x axis indicates soil sample (A or C), treatment (W, wet; D, dry), and replicate (1, 2, or 3). Moisture conditions are indicated by the header row
in blue (wet) or red (dry). The color gradient for each cell is scaled to a log2 fold change of �2 to 2.
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abundant transcripts (ECs) that were grouped according to treatment (Fig. 2b) showed
that most of the abundant transcripts were higher under dry than wet conditions.
These included several transcripts involved in nucleotide metabolism, including DNA-
directed RNA polymerase (EC 2.7.7.6), sulfate adenylyltransferase (EC 2.7.7.4), polyribo-
nucleotide nucleotransferase (EC 2.7.7.8), DNA-directed DNA polymerase (EC 2.7.7.7),
and DNA topoisomerase (EC 5.99.1.3). Other abundant transcripts that were higher or
lower under wet or dry conditions included several for central and peripheral carbon
metabolism pathways. In addition to the most dominant transcripts, we screened for
transcripts that significantly differed under dry compared to wet conditions (Table S2).
These included several ECs corresponding to enzymes involved in carbon metabolism,
and for biosynthesis of secondary metabolites and sugars, indicating that the commu-
nity was responding by increasing pathways for production of osmolytes. For example,
transcript levels for genes involved in trehalose production were significantly higher
after drying (Table S2). This included transcripts for genes encoding trehalose phos-
phatase (EC 3.1.3.12) (adjusted P value [Padj] � 0.033 and 0.046 in soils A and C,
respectively) and trehalose synthase (EC 5.4.99.16) (Padj � 0.014 and 0.000 in soils A and
C, respectively). Additional transcripts that significantly (Padj � 0.05; see Table S2 for
specific P values) increased after drying were the following: for soil A, pyruvate
carboxylase (EC 6.4.1.1) and a hydrolase (EC 3.4.24.25), and for soil C, 5-carboxymethyl-
2-hydroxymuconic-semialdehyde dehydrogenase (EC 1.2.1.60) and malate dehydroge-
nase (EC 1.1.1.40). However, other transcripts involved in carbon metabolism were
significantly lower (Padj � 0.05) in both soils after drying, including pyruvate dehydro-
genase (EC 1.2.2.2), a hydrolase (EC 3.1.4.4), and kojibiose phosphorylase (EC 2.4.1.230).

To determine which members of the community were active under the different soil
moisture conditions, all of the metatranscriptomic reads from both soils A and C were
mapped to contigs having phylogenetic assignments, and the read abundances were
determined for each condition (Fig. 3). Most taxa had higher levels of expression under
dry than wet conditions. Representatives of the Terrabacteria group, in particular,
showed the highest levels of expression under both wet and dry conditions, although

FIG 3 Transcriptional response of different phyla to soil wetting and drying. Log-normalized abundance of active members of the soil
microbial community that significantly shifted in abundance in response to drying relative to the wet conditions, as revealed by mapping
transcripts to contig-level taxonomies derived from the soil metagenome. All sequence count data were normalized to the upper 75th
quantile. Log10 values of the normalized read counts are presented on the x axis, and taxa that shifted significantly in abundance at the
phylum level are shown on the y axis. Changes in read count were considered significant for log2 fold change of �2.0 and Padj of �0.05.
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significantly higher under dry conditions (Padj � 0.001). This large group encompasses
nearly two-thirds of bacterial species, including Actinobacteria, Firmicutes, Cyanobacte-
ria, Chloroflexi, and Deinococcus-Thermus.

Shifts in metabolite profiles following changes in soil moisture. Subsequently,
we applied an untargeted metabolomics approach to determine the impact of soil
wetting and drying on the soil metabolome. A total of 165 metabolites were detected,
although only 70 could be identified in reference databases (see Table S3 for the full list
of metabolites and P values). Global metabolome data shown as a projection pursuit
principal-component analysis (PPCA) of all detected metabolites revealed a separation
of the dry soils from the wet and control soils (Fig. 4a). This distinction was more
evident by using PPCA of metabolites with significant treatment effects for at least one
site (Fig. 4b), where the dry samples clearly clustered separately from the other samples.
Fifteen of the 70 detected metabolites changed significantly (P � 0.05) under the wet
or dry treatments compared to control (Fig. 4c). Soil desiccation resulted in consistently
significant increases in several sugars and sugar alcohols across all 3 sampling locations
(Fig. S4). In general, the relative abundances of simple sugars and carboxy acids (e.g.,
glucose, sucrose, fructose, mannose, xylose, trehalose, hydroxybenzoic acid, threonic
acid, and toluic acid) were significantly higher after drying compared to the control soil
(Fig. S4a). Other metabolites that increased in relative abundance after drying in
individual locations included acids, amines, and alcohols (Fig. S4b to d).

Identification of reaction networks responding to soil wetting and drying. To
characterize the soil metaphenome, we incorporated metatranscriptomes and metab-
olites into a metabolic reaction network model (Fig. S5a). Using this method, we
identified condition-specific reaction pathways that were activated under the dry and
wet conditions, respectively, relative to the control conditions, in soils A and C
(Fig. S5b). Based on a hierarchy of reference pathways described in the KEGG database,
we classified the identified reactions into metabolite-reaction networks. Finally, we
converted the identified metabolite-reaction networks into undirected bipartite graphs
(Fig. 5). This graphical representation identified four clusters associated with dry
conditions in soil A: (i) “starch and sucrose metabolism”; (ii) “cyanoamino acid meta-
bolism”; (iii) “carbon metabolism, pentose phosphate pathway, and carbon fixation”;
and (iv) “glycerophospholipid metabolism” and “ether lipid metabolism.” Metabolite-
reaction networks in soil C under dry conditions also included “starch and sucrose
metabolism” and “carbon metabolism, pentose phosphate pathway, and carbon fixa-
tion.” In addition, “fatty acid metabolism” and “chloroalkane and chloroalkene degra-
dation” were uniquely found in soil C under dry conditions and wet conditions,
respectively. In contrast, no such distinct clusters were observed in the wet samples
from soil A. In both soils, we predicted reactions that were uniquely associated with wet
or dry soils in both soils A and C (Fig. 5c). Interestingly, these reactions were for
synthesis of trehalose in dry soils and trehalose degradation in wet soils.

Thus, our approach to integrate the empirical observations from the soil metatran-
scriptome and metabolome into metabolic networks was in alignment with findings
from the individual data sets and also highlighted specific reaction modules of poten-
tial significance under soil drought for further targeted investigations, e.g., cyanoamino
acid metabolism observed only in soil A under dry conditions and chloroalkane and
chloroalkene degradation observed only in soil C under wet conditions and trehalose
metabolism in both soils.

The activated and enriched reaction modules for each soil-moisture treatment
combination are presented individually, i.e., soil A-dry, soil A-wet, soil C-dry, and soil
C-wet (Fig. S5b). Reaction module distributions between the two wet conditions in soils
A and C showed a high correlation (i.e., correlation coefficient of 0.71), which implies
that wet biochemistry was not very different across the two soil sites. However, there
was a low correlation between reaction module distributions from the two soils after
drying (i.e., correlation coefficient of 0.56), which implies that the effect of drying may
be different depending on soil type or location. Conversely, the within-soil correlation
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FIG 4 Impact of soil moisture treatments on the soil metabolome. (a) Global metabolome data shown as a projection pursuit principal-component
analysis (PPCA) of all detected metabolites. Relative abundance data for metabolites were log2 transformed and median centered. The % on the axes

(Continued on next page)
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between wet and dry treatments in soil A was 0.5 and in soil C was 0.62, also indicating
a soil-specific response to such moisture shifts, such as cyanoanimo acid metabolism
that was found only in soil A under dry conditions as mentioned above. These findings
are counter to our overarching hypothesis that there would be similar metaphenomic
responses across field locations to changes in soil moisture, other than those found for
trehalose metabolism (Fig. 5c).

DISCUSSION

We developed an untargeted omics approach to determine the soil microbial
community’s metaphenomic response to soil moisture and to define specific metabolic
signatures of the response. By incorporating both metatranscriptomics and metabolo-
mics into the same metabolic reaction networks, we aimed to identify reaction path-
ways distinctively activated in response to the moisture perturbations and in an
ecosystem-specific manner. We refer to these reaction pathways as being “context-
specific” reaction modules, i.e., soil- and treatment-specific groups of reactions that are
functionally related. Using this approach, we demonstrate that despite the high com-

FIG 4 Legend (Continued)
represents the variance explained by each of the coordinates. Site (A, circles; B, triangles; C, squares) and treatment (gray, control; blue, wet; red, dry).
(b) Metabolite data shown as a projection pursuit principal-component analysis (PPCA) of metabolites with significant treatment effects for at least one
site. (c) Fifteen of 70 detected metabolites that changed significantly under the wet or dry treatments compared to control (P � 0.05, one-way ANOVA).
Whiskers indicate the most extreme values within 1.5 multiplied by the interquartile region. Box, 25% quartile; median, 75% quartile. Pairwise
comparisons of means to test treatment effects were performed after outlier removal.

FIG 5 Prediction by MEMPIS of the moisture impact on biochemistry in native prairie soil. (a and b) Reaction-metabolite integrative bipartite networks for soils
A (a) and C (b) are shown. Gray symbols indicate metabolites, and lines indicate relationships between reactions or metabolites based on KEGG annotation.
Colored symbols indicate reactions that are more prevalent under specific incubation conditions: blue, wet; red, dry; yellow, both. Yellow shading highlights
specific pathways that are more prevalent under dry conditions. Larger nodes represent the commonly predicted reactions in both soils A and C, while small
nodes represent the uniquely predicted reactions in the individual soil. (c) Predicted reactions for trehalose synthesis and degradation in the starch and sucrose
metabolism pathways are shown. Colored boxes indicate the predicted reactions uniquely associated with dry and wet conditions in both soils A and C.

Roy Chowdhury et al.

July/August 2019 Volume 4 Issue 4 e00061-19 msystems.asm.org 8

https://msystems.asm.org


plexity of the soil habitat, it is possible to generate an integrated understanding of the
effect of environmental change on the soil microbiome and the soil metaphenome.

Our field sampling across the Konza native prairie site took advantage of natural
variability across the site, including locations that were naturally wetter or drier (see
Fig. S1 and Table S1 in the supplemental material). Although the soil microbial
community composition profiles, gene expression patterns, and metabolites shifted
upon drying across all soil locations, we observed minor differences between wet and
control soils. These results suggest that the soil microorganisms at our sampling sites
were more adapted to wet conditions at the times of sampling. Our data also suggested
that soil location was the primary driver and that change in soil moisture was a
secondary driver of soil microbial composition and function. In contrast, in a recent
study, we found that samples collected from the Konza prairie site at a maximum
distance of 10 m from each other clustered together and separately from adjacent
cultivated soils (21). In the same study, we also found that prairie soils from different
states (Iowa and Wisconsin) exhibited similar soil microbiome structures compared to
adjacent cultivated soils. Therefore, we proposed the concept of a prairie microbiome
that was relatively consistent across locations (21). Previous studies that experimentally
manipulated durations of drought and rainfall events in the Konza prairie offered a
limited explanation of the variation in soil respiration due to moisture and implicated
the whole-community microbial response as a major driver (22). Here, we find, how-
ever, the need to account for field-scale heterogeneity, in particular that of hydrology,
across a site in order to better understand how the microbiome is impacted by changes
in soil moisture.

Our results showed that soil drying, in particular, had significant impacts on all omics
levels that we investigated, from community composition to gene expression and
metabolite profiles. Although the Konza LTER site had not experienced a recent
drought at the time of our sampling, legacy effects and microbial dormancy might
explain some of our results. The central grassland regions experience drought every 20
to 30 years, and the last drought was recorded in the 2000s based on published data
(23). Our short-term (15-day) drying experiment was designed to reveal the initial
response of the soil microbiome to desiccation. However, longer-term experiments are
needed to predict the metaphenomic response to periods of drought that can last
months to years.

Increasing the soil moisture contents to saturation had little impact on the soil
microbiome. Therefore, drying may have a more pronounced impact over a shorter
time frame than wetting in the soils we studied. This could be due to negligible
changes in abiotic conditions between the wet control and water-logged treatments.
Alternatively, the lack of pronounced differences upon soil saturation relative to the
control could be attributed to a soil microbiome acclimatized to higher antecedent soil
moisture status due to frequent seasonal precipitation events. Indeed, soils A and C
were located in low-lying regions of the landscape (Fig. S1) with relatively wet (�30%)
in situ soil moisture observed at the time of collection. In contrast, soil B had a lower
gravimetric water content and was harder to wet up, presumably due to the higher clay
content that would slow water permeation. Previous studies from sites adjacent to our
field location found that when the soil microbiome was preadapted to heavy rainfall,
there was a negligible response to laboratory saturation (14). This suggests that the
historical soil moisture regime may impact current rates of microbial processes (e.g.,
respiration activity) by aggregating community-level traits that control carbon use
efficiency, soil moisture sensitivity, and stress tolerance (24).

Our results corroborate other research that has reported relative decreases in the
Gram-negative phyla Proteobacteria, Verrucomicrobia, and Bacteroidetes (12, 25–27) and
increases in the Gram-positive phyla Firmicutes and Actinobacteria (25, 28–30) after soil
drying. These shifts in relative abundance at the phylum level are driven by increases
or decreases in abundances of specific groups within each respective phylum (12, 30),
depending on their respective metabolic capacity to respond to the change in envi-
ronmental conditions (27, 31). However, most of these phylum-level distinctions in
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relative abundance were not mirrored at the transcriptional level. Instead, drying
increased the transcriptional activity across different phyla. We found that members of
the Terrabacteria group and Proteobacteria were the most transcriptionally active in
general and in response to soil drying. The Terrabacteria group consists of the Gram-
positive Actinobacteria and Firmicutes, in addition to Chloroflexi and Cyanobacteria (32),
several species of which are known to be desiccation and heat tolerant and have been
reported under warmer (33) and drier (34) soil conditions. Additionally, several genera
within the Actinobacteria are known to be capable of survival in arid soils (27, 30, 35),
which supports our findings.

We performed an integrative analysis of the multi-omics data to generate metabolic
networks activated in response to the soil moisture perturbations. The metabolite data
were the most discriminating data set with the highest number of significant features
that were consistently significantly different across the three sampling locations. In
contrast, the metatranscriptome data were highly variable between sampling sites. One
of the limitations of this study was that we obtained high-quality RNA from only 2 of
the 3 field locations. Therefore, the significance of our metatranscriptome data was
often difficult to assess, particularly since there were many opposite trends in the
community expression data when comparing the two sites. This could be due to the
transient nature of the transcripts that are highly dependent on in situ environmental
variables that govern gene expression, as well as the relatively low depth of sequence
coverage of the transcripts. The metabolite data were also limited because of the high
number of unknown metabolites in the samples.

When we used our data-integrated metabolic network modeling approach, it was,
however, possible to reveal specific pathways that were expressed in the soil microbial
community as a response to moisture perturbation. In contrast to discrete data-reaction
mapping, this framework extended the series of localized snapshots of information to
a global metabolic reaction network scale, enabling the identification of context-
specific reaction modules. Indeed, distributions of reaction modules among dry/wet soil
A and dry/wet soil C were shown to be fundamentally different (Fig. S5). Importantly,
beyond simple quantification of the cross-condition differences in biochemistry, our
metabolic network analysis pointed out specific reactions that shifted in response to
change in soil moisture and provides the basis for formulating new hypotheses to test
for validation of model predictions. For example, we found that transcripts for cyano-
amino acid metabolism were more prevalent after drying in soil A. Although the
significance of cyanoamino acid accumulation is not known for soil microbes, tran-
scription of cyanoamino acids has been shown to increase during salt stress in desert
poplar trees (64), suggesting that these atypical amino acids are protective under
desiccation conditions. This is a hypothesis to test in future experiments.

In summary, we were able to extract information about the specific physiological
responses of the soil microbiome and metaphenome to moisture perturbations. We
were able to capture a contingent of metabolic mechanisms that the soil bacterial
community uses in response to water deficit such as alteration of metabolism, osmolyte
biosynthesis, and transcription control. The integration of multiple omics technologies
with metabolic pathway modeling now provides a richer knowledge base for better
understanding of the soil metaphenome.

MATERIALS AND METHODS
Site description and sample collection. Soil samples were collected at the Konza Prairie Biological

Station (KPBS), a Long-Term Ecological Research (LTER) site representative of native tallgrass prairie in the
Flint Hills of eastern Kansas, USA, from three field locations: site A, 39°06=11�N, 96°36=48�W, 339 meters
above sea level (MAMS); site B, 39°04=39�N, 96°36=29�W, 413 MAMS; and site C, 39°04=20�N, 96°34=33�W,
415 MAMS (see Fig. S1 in the supplemental material). These sampling locations or sites remain
undisturbed by agriculture and are dominated by perennial C4 grasses characteristic of native lowland
tallgrass prairies in this region. Our selected sampling sites were burned annually (sites A and C) or at
4-year intervals (site B). The Flint Hills are generally characterized by shallow soils overlaying chert-
bearing limestones and shales (36), and the site is classified as typical chernozem according to the Food
and Agriculture Organizations (FAO) soils classification used by the United Nations and belongs to the
Mollisol order of the U.S. Soil Taxonomy. The study soils have been previously reported as low-lying Irwin
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silty clay loams (fine, mixed mesic Pachic Argiustolls, USDA Natural Resources Conservation Service
(NRCS) (11). The three soils used in this study represented locations across a natural hydrology gradient
such that soils A and C were from the wetter areas and soil B was from a relatively drier area of the
landscape (Fig. S1) and located adjacent to the Rainfall Manipulation Plots (RaMPs) at this LTER site
(37, 38).

At each of the three sites, soil samples were obtained from three locations at least 10 m apart at 0-
to 15-cm depth with a shovel. Roots and large rocks were removed; the soil was manually mixed, first in
a 5-gal bucket and then in 1-gal Ziploc bags; and soil was composited into one bag for each site. Soils
were immediately frozen under liquid nitrogen and shipped to the Pacific Northwest National Laboratory
(PNNL), Richland, WA. Upon receipt at PNNL, the soils were quickly sieved through a 2-mm sieve and 50-g
portions of the soils were aliquoted to 50-ml Falcon tubes and flash-frozen at �80°C to serve as baseline
samples and replicates for the experiments described below.

Experimental design and laboratory incubation. We experimentally wetted and dried the soils
collected from three field locations using a simple experimental design to determine the effects of
extreme moisture shifts on the soil microbiome structure and function. Previously processed (as
described above) soils were thawed and preincubated at 21°C for 48 h before the onset of treatments.
After temperature equilibration, triplicate microcosms (20 g soil in 50-ml glass beakers) were subjected
to three moisture conditions: wetted to saturation (addition of sterile deionized water), air dried to
constant weight by evaporation, and maintained at ambient field-moist conditions. The 27 microcosms
(3 sites � 3 treatments � 3 replicates) were maintained gravimetrically and incubated at 21°C in a
biosafety cabinet (open to the atmosphere inside) for 15 days (Fig. S2b). For the wet treatment, water was
added to the 3 soils such that the endpoint moisture contents for the saturation treatments allowed for
excess (not inundated) unabsorbed water in the microcosms and were in the range of that reported for
in situ delayed rainfall treatments at Konza Biological Station (14). We used percent water-filled pore
spaces (% WFPS) to estimate water content and aeration status (39) using equations 1 and 2:

%WFPS �
gravimetric water content � Db

total soil porosity
(1)

soil porosity � 1 � �Db

Dp� (2)

where average soil bulk density (Db) � 1.1 g cm�3 and assumed particle density (Dp) � 2.65 g cm�3.
The final WFPS ranged from �56% to 84% in the saturation treatments and from �22% to 47% in

the dry treatments compared to �33% to 68% in the control soils (Table S1). At the end of the
experiment, subsamples from each replicate microcosm were collected for nucleic acid and metabolite
extractions as described below. We refer to the saturated samples as “wet,” the air-dried samples as “dry,”
and the field-moist soils as “control” where the weights were kept constant by addition of sterile water
throughout the incubation period (Fig. S2b).

Soil respiration from the wet, dry, and control incubations was measured at regular intervals of 2 to
3 days using a G2301 Picarro GHG analyzer (Picarro, Sunnyvale, CA, USA) (Fig. S2b). Headspace gases of
each sample were measured for 2 h, and fluxes were calculated from the change in concentration using
the Ideal Gas Law and equation 3:

F � �dC

dT
�

V

M
�

P

RT� (3)

where F is the flux (�mol g soil�1 s�1), dC/dT is the rate of change in CO2 concentration (mol fraction
s�1), V is the total volume (cm3) of microcosm and chamber, M is the dry weight of soil (g), P is the
atmospheric pressure (kPa), R is the universal gas constant (8.3 � 103 cm3 kPa mol�1 K�1), and T is the
temperature of incubation (K).

Nucleic acid extraction. DNA was extracted from 0.25 g (wet weight) soil using the PowerSoil DNA
isolation kit (Mo Bio Laboratories Inc., Carlsbad, CA) according to the manufacturer’s instructions, and
extracts were quantified using the Qubit Fluorometer 2.0 (Invitrogen, Carlsbad, CA, USA) and checked for
quality using the NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA) and Bioanalyzer
HS DNA chips (Agilent Technologies, Santa Clara, CA).

RNA was extracted from the soil samples (2 g) using the PowerSoil RNA isolation kit (Mo Bio
Laboratories Inc., Carlsbad, CA) according to the manufacturer’s instructions. RNA was DNase treated
with Turbo DNase (Life Technologies, Grand Island, NY, USA) at 37°C for 20 min. RNA was subsequently
purified by phenol-chloroform extraction and recovered by precipitation with isopropanol. RNA was
quantified using the Qubit Fluorometer 2.0 (Invitrogen, Carlsbad, CA, USA) and quality checked using a
NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA) and Bioanalyzer Pico RNA chips
(Agilent Technologies, Santa Clara, CA). First-strand synthesis of cDNA from RNA was carried out using
the SuperScript VILO cDNA synthesis kit (Life Technologies) according to the manufacturer’s protocol
using a 1:1 blend of 1 �M random hexamers/decamers. Second-strand synthesis was performed using
the NEBNext mRNA second-strand synthesis module and T4 gene 32 (New England Biolabs, Ipswich, MA)
according to the manufacturer’s protocol at 16°C for 2 h. cDNA was purified using Agencourt AMPure XP
beads (Beckman Coulter, Beverly, MA). The resulting cDNA was quantified and quality checked using the
Agilent RNA 6000 Pico kit on a 2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA).

For Illumina library construction, DNA and cDNA were sheared to approximately 450 to 500 bp by
using a Covaris M220 focused ultrasonicator instrument (Covaris M220 series; Woburn, MA). Sheared DNA
fragments were end repaired, A tailed, and ligated to TruSeq adapters from Illumina according to the
manufacturer’s instructions (Illumina, San Diego, CA). Adapter dimers were removed twice using Agen-
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court AMPure XP magnetic beads (Beckman Coulter, Danvers, MA). Libraries were checked for size and
adapter dimers using a high-sensitivity DNA chip on a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA) and quantified by qPCR on a StepOne real-time PCR system (Thermo Fisher Scientific) using
the KAPA library quantification kit (KAPA Biosystems, Wilmington, MA) according to the manufacturer’s
instructions. Fragments were sequenced using the Illumina MiSeq and HiSeq sequencing platforms (3
lanes) using the V3 chemistry (Illumina, San Diego, CA) for 300 cycles, generating 2 � 250-bp paired-end
reads and �10 million reads per sample.

For the metatranscriptome data analysis from the moisture perturbation experiment, we focused on
soils A and C, because of difficulties in obtaining sufficient high-quality RNA from site B. We were also
able to obtain high-quality RNA and sequence the metatranscriptomes from only one of the 3 replicates
from the soil A and C controls.

16S rRNA gene sequencing and analysis. PCR amplification of the V4 region of the 16S rRNA gene
was performed using the protocol developed by the Earth Microbiome Project (40) and as previously
described (41), with the exception that the 12-base barcode sequence was included in the forward
primer. Amplicons were sequenced on an Illumina MiSeq using the 500-cycle MiSeq reagent kit v2
(Illumina, San Diego, CA) according to the manufacturer’s instructions.

Raw sequence reads were demultiplexed with EA-Utils (42) with zero mismatches allowed in the
barcode sequence. Reads were quality checked with BBDuk2 (43) to remove adapter sequences and PhiX
with matching kmer length of 31 bp at a hamming distance of 1. Reads were merged using USEARCH (44)
with a minimum length threshold of 175 bp and maximum error rate of 1%. Sequences were dereplicated
(minimum sequence abundance of 2) and clustered using the distance-based, greedy clustering method
of USEARCH (44) at 97% pairwise sequence identity among operational taxonomic unit (OTU) member
sequences. De novo prediction of chimeric sequences was performed using USEARCH during clustering.
Taxonomy was assigned to OTU sequences at a minimum identity cutoff fraction of 0.8 using the global
alignment method implemented in USEARCH across RDP Trainset database version 15 trained with UTAX
250-bp configuration (45). OTU seed sequences were filtered against RDP Gold reference database
version 9 to identify chimeric OTUs using USEARCH.

Metagenome and metatranscriptome library preparation and sequence analysis. DNA extracted
from the technical replicates for each soil location prior to perturbations (nine samples in total) was
pooled to construct a single long-hybrid Moleculo subassembly according to the manufacturer’s protocol
(Illumina, San Diego, CA) and as previously described (46, 47). The data were assembled on BaseSpace
using the Illumina TruSeq Long-Read Assembly application v1.0. Moleculo long hybrid read subassembly,
annotation, mapping, and hybrid assembly have been previously described (47).

Metagenomic and metatranscriptomic libraries were constructed from technical replicates for treat-
ment and control conditions, as applicable for the respective perturbation experiments. Libraries were
prepared using 500 ng of DNA and 150 ng of cDNA. The DNA and cDNA were sheared to approximately
450 to 500 bp using a Covaris M220 focused-ultrasonicator instrument (Covaris M220 series; Woburn,
MA). Sheared DNA fragments were end repaired, A tailed, and ligated to TruSeq adapters from Illumina
according to the manufacturer’s instructions (Illumina, San Diego, CA). Adapter dimers were removed
twice using Agencourt AMPure XP magnetic beads (Beckman Coulter, Danvers, MA). Libraries were
checked for size and adapter dimers using a high-sensitivity DNA chip on a 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA) and quantified by qPCR (StepOne Plus system; Applied Biosystems, Foster
City, CA) using the KAPA library quantification kit (KAPA Biosystems, Wilmington, MA) according to the
manufacturer’s instructions. Fragments were sequenced on the HiSeq sequencing platform (Illumina, San
Diego, CA) with 3 runs of 250-bp paired-end reads that generated �10 million reads per sample.

Replicate metatranscriptomes were quality controlled, screened for phiX, and mapped to the
Moleculo subassembly using Bowtie 2 (48). Genes in the assembly were annotated with function and
taxonomic rank using MetaPathways v.2.5 (49). Read counts per function for each condition were
generated using Kyoto Encyclopedia of Genes and Genomes Orthology (KO) and Enzyme Commission
(EC) numbers for both MTs and MGs using ATLAS (https://github.com/metagenome-atlas/atlas). The KO
and EC count matrices were used for analyses of MG and MT functional data sets.

The aligned read abundances from the metatranscriptomes from the different treatments were used
to determine which members of the community were active under the different conditions. The
metatranscriptomes for each moisture condition from soils A and C were mapped to metagenomic
contigs, containing 810,853 open reading frames, which were assembled from existing metagenome
data from the same original soil batch (40). All metatranscriptomic reads in all samples were able to be
aligned to the assembly. The average number of metatranscriptomic reads per sample that mapped to
open reading frames on the assembly was 116,316.

Metabolite extraction, analysis, and data processing. We conducted an untargeted analysis of
polar metabolites in soil using a direct extraction method (50). Briefly, �5 g wet soil was aliquoted into
50-ml screw-cap self-standing tubes (Next Advance, Averill Park, NY) containing 0.9- to 2.0-mm stainless
steel beads, 0.1-mm zirconia beads, and 0.1-mm garnet beads and 8 ml of 60% (vol/vol) methanol in
Nanopure water to effectively quench metabolic reactions upon lysis (51). Samples were bead beaten in
a 50-ml Bullet Blender (Next Advance, Averill Park, NY) at speed 12 for 15 min at 4°C and subsequently
transferred to chemical-compatible polypropylene 50-ml tubes (Olympus Plastics, Waltham, MA). Twelve
milliliters of ice-cold chloroform was added, and each sample was probe sonicated at 60% amplitude (in
a fume hood) for 30 s on ice, allowed to cool on ice, and sonicated again. The samples were allowed to
completely cool at �80°C for �10 min and then centrifuged at 4,500 � g for 10 min at 4°C to separate
the aqueous phase. The upper aqueous phases containing polar metabolites were transferred into glass
vials using serological pipettes, dried down completely in a vacuum concentrator (Labconco, Kansas City,
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MO), and stored at �20°C until chemical derivatization. Details of chemical derivatization and gas
chromatography-mass spectrometry (GC-MS) analyses have been previously published (52).

GC-MS raw data files were processed using MetaboliteDetector (53). Retention indices (RIs) of
metabolites were calculated based on analysis of a mixture of fatty acid methyl ester (FAME) standards
(C8 to C28), followed by their chromatographic alignment across all analyses after deconvolution.
Metabolites were then identified by matching GC-MS features (characterized by measured RIs and mass
spectra) to the Agilent Fiehn Metabolomics Retention Time Locked (RTL) library (54). All metabolite
identifications were manually validated to reduce deconvolution errors during automated data process-
ing and to eliminate false identifications. The relative abundance of metabolites was calculated based on
the peak integration of three selected mass fragments from a single metabolite peak, and the informa-
tion for three quantification ions was used consistently for all the samples in the study.

A total of 165 metabolites were measured by GC-MS from the 27 samples, including biological
replicates from the three sites A, B, and C for the three treatments, wet, dry, and control. Of these, 70
could be identified using the reference databases. Evaluation for outlier behavior resulted in the removal
of one replicate from soil C dry treatment. A one-factor analysis of variance (ANOVA) model with main
effect of treatment was performed for each metabolite and site. Post hoc tests for three specific
differences were run: wet versus dry, wet versus control, and dry versus control.

Construction of metabolic network model. We constructed the metabolic network model by
assembling all reactions downloaded from the KEGG database (termed the master network). While the
metabolic network per se is generic, the incorporation of context-specific (i.e., soil site- and moisture-
dependent) multi-omics data led to the identification of sets of reactions that were differentially
activated under the wet and dry conditions compared to the control. In comparison to stand-alone data
analysis performed above, this integrative approach enabled illustration of the key biochemical changes
based on an expanded set of reactions by determining the most probable paths that connect the
measured metabolites and transcripts (see Fig. S5). Using this method, we identified 209 and 129
activated reactions derived from the 25 and 7 overexpressed transcripts under the dry and wet
conditions, respectively, compared to the control conditions in soil A. For soil C, we identified 194 and
135 activated reactions using 13 and 5 genes overexpressed under dry and wet conditions, respectively.
Soil B could not be part of this analysis due to the lack of metatranscriptomic data. Based on a hierarchy
of reference pathways described in the KEGG database, we classified the identified reactions into reaction
module levels (also see the supplemental material).

Statistical analyses. Estimates of �-diversity (observed, Chao 1, and inverse Simpson) based on 16S
data were obtained from nonrarified data. �-Diversity analysis was based on upper 75th-quartile
normalized library counts. Nonmetric multidimensional scaling or principal-coordinate analysis (PCoA)
plotting was used to visualize �-diversity based on unweighted UniFrac or Bray-Curtis distances using
functions supported by the package Phyloseq (55).

Count data generated from sequence analyses for MGs and MTs were screened for significant
differences between treatments using a negative binomial frequency distribution model, as imple-
mented in the package DESeq2 (56) and based on upper 75th-quartile normalized library counts. The
most abundant transcripts were visualized as a heat map using a hierarchical clustering method
implemented in the R package pheatmap. Differences in the abundance of taxa and the variance in
expression of transcripts were characterized using the DESeq2 parameters fitType � “local” and an
adjusted P value threshold of 0.05 to calculate log2 fold changes between treatments. The significant
(P � 0.05) KOs from the MT data were subjected to pathway enrichment analyses using the package
GAGE (57), and pathways were visualized using the package Pathview (58). Analysis was performed using
the R programming language (v. 3.3.2) (59).

Abundance data for metabolites were log2(x) transformed and median centered. Data were pro-
cessed on the log2 scale, and missing values were not imputed. Data were evaluated for outlier behavior
using rMd-PAV (60), a robust principal-component analysis (PCA)-based approach, and any outliers were
removed. A two-factor analysis of variance (ANOVA) model, with main effects of treatment and site, as
well as an interaction of the two main effects, was performed for each metabolite to simultaneously
evaluate the statistical hypothesis that there is equal metabolite abundance by treatment and site. The
inclusion of an interaction term enabled a test of equal metabolite abundances for treatment within each
site and the evaluation of different treatment effects (directions) across sites. Further, a PCA approach
that allows missing values, projection pursuit PCA (61), was performed on metabolites that showed a
significant treatment effect for at least one site. A total of 100 metabolites were used in computing the
principal coordinates using methods described above after accounting for missing values using the
abovementioned PPCA approach. Differences in metabolite relative abundances between the treatment
groups were tested by Kruskal-Wallis test at the 0.05 level of significance. A post hoc pairwise comparison
was performed using Bonferroni’s test. Additional description of the metabolite data analysis can be
found in the supplemental material. A complete list of compounds identified in this study is provided in
Table S3.

Modeling approach for identifying active reaction modules under dry and wet conditions. We
identified distinct sets of reactions, i.e., reaction modules that were activated under the soil dry and wet
conditions, by incorporating metabolite and transcript measurements into a metabolic network model.
First, we constructed a metabolic network by collecting all reactions and metabolites obtained from the
KEGG database (release date 28 May 2018). The resulting network included a total of 10,826 reactions
and 8,398 compounds. We then converted reaction stoichiometry to binary representation so that the
network model provides a complete description of connectivity between metabolites and reactions.
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The network constructed as described above can be considered a generic model, which is applicable
across treatment conditions. In order to identify the condition-specific (soil and moisture status combi-
nations) activated pathways, we constrained the generic metabolic network to the metabolite and
metatranscriptomic data collected from the control, dry, and wet conditions, respectively, for soils A and
C. For measured metabolites, we forced the model to activate at least one of the associated reactions
(involved in either their production or consumption). We further constrained the model by incorporating
overexpressed genes under dry and wet conditions in comparison to control. For this purpose, we first
identified the differentially expressed transcripts, i.e., EC numbers (dry versus control; wet versus control),
using DESeq2 (56). We selected genes based on two criteria: (i) differential gene expressions that were
statistically significant (i.e., false discovery rate [FDR] � 0.1) and (ii) expression levels under dry and wet
conditions that were two times higher than those in control soils (i.e., log2 FC � 1). For multiple testing
adjustment, the Benjamini-Hochberg (BH) (62) adjustment method was employed. For soil A, we
identified 25 and 7 overexpressed genes for dry and wet conditions versus its control, resulting in 209
and 129 activated reactions, respectively. Similarly, we identified 13 and 5 genes overexpressed under
dry and wet conditions for soil C, resulting in 194 and 135 activated reactions, respectively. We forced
the model to activate the reactions associated with highly expressed genes thus identified.

Under the constraints described above, we formulated a Mixed Integer Linear Programming (MILP)
problem to obtain minimal pathways or subnetworks that connect all metabolites and reactions
incorporated (as constraints) into the model. We termed our algorithm “Metabolite-Expression-Metabolic
Network Integration for Pathway Identification and Selection” (MEMPIS). We solved the formulated
minimization problem using the IBM ILOG CPLEX version 12.7.1 optimization package.

For visualizing a set of predicted reactions and metabolites, after extracting the corresponding
subnetwork from the generic model, the subnetwork was converted to an indirect bipartite graph with
two types of nodes: reactions and compounds. We used Python package NetworkX and Gephi for graph
manipulation and network visualization. Also, we used iPath3 (63) to visualize and compare the activated
reactions between dry and wet conditions on KEGG global maps summarizing the comprehensive KEGG
pathway maps and KEGG modules.

Availability of data. All data are made publicly available at the Open Source Framework (OSFHOME)
and can be retrieved from https://osf.io/4uvj7/.
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