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Abstract

Motivation: RNA expression at isoform level is biologically more informative than at gene level and can potentially
reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong
30 bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as
Chromium Single Cell 30 10� Genomics is currently performed at the gene level.

Results: We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing
by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well
in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and
STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based
Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods.

Availability and implementation: Implementation of Scasa including source code, documentation, tutorials and test
data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.
5281/zenodo.5712503.

Contact: trungnghia.vu@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA expression measurement based on sequencing technology
(RNA-Seq) has progressed from bulk sequencing to highly multi-
plexed single-cell (sc) RNA-Seq (Svensson et al., 2018).
Computational methods have been developed to analyze single-cell
RNA sequencing (scRNA-Seq) data from high-throughput protocols
such as Chromium Single Cell 30 10� Genomics (Melsted et al.,
2021; Srivastava et al., 2019; Zheng et al., 2017), but because of the
strong 30 bias due to polyA-based mRNA capture in library prepar-
ation, these methods only attempt gene-level quantification.

Estimation of isoform expression is still a challenging problem
for bulk RNA-Seq, and the problem is even harder for scRNA-Seq
(Westoby et al., 2020). We provide evidence that the use of methods
originally developed to estimate transcript abundance for bulk
RNA-Seq data (Bray et al., 2016; Patro et al., 2014, 2017) indeed
leads to substantial quantification errors. The 30 bias from high-
throughput scRNA-Seq such as Chromium Single Cell 30 10�
Genomics generates substantial similarities between the read statis-
tics from different isoforms, making isoform-level quantification
highly challenging. The 30 bias reduces the number of reads from the

50 end of the isoforms, thus reduces our ability to separate the iso-
forms. Furthermore, the bias can also break the symmetry in read
sharing between isoforms which is often presumed by bulk RNA-
Seq quantification methods. In the symmetric case, if isoform A gen-
erates reads that are shared with (map to) isoform B, then isoform B
will likewise generate reads that are shared with isoform A. But in
biased protocol, we observe asymmetric cases where, e.g. all shared
reads between several isoforms originate from a single isoform A,
but none of the other isoforms contribute reads shared with isoform
A. The asymmetry happens when the 30 exons of one isoform are
close to the 50 end of the other isoforms. Applying a bulk-based
method, which ignores asymmetry, will lead to poor quantification.
Several groups have made a great effort to estimate isoform-level ex-
pression from full-length scRNA-Seq data (Hu et al., 2020; Huang
and Sanguinetti, 2017; Song et al., 2017). Recently, STARsolo
(Kaminow et al., 2021) has attempted to quantify splicing events
occurring at 30-end of transcripts in droplet-based scRNA-Seq data.
However, this method does not perform isoform expression estima-
tion. To our best knowledge, to date no method has been developed
for isoform expression quantification from 30 bias high-throughput
scRNA-Seq data. To address these issues, we have developed
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Scasa to estimate isoform expression from scRNA-Seq data by
relying on the concepts of transcription clusters and isoform
paralogs.

Conceptually, the most similar strategy is the transcript compati-
bility count (TCC) method (Ntranos et al., 2016), providing group
rather than individual transcript counts by calculating read counts
in groups of highly similar transcripts, also known as equivalence
classes of transcripts (Patro et al., 2014). In principle, the equiva-
lence classes obtained from TCCs provide a basis for single-cell-level
transcript quantification by applying the expectation maximization
(EM) algorithm using bulk RNA-Seq methods such as Kallisto (Bray
et al., 2016) or Salmon (Patro et al., 2017). Another attempt is intro-
duced in Terminus (Sarkar et al., 2020) to use transcript grouping
for quantification of isoform expression from bulk RNA-Seq data.
This method utilizes the output of Salmon to group together tran-
scripts in an experiment based on their inferential uncertainty. We
have implemented these bulk-based approaches as comparative
methods and refer to them with their original names. [We note that
the authors of these methods have developed new tools (Melsted
et al., 2021; Srivastava et al., 2019) for scRNA-Seq data that are
gene-based, so the use of the original bulk RNA-Seq tools here is
performed only for the purpose of comparing isoform-level quantifi-
cation results.]

2 Materials and methods

2.1 Overview of Scasa
An overview of the Scasa procedure for isoform expression estima-
tion is presented in Figure 1a. The Scasa protocol consists of three
main components: (i) estimation of transcript abundance (b) using
an alternating expectation maximization (AEM) algorithm, (ii)
processing of scRNA-Seq data to produce read-count data (Y) and
(iii) in silico identification of transcription clusters (TCs) and iso-
form paralogs and construction of an initial design matrix (X) for
each TC. Scasa is tailored for use with high-throughput scRNA-Seq
technologies with a unique molecular identifier (UMI) barcoding
procedure. Scasa takes advantage of the efficient preprocessing al-
ready provided by existing pseudoaligners such as Kallisto-bustools
(Melsted et al., 2021) or Alevin (Srivastava et al., 2019) to produce
a read-count equivalent-class matrix. Using the unique barcode
sequences, Scasa splits the equivalence class output by cell (Fig. 1a)
and applies the AEM algorithm to multiple cells together. These
procedures are described in detail below.

2.2 Statistical model and AEM algorithm
Each read ri from an RNA-Seq dataset maps to a set of k isoforms
ðTi1; . . . ;TikÞ; this set defines an equivalence class (eqClass) of all
reads that map to the set. Therefore, conceptually, all sequence
reads from a cell can be summarized in a read-count vector y that
represents all eqClasses from the cell. This is performed separately
for each cell. In theory, selecting a read from an annotated transcript
sequence, which is similar to the protocol to generate a read of RNA
sequencing, can be considered as a Poisson process. Here, the pro-
cess is extended to approximate the selection from the sequences of
the transcript set of an equivalence class. So, the underlying statistic-
al model in Scasa assumes that y is Poisson with mean l that follows
the bilinear model

l ¼ Xb; (1)

where m is the vector of the expected number of reads mapped to
all eqClasses, b is the vector of isoform expression values and X is
the design matrix summarizing exon sharing between isoforms.
The elements of X transfer the transcript abundance to eqClass
counts. Standard isoform-level quantification tools such as
Kallisto (Bray et al., 2016) or Salmon (Patro et al., 2017) use the
same linear model, but the X matrix is assumed to be known and
appears only implicitly in their algorithm (computed based on
exon sharing between isoforms). In contrast, in Scasa, the matrix
X is explicit, and both X and b are treated as unknown
parameters.

Hg38 is used as the transcriptome reference, b is of length
�71 000 isoforms, and y of length �136 000, so X is a matrix of
size �136 000�71 000. The estimation of X is clearly not feasible
without exploiting the fact that isoforms are naturally organized
into independent TCs, so X can be broken down into many small Xs
that can be analyzed separately. In principle, once an initial X is
available for each TC, given Y � ðy1; . . . ; ynÞ the matrix of collated
read-count data from n cells, the estimation proceeds as follows:

0. Start with an initial X.

1. Given Y and X, use the EM algorithm to estimate isoform

abundance (b) (EM Step 1 in Fig. 1a) based on the linear model

ljc ¼
P

t xjtbtc, where the subscript j refers to the equivalent

class, t refers to the transcript and c refers to the cell. The algo-

rithm applies to each cell.

2. Given Y and b, use the EM algorithm to update design matrix

X (EM Step 2 in Fig. 1a) based on the linear model

ljc ¼
P

t btcxjt, where data from all the cells are now combined.

3. Iterate between 2 and 3 until convergence.

The joint estimation procedure is called an AEM algorithm, for
which the exact formulas are given in Deng et al. (2020). At conver-
gence, the output b represents the estimated transcript abundances
for individual cells.

2.3 Processing of scRNA-Seq to produce read-count

data
Scasa allows the use of scRNA-Seq data from high-throughput
scRNA-Seq protocols, such as the Chromium Single Cell 30 10�
Genomics protocol, and includes read mapping to a reference tran-
scriptome and counting of the supporting reads of eqClasses from
each cell. Read mapping and read counting for eqClasses are imple-
mented using available external tools such as Alevin (Srivastava
et al., 2019) or Kallisto-bustools (Melsted et al., 2021).
Computational details are shown in the Scasa Wiki page on GitHub
repository: https://github.com/eudoraleer/Scasa_Paper/wiki.

2.4 Construction of initial design matrix X
Droplet-based protocols, such as the Chromium Single Cell 30 10�
Genomics approach, typically produce strongly 30-biased sequen-
ces due to the polyA tail capture of mRNAs. This violates the
standard assumption applied in isoform quantification methods
for bulk RNA-Seq, which presumes that the RNA sequences are
relatively uniformly distributed. The key methodological innov-
ation of Scasa is the in silico construction of the TCs, each with a
corresponding initial design matrix X that adapts to the actual
sequencing protocol used. As discussed previously (Deng et al.,
2020), X also automatically accounts for unknown biases in a
sequencing protocol. Moreover, an explicitly available X makes
the statistical processing of the paralogs (isoforms with highly
similar sequences) tractable.

We constructed the initial X matrix in silico for all isoforms in
the transcriptome. However, instead of generating standard bulk
RNA-Seq paired-end reads with a uniform read distribution, we
simulated scRNA-Seq mimicking the settings of the Chromium
Single Cell 30 10� Genomics method (see Section 2.6). Briefly, each
isoform was simulated with the number of reads set to twice the
transcript length but with a minimum of 1000. The steps are as
follows:

1. Map each read to the transcriptome reference; hg38 is used

throughout.

2. Identify the eqClasses associated with each isoform.

3. Group the isoforms into TCs such that all isoforms that belong

to the overlapping eqClasses are included in one cluster.

4. Summarize all the reads from the eqClasses and isoforms that

belong to one TC in a matrix; see Supplementary Table S1a for

illustration.
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5. Normalize the columns of the matrix to 1. This is the initial X

matrix associated with a TC.

6. Identify the paralogs and merge the appropriate columns of X;

see Supplementary Table S1b. This is described in more detail

below.

We used the approach of Deng et al. (2020) to merge highly simi-
lar isoforms into isoform paralogs. Theoretically, the number of
non-zero singular values of X determines the number of estimable
paralogs; in practice, we set a low non-zero threshold (1/30). The
paralogs are then constructed using k-means clustering. For

illustration purposes, we use the TC associated with the RPL13A
gene, which contains five isoforms. The original X matrix is the nor-
malized version of the matrix in Supplementary Table S1a. Its singu-
lar values are 1.632, 0.868, 0.692, 0.004 and 0.001, clearly
indicating the need to reduce the parameters to three estimable
paralogs. k-means clustering produces one paralog of size three and
preserves two original isoforms. The merged X matrix is shown in
Supplementary Table S1b; the paralog members show highly similar
columns in Supplementary Table S1a. Not using the paralogs, e.g.
the standard tool Salmon, results in poor estimation of the expres-
sion of the isoforms (see Supplementary Fig. S2b and c). In contrast,
Scasa estimates paralog expression well.

Fig. 1. Scasa workflow and its performance against existing quantification tools. (a) The Scasa workflow consists of three main parts: (i) fitting the statistical model Y � Xb
using an AEM algorithm, based on (ii) mapping of the scRNA-Seq data to produce count matrix Y and (iii) the in silico construction of the transcription clusters and isoform

paralogs to obtain the initial X matrices. (b) A simulation study (n¼3955 cells) indicates that Scasa performs well against existing methods in terms of isoform quantification.

Isoform-level estimates are plotted against the true values. (c) From left to right: boxplots of the APE ratios of Kallisto and Salmon against Scasa for all isoforms (n¼12 203

truly expressed isoforms) and for non-paralog isoforms (n¼1342); boxplots of APE ratios for gene-level quantification methods against Scasa (n¼8052 truly expressed genes);

boxplots of APE ratios for singleton genes (n¼2318)
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2.5 Accuracy metrics
For comparisons between different methods applied to simulated
data, we computed a symmetric absolute proportion error (APE) for
each transcript i in each cell as

APEi ¼
ti � ei

ti þ ei þ 1

�
�
�
�

�
�
�
�; (2)

where ti is the true abundance of individual gene i or transcript i, and
ei is the corresponding estimated abundance. A pseudocount of 1 is
added to the denominator to avoid division by zero. In the real sample
of human peripheral blood mononuclear cells (PBMCs) upon which
we base the simulation, there is a large proportion of isoforms/genes
(�93–94%) with zero expression across cells, and the estimation
methods produce concordant zero APE values for them, so they are
not informative toward the comparisons. Theoretically, in a paired
comparison between two methods, the comparison of performance
should be more sensitive in situations where the two methods have
discordant APE values than in situations where they have the same
APE. We thus limit the comparisons to transcripts (in any cell) that
produce discordant APE values, and we can meaningfully compute
their ratios. The APE ratio of transcript i (in any cell) between Scasa
and a competing method is computed as

RiðMethodÞ ¼ APEiðMethodÞ þ 0:1

APEiðScasaÞ þ 0:1
; (3)

where the constant 0.1 is added to reduce the variability in the ratio
because the APE values are often close to zero. The effect is also to
attenuate the ratio. For example, if APEi(Method)¼0.2 and
APEi(Scasa)¼0.01, the raw ratio is 20, but the attenuated ratio
is 0.3/0.11¼2.73. A ratio >1 indicates that Scasa performs
better. Ratios are summarized and reported in boxplots. For a
simpler comparison, we also compute the proportion of
APEi(Scasa)<APEi(Method) whenever the two APE values are dis-
cordant. To make the paralogs comparable, they are split into indi-
vidual members, each carrying the APE of the source paralog.

2.6 Simulated dataset
The purpose of generating simulated data was to ensure that accur-
acy could be measured against the ground truth. We also sought to
compare our software with other existing quantification software
using simulated data. We first created simulated 30-biased paired-
end scRNA-Seq data using the Polyester RNA-Seq read simulator
(Frazee et al., 2015) with human reference genome hg38 to model
the simulation as close as to the end-biased real data from 10�
Genomics as possible by mimicking the read length and fragment
length distribution (i.e. average and standard deviation). We revised
the biased model of Polyester so that its bias was similar to the 30

bias of the Chromium Single Cell 30 10� Genomics method.
Specifically, for a transcript read pair, we fixed the 30 read at the 30

end of the transcript and varied the 50 read. All parameters of the
simulation are listed in Scasa Wiki on GitHub.

Since we were measuring the accuracy of counts at the single-cell
transcript level, we also modeled the transcript-count ratio of a
given gene in the simulated data by using the single-cell transcript-
ratio reference from full-length Smart-Seq2 data (Ding et al., 2020).
Since Smart-Seq2 is a full-length RNA-Sequencing method for single
cells, isoform quantification could be used without strong end bias
effect to infer transcript ratios for our simulation. To mimic actual
cell-wise and gene-wise read depth from droplet-based scRNA-Seq
data, we referenced the read depth for each gene from one healthy
human PBMC donor [Single Cell Gene Expression Datasets (Single
Cell 30 v3), Chromium Connect Channel 1, 10� Genomics]
(February 28, 2020).

We post-processed the simulated output from Polyester by
replacing complementary read 1 of the paired-end reads with cell
barcode and UMI sequences that were representative of the actual
sample data from 10� single-cell gene expression data (see
Supplementary Fig. S9). The 16-base-pair (bp) cell barcodes used in
these cases were taken from the most recent barcode whitelist of

10� Genomics, which includes a total of 3 million cell barcodes that
can be sampled. The 12-bp UMI sequences that were used to iden-
tify unique RNA molecules were generated at random to ensure that
all unique generated RNA molecules were covered. Thus, no correc-
tion was needed for cell barcodes or UMIs in these simulated data.
The final paired-end single-cell-level simulated data consisted of
read 1 as the read sequence containing cell barcode and UMI infor-
mation, while each of complementary read 2 contained information
of the mapped sequences corresponding to the unique cell and
unique RNA molecule, as indicated in read 1. The detailed code for
producing the simulated data is provided on the Scasa GitHub
website.

2.7 Comparative methods
We ran the simulated data with (i) Scasa (single-cell isoform/gene
expression quantification), (ii) Cellranger (single-cell gene expres-
sion quantification), (iii) Kallisto-bustools (single-cell gene expres-
sion quantification), (iv) Alevin (single-cell gene expression
quantification), (v) STARsolo (Kaminow et al., 2021) (single-cell
gene expression quantification), (vi) Kallisto (bulk RNA-Seq iso-
form/gene expression quantification), (vii) Salmon (bulk RNA-Seq
isoform/gene expression quantification) and (viii) Terminus (Sarkar
et al., 2020) (bulk RNA-Seq isoform expression quantification,
which uses the output of Salmon for transcript grouping) and com-
pared their quantification results with the ground truth from simu-
lated data. It is worth noting that in the simulated dataset, we
focused on the performance of gene/isoform quantification by indi-
vidual methods. Barcode and UMI correction were not assessed in
the simulation setting and would not have any effect on the results.
Both Kallisto and Salmon were run on the RNA reads in the single-
end mode of the individual tools to quantify isoform- and gene-level
expression. Gene expression levels were calculated with Scasa by
summing up the isoform counts of each gene; paralog expression
was calculated similarly by summing up the member isoforms.

2.8 Real datasets
2.8.1 CITE-Seq data

Bone marrow mononuclear cell CITE-Seq single-cell data from a re-
cently published paper (Stuart et al., 2019) (GEO accession number:
GSE128639) were used as a real data benchmark. RNA-Seq meas-
urements from this dataset were used for comparison and valid-
ation. For comparison, we ran this dataset with Scasa to obtain
gene-level and isoform-level gene expression, we used Alevin to ob-
tain gene-level gene expression values following the Alevin tutorial
(https://combine-lab.github.io/alevin-tutorial/2020/alevin-features/),
and we collected the gene-level gene expression data of Cellranger
from the original publication downloaded from https://github.com/
satijalab/seurat-data. For fair comparison with Cellranger, only sin-
gle cells with the same barcode IDs among Cellranger, Alevin and
Scasa were used (n¼20 840 cells).

Dimension reduction for abundance estimates was carried out
for each of the quantification methods used (i.e. Scasa, Alevin and
Cellranger) for the CITE-Seq data, and clustering was performed
with homogenous settings for each method. Specifically, we fol-
lowed the description from the original study (Stuart et al., 2019)
and the tutorial from the vignettes of Seurat package version 4.0.0.
Normalization, feature selection and standardization for isoform/
gene expression were performed with the default settings by using
the NormalizeData, FindVariableFeatures and ScaleData functions
of the Seurat package (Stuart et al., 2019), followed by the RunPCA
and RunUMAP functions for dimension reduction. Clusters were
identified based on the first 30 PCA components using the
FindNeighbors and FindClusters functions. The pathway analysis
for the DE gene set was performed by using Reactome (Jassal et al.,
2020).

Details of the scripts used for implementation are provided in the
Scasa Wiki and on the Scasa website. To obtain differentially
expressed markers between the TY32.25 Mono and CD14 Mono
groups, we used the logistic regression differential expression (DE)
test (Ntranos et al., 2019) implemented with the FindMarkers
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function of Seurat. Only genes/isoforms detected in 25% of either of
the two groups were considered. To correct for the occurrence of
false positives brought about by multiple testing, we used the false
discovery rate (FDR) (Pawitan et al., 2005). Significant markers
were chosen according to a threshold of an FDR<0.05.

2.8.2 Smart-Seq2 bone marrow data

Smart-Seq2 scRNA-Seq data (ArrayExpress: E-MTAB-9067) for
3055 bone marrow cells from the femora and hips of 15 human
fetuses were collected for the validation of TY32.25. The annota-
tions of the cells were collected from the original study (Ranzoni
et al., 2021). We applied Salmon (Patro et al., 2017) to the Smart-
Seq2 scRNA-Seq dataset using the hg38 annotation to perform iso-
form quantification. We then used the same procedure applied to
the CITE-Seq data for cluster analysis to identify clusters from the
isoform expression data of the bone marrow cells.

3 Results

3.1 Strong 30 bias challenges isoform quantification in

scRNA-Seq
The key difference between bulk RNA-Seq and scRNA-Seq data is
highlighted in Supplementary Figure S1 in terms of the paralog
structure. Among the 70 865 isoforms in the hg38 transcriptome ref-
erence, 52 046 (73.3%) are separately quantifiable (paralogs of size
1) according to bulk RNA-Seq data; the rest (26.7%) belonged to
paralogs of size 2 or more. In contrast, the 30 bias in the scRNA-Seq
data reduces the number of separately quantifiable isoforms to
21 287 (30.0%). Among this last group, 13 753 isoforms belong to
singleton genes, so there are still 7534 non-paralog isoforms belong-
ing to multi-isoform genes that are separately quantifiable in the
scRNA-Seq data.

Isoform paralogs with high similarity in their sequences result in
high similarity in the corresponding columns in the X matrix. Full
similarity causes the X matrix to be singular and the b parameter to
be non-identifiable; near similarity causes the X matrix to be poorly
conditioned and creates estimation problems. The strong 30 bias in
10� Genomics sequencing also increases the similarity between iso-
forms in the X matrix. This is illustrated in Supplementary Figure
S2a, where the isoforms of the RPL13A gene are not distinguishable
at the 30 end. Ignoring these paralogs would lead to poor estimation
(Supplementary Fig. S2b); in contrast, by properly identifying the
paralog Scasa is able to yield much more precise quantification
(Supplementary Fig. S2c).

The bias also breaks the symmetry in read sharing between iso-
forms, an important condition presumed by bulk RNA-Seq meth-
ods. For example, in Supplementary Table S1a, the binary code
01011 of the eqClass at row 3 conveys that all reads of this eqClass
are mapped to three isoforms NM_012423, NR_026712 and
NR_073024. However, following the values in row 3, only
NR_026712 contributes 22 reads to this eqClass, while both
NM_012423 and NR_073024 contribute no reads to this set. The
reason is that the 30 exons of NR_026712 are close to the 50 end of
the other isoforms such that the reads of these latter isoforms cannot
map to NR_026712. A bulk RNA-based method that ignores this
problem performs poorly (Supplementary Fig. S3a). The problem
does not appear in bulk RNA-Seq data, so the method performs
much better (Supplementary Fig. S3b and Supplementary Table S2).

3.2 Scasa outperforms other methods in simulated data
We used simulated data generated with Polyester (Frazee et al.,
2015) to compare Scasa against Cellranger (Zheng et al., 2017),
Kallisto-bustools (Melsted et al., 2021), Alevin (Srivastava et al.,
2019), STARsolo (Kaminow et al., 2021), Kallisto (Bray et al.,
2016), Salmon (Patro et al., 2017) and Terminus (Sarkar et al.,
2020). The first four methods are gene-based quantification meth-
ods designed for scRNA-Seq data, while the last three are designed
for bulk RNA-Seq data. For the isoform-based quantification meth-
ods, a comparative gene-level value was computed as the sum of

component isoforms according to the transcriptome reference. In
the simulation (see Section 2.6), since the RNA reads of individual
cells could be separate and independent from cell barcodes and
UMIs, these bulk RNA-Seq methods could be run on the data in
single-end read mode to obtain both isoform-level and gene-level
expression.

At the isoform level, Scasa was compared against Kallisto,
Salmon and Terminus for (i) all isoforms and (ii) non-paralog iso-
forms, which are isoforms that belong to multi-isoform genes but
not to any paralog. Singleton isoforms, which belong to single-
isoform genes, were compared at the gene level. At the gene level,
Scasa was compared against all of the other methods. Gene-level
comparisons were performed for (i) all genes and (ii) singleton genes.
The quality of quantification by each method was expressed in terms
of the absolute proportion of error (APE) in the estimated abun-
dance versus the true counts (see Sections 2 and 2.5 for details). The
methods are compared in two ways: (i) according to the ratio of the
APE of the competing method to the APE of Scasa, where an APE
ratio >1 indicated that the performance of Scasa was better (the
APE ratios are summarized in boxplots); and (ii) according to the
proportion of Scasa APE that is less than the APE of the competing
methods, a proportion >0.5 indicates that the performance of Scasa
is better than the competing method (Fig. 1c). Scasa also outper-
forms Terminus, a method that allows transcript grouping from the
output of Salmon. The distribution of paralog size of Terminus
(Supplementary Fig. S1) is similar to the pattern for bulk RNA-Seq
data, indicating that Terminus seems to treat the scRNA-Seq data
similarly to the bulk RNA-Seq data.

Figure 1b shows the true versus estimated abundances at the iso-
form level for Scasa, Kallisto and Salmon, clearly demonstrating the
high noise levels of the quantification methods developed for the
bulk RNA-Seq data. In addition to exhibiting high variability,
Kallisto has a bias problem that we cannot explain. Similar plots at
the gene level are presented in Supplementary Figure S4a. The box-
plots of the APE ratios in Figure 1c show that Scasa performs well
overall against the existing methods in all categories of isoform- and
gene-level quantification. The most similar performance is observed
between Scasa and Salmon for non-paralog isoforms, which are iso-
forms that belong to multi-isoform genes but not to any paralogs.
Among the existing methods that provide gene-level quantification,
Alevin and STARsolo perform relatively well. These results are cor-
roborated in Supplementary Table S3, which shows that Scasa pro-
duces a higher proportion of lower APE values than any of the other
methods.

3.3 Scasa reveals a novel subgroup of CD14 monocytes
The simulation results led us to ask how isoform quantification
would improve cell-type identification through scRNA-Seq. To ad-
dress this question, we used publicly available 10� Chromium
CITE-Seq data for bone marrow mononuclear cells (Stuart et al.,
2019), as the combined use of RNA and antibodies significantly
improved cell-type identification and annotation. Through the
isoform-level quantification of the same data, Scasa (Scasa isoform)
identified a distinct subgroup of CD14 monocytes (Fig. 2a,
Supplementary Fig. S5). This monocyte subset was largely annotated
as CD14 monocytes (420/454 cells, 92.5%) and was missed by
gene-level quantification using Scasa-gene, Cellranger and Alevin
(Supplementary Fig. S4b). DE analysis identified eight isoforms
(Fig. 2b) from five genes, TYROBP, HLA-DPA1, RNASE6,
FCGRT and LGALS2, as statistically significant DE isoforms be-
tween this monocyte subset and the rest of the CD14þ monocytes
(Pawitan et al., 2005; FDR<0.05; Supplementary Table S4).

Interestingly, the top four DE isoforms all came from the trans-
membrane immune signaling adaptor gene TYROBP (Fig. 2d,
Supplementary Fig. S6a). Statistically, these isoforms showed sub-
stantially higher significance (FDR � 4E�139) than the next most
significant isoform paralog from the HLA-DPA1 gene
(FDR¼0.0019); see Supplementary Table S4 for detailed results.
However, the expression at gene level for TYROBP shows no differ-
ence across different quantification methods as compared to its
isoform-level quantification (Fig. 2d, Supplementary Fig. S4c). The
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Fig. 2. Isoform-level quantification from Scasa unveil new cell-type cluster and differential expressed isoforms. (a) UMAP of isoform quantification from Scasa using a bone

marrow dataset and cell annotations queried from the original study 12. Arrow points to a distinct subgroup of CD14 monocytes (which we will call it TY32.25 Mono here)

discovered via Scasa isoform quantification. (b) Heatmap of median expression of isoforms in each cluster, including TY32.25 Mono. Each cluster (row) is annotated by the

most dominant cell types of single cells in that cluster. Mutually exclusive expression pattern of TYROBP isoforms (highlighted in purple and green in the x axis labels) are

observed in the TY32.25 Mono group. Size of each square is proportional to the percentage of cells expressing the isoform in their corresponding cell-type group. Color gradi-

ent represents the mean expression of the isoforms in each cell-type group. For convenience, the clusters with low total expression of the isoforms are excluded from the plot.

NM-0012425 (24–25) refers to two isoforms, NM-001242524 and NM-001242525. (c) Boxplot of the isoforms of TYROBP gene in the TY32.25 Mono group and the other

mono groups from the Smart-Seq2 dataset. Full-length-transcript Smart-Seq2 data from the bone marrow cells of 15 human fetuses 14 is used in this validation. (d) Patterns of

the differential expressed isoforms of TYROBP gene observed in all cells, with distinct observation in the TY32.25 Mono group as indicated in (a)
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significant biological pathways enriched with DE genes are provided
in Supplementary Table S5, where the interferon gamma signaling
pathway is ranked at the top. We found isoform-specific expression
of TYROBP in CD14 monocytes, in which NM_198125 and
NM_003332 were highly expressed in the new subset, whereas the
majority of CD14 monocytes expressed the paralog isoform
NM001173514-NR_033390 (Supplementary Fig. S6b).

To validate these findings, we used independent full-length
scRNA-Seq data for human bone marrow (Ranzoni et al., 2021) gen-
erated via the Smart-Seq2 protocol[15]. The Smart-Seq2 scRNA-Seq
data allowed isoform quantification to be conducted, since full-length
transcript sequencing of single cells is performed in this method
(Picelli et al., 2014). We used Salmon7 to obtain isoform expression
levels, and we performed clustering and cell-type identification
(Supplementary Fig. S7). A cluster of 83 monocytes (out of 318 cells)
expressing the two dominant TYROBP isoforms, NM_198125 and
NM_003332, was identified (Fig. 2c). The results suggested that the
monocyte subset identified from 10� 30 data indeed expressed
TYROBP in an isoform-specific manner. We did not, however, ob-
serve clear mutually exclusive expression of the two isoform groups,
as found in the 10� data (Supplementary Fig. S8), potentially due to
biological differences between the two datasets (e.g. adult cells in the
CITE-Seq data versus fetal cells in the Smart-Seq2 data).

4 Discussion

Isoforms are the result of alternative splicing, a regulatory process of
inclusion and exclusion of exons from the same gene. Even though
they have highly similar sequences, the different isoforms of the
same gene can have different biological functions. Estimation of
isoform expression is still a challenging problem for both bulk
RNA-Seq and scRNA-Seq (Westoby et al., 2020). In principle, many
isoform quantification software designed for bulk RNA-Seq can be
utilized for scRNA-Seq datasets. However, we showed that the bulk
RNA-Seq methods did not perform well for the high-throughput
scRNA-Seq with a strong 30 bias such as 10� Genomics. The bias
increases substantially the similarities between the read statistics
from different isoforms, and breaks the symmetry in read sharing
between them, making the quantification highly challenging for the
bulk RNA-Seq methods. We have developed Scasa to deal with this
challenge and showed that it was able to accurately quantify isoform
expression for 10� 30 scRNA-Seq data and it performed well against
competing methods.

Scasa relies on the concepts of transcription clusters and isoform
paralogs, which are inherited from XAEM (Deng et al., 2020). As
an extension of XAEM, Scasa formalizes and clarifies the issues
caused by the 30-end bias in the droplet-based scRNA-Seq data. The
novel contributions include (i) processing the sample data to pro-
duce the count matrix Y from highly multiplexed cells and (ii) the in
silico construction of transcription cluster to take into account the
asymmetry issue and the high proportion of isoform paralogs, spe-
cifically occurring in the strong 30 bias scRNA-Seq data. In an appli-
cation to a 10� Chromium CITE-Seq dataset, we identified an
isoform-specific cellular subset that was only detectable in full-
length scRNA-Seq data. Further applications of Scasa to various
types of biological and clinical data could potentially reveal more
cellular subsets and corresponding biomarkers that are not visible at
the gene level.

In the simulation study, the initial X matrix in Scasa and the
simulated data are based on the same simulator (Polyester). We in-
vestigate whether this confers a special advantage to Scasa. To do
that, we utilize RNASeqReadSimulator (https://github.com/davidli
wei/RNASeqReadSimulator) to generate a new 10� Genomics simu-
lated dataset of 3955 single cells, using the same setting as we did
for the simulated data generated from Polyester. The same analysis
procedures as before for Scasa, Kallisto, Kallisto-Bustools,
Cellranger, Salmon and Alevin are performed on the new simulated
dataset. For Scasa, we use the initial design matrix X constructed in
silico using Polyester. The results reported in Supplementary Figure
S10 show that Scasa generally still performs well against the com-
peting methods at both isoform level and gene level; Scasa’s

performance is comparable to Salmon for non-paralogs, and to
Alevin for gene-level estimation. Thus, the use of the same simulator
for initialization and data generation does not give a special advan-
tage to Scasa over other methods.

In this study, we have evaluated Scasa for Chromium Single Cell
30 10� Genomics, the most commonly used high-throughput
scRNA-Seq. However, Scasa is not limited to run only on the
droplet-based method. Conceptually the method could be applicable
to any high-throughput scRNA-Seq method with either 30 or 50 bias.
The key step was to build an appropriate initial X matrix that corre-
sponds to the scRNA-Seq protocol; specific instructions are given in
the Scasa webpage. Scasa can also run independently as long as the
equivalent classes of single cell are provided. Thus, Scasa can be
used as a plug-in module for the current tools developed for gene-
level quantification such as Alevin and Kallisto-bustools where the
steps of quality of mapping, barcode correction and read processing
are already well developed.

For its limitation, Scasa cannot estimate all the isoforms available in
the annotation reference. This is because isoforms with high similarity
in their sequences are statistically unidentifiable from each other. Scasa
resolves the problem by combining them into paralogs to improve the
estimation accuracy, but compensates for the number of identifiable iso-
forms. Further characterization of the isoform members of an interest-
ing paralog requires extra information and perhaps experiments, but
this is out of the scope of the current study.
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