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Abstract

Ubc9 is an E2 conjugating enzyme that transfers the activated SUMO (small ubiquitin-related 

modifier) to protein substrates, and thus it plays a critical role in sumoylation-mediated cellular 

pathways. We have previously reported that Ubc9 promotes tumor growth in the xenograft mouse 

model using breast cancer cell line MCF-7 in part through regulation of Bcl-2 expression. In this 

study, we show that ectopic expression of wild type Ubc9 (Ubc9-WT) promotes cell invasion and 

metastasis. Surprisingly, the dominant negative mutant Ubc9 (Ubc9-DN) also causes the same 

phenotype, indicating that the ability of Ubc9 to promote invasion and metastasis is distinct from 

its ability to conjugate SUMO to protein substrates. Of considerable interest, several microRNAs 

such as miR-224 are regulated by Ubc9. While ectopic expression of Ubc9 causes downregulation 

of miR-224, and suppression of Ubc9 by Ubc9-siRNAs leads to its upregulation. We further show 

that miR-224 can inhibit cell invasion and directly targets CDC42 and CXCR4, and that 

suppression of CDC42 and CXCR4 by RNAi causes inhibition of Ubc9-mediated invasion. 

Together, these results demonstrate a molecular link between Ubc9 and the metastasis genes such 

as CDC42 and CXCR4, and thus provide new insight into the mechanism by which Ubc9 

promotes tumor invasion and metastasis.

Keywords

Cell invasion; metastasis; miRNA; miR-224; CXCR4; post-transcriptional regulation; 
tumorigenesis; Ubc9

Introduction

Protein modification involving small ubiquitin-like modifier (SUMO) has been shown to 

play an important role in regulation of diverse cellular functions (Johnson, 2004; Melchior, 

2000). Sumoylation is a multi-step process and requires several enzymes. Among them is 

the E2 conjugating enzyme Ubc9 which transfers the activated SUMO to protein substrates 

(Johnson, 2004). Since most of SUMO substrates are nuclear proteins including many 
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transcription factors or co-factors, SUMO/Ubc9 impact a variety of cellular pathways such 

as cell growth, proliferation, apoptosis and even chromatin remodeling (Baek, 2006).

Although it is well known that Ubc9 impacts cellular pathways through sumoylation, Ubc9 

can also regulate cellular pathways independent of sumoylation. In this scenario, Ubc9 may 

function as a regulator of nuclear transport or protein activity or as a co-regulator of 

transcription. For example, both wild type and sumoylation-defective mutant (or dominant 

negative) Ubc9 regulate the nuclear localization of Vsx-1, a protein regulating bipolar cell 

differentiation during zebrafish retinogenesis, by binding to a nuclear localization signal at 

the N-terminus of the Vsx-1 homeodomain (Kurtzman, Schechter, 2001). Emerging 

evidence further suggests that Ubc9 can also function as a transcription co-factor 

independent of sumoylation in mammalian cells. For example, Ubc9 has been shown to 

modulate transcriptional activity of glucocorticoid receptors (GR) by directly binding to this 

protein (Kaul et al., 2002). Similarly, like the wild type counterparts, the sumoylation-

defective mutant Ubc9 is able to function as a co-activator of the chicken ovalbumin 

upstream promoter-transcription factor I (COUP-TFI), suggesting that the co-activator 

ability is distinct from the sumoylation activity. Of interest, chromatin immunoprecipitation 

(ChIP) assays revealed that ectopically expressed COUP-TFI and Ubc9 were recruited to the 

endogenous CYP11B2 promoter (Kurihara et al., 2005). Other examples of Ubc9-regulated 

genes include estrogen receptor α (ERα) (Kobayashi et al., 2004; Sentis et al., 2005) and the 

gene coding for the immediate-early 2 (IE2) protein of human herpesvirus 6 (Tomoiu et al., 

2006).

Ubc9 is a single copy gene and is ubiquitously expressed in all human organs and tissues. 

However, Ubc9 is frequently upregulated in tumor specimens. For example, Ubc9 mRNA is 

overexpressed in lung adenocarcinoma, as detected by microarray analysis (McDoniels-

Silvers et al., 2002). By semi-quantitative RT-PCR analysis and immunohistochemistry, we 

detected overexpression of Ubc9 in ovarian carcinoma compared to the matched normal 

ovarian epithelial cells (Mo et al., 2005) as well as other types of tumors (Wu et al., 2009). 

Moreover, Ubc9 is the most highly expressed protein in protein extracts from melanoma 

infiltrated lymph nodes (Moschos et al., 2007). In support of this, we have previously shown 

that Ubc9 is able to induce Bcl-2 expression in the breast cancer cell line MCF-7 (Lu et al., 

2006), which could explain in part why ectopic expression of Ubc9 enhances tumor growth 

while suppression of Ubc9 function reduces tumor growth in MCF-7 model (Mo et al., 

2005). However, little is known whether Ubc9 can promote cell invasion and tumor 

metastasis.

In this study, we present evidence that Ubc9 promotes invasion and metastasis in a 

sumoylation independent manner. More importantly, we show that several microRNAs 

(miRNAs) are regulated by Ubc9. In particular, miR-224 is negatively regulated by Ubc9. 

We suggest that Ubc9 promotes invasion and metastasis in part through downregulation of a 

putative tumor suppressor miR-224.
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Results

Effect of Ubc9 on cell invasion and metastasis

We have previously shown that ectopic expression of Ubc9 enhances, whereas suppression 

of Ubc9 function decreases breast tumor growth in the xenograft animal model using MCF-7 

cells (Mo et al., 2005), suggesting that Ubc9 plays a causal role in breast tumorigenesis. 

However, it is not clear whether Ubc9 affects breast tumor cell invasion and metastasis. 

Therefore, we generated stable clones from the metastatic breast cancer MDA-MB-231 cells 

expressing Ubc9-WT or Ubc9-DN. After verification of the exogenous gene expression, 

over 10 stable MDA-MB-231 transfectants for Ubc9-WT or Ubc9-DN or vector control 

were pooled. S-Fig.1A showed that the exogenous Ubc9-WT or Ubc9-DN level was highly 

expressed compared to the endogenous counterpart. To confirm that the ectopically 

expressed Ubc9-WT or Ubc9-DN affects protein sumoylation, Western blot was carried out 

using anti-SUMO antibody. As expected, Ubc9-DN suppressed while Ubc9-WT enhanced 

protein sumoylation (s-Fig. 1B). Next, we examined the effect of Ubc9-WT or Ubc9-DN on 

cell invasion. Matrigel chamber assay revealed that Ubc9-WT increased cell invasion with 

about as twice invasive cells as the vector control (Fig. 1A and B). This result is consistent 

with the report that Ubc9 plays a role in prostate cancer cell invasion (Kim et al., 2006). 

However, to our surprise, Ubc9-DN also increased cell invasion by over 2-fold compared to 

the vector control (Fig. 1A and B), just like Ubc9-WT. We then tested another two 

metastatic breast cancer cell lines LM2-4142 (Minn et al., 2005) and MDA-MB-468 with 

ectopic expression of Ubc9-DN or Ubc9-WT and obtained similar results to those of MDA-

MB-231 cells (s-Fig.2). Therefore, these results suggest that Ubc9 promotes breast cancer 

cell invasion independent of sumoylation.

To further investigate the role of Ubc9 in cell invasion, we suppressed Ubc9 expression by 

Ubc9 specific siRNAs. As shown in Fig. 1C, both Ubc9-siRNA-1 and Ubc9-siRNA-2 

efficiently suppressed Ubc9 expression, as detected by Western blot. Invasion assay 

indicated that Ubc9-siRNA-1 substantially inhibited invasiveness of MDA-MB-231 cells 

(Fig. 1C and D). A similar inhibitory result was also seen with Ubc9-siRNA-2, which was 

derived from a different location of the Ubc9 sequence.

To determine whether Ubc9-mediated invasion is due to increased cell proliferation, we 

measured cell growth by MTT. As shown in s-Fig.3 A and B, in both MDA-MB-231 and 

LM2-4142 cells, Ubc9 had no significant effect on cell growth, suggesting that the observed 

invasion enhanced by Ubc9 is not likely due to cell proliferation differences. However, 

Ubc9-siRNA inhibited cell growth (s-Fig.3C), which is presumably because the degree of 

knockdown was severe. It is known that Ubc9 is an essential gene and knockout of Ubc9 

causes embryo lethality (Nacerddine et al., 2005).

Effect of Ubc9 on metastasis in an experimental model

To determine whether Ubc9 plays a role in tumor metastasis, we performed experimental 

metastasis assays by injecting the transfected MDA-MB-231 cells into female nude mice 

through tail veins. Similar to invasion results, both Ubc9-DN and Ubc9-WT caused more 

metastases than the vector control. For example, average lung tumor nodules were between 
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80–100 for Ubc9-DN and Ubc9-WT, whereas there were about 20 for the vector control 

(Fig. 2A and B). In contrast, suppression of Ubc9 by Ubc9-siRNA-1 caused a substantial 

reduction of tumor nodules (Fig. 2C and D). These results further suggest that Ubc9 

promotes tumor invasion and metastasis independent of its SUMO conjugation activity.

miR-224 is negatively regulated by Ubc9

Given the importance of Ubc9 in tumor invasion and metastasis, next we determined the 

molecular link between Ubc9 and tumor invasion, and set to profile gene expression for 

MDA-MB-231 cells expressing Ubc9-WT or vector alone. Since Ubc9-DN had the same 

effect on invasion and metastasis as Ubc9-WT, it was not included in the profiling assays. 

We were particularly interested in miRNAs because as non-coding RNAs, miRNAs have 

been shown to play an important role in tumor metastasis (Ma et al., 2007). We profiled a 

total of 474 miRNAs by real time PCR. As shown in Fig. 3A, the vast majority of miRNAs 

were expressed at similar levels between Ubc9-WT and vector control (also see s-Table 1). 

Only a small fraction of miRNAs were differentially expressed. We selected 35 miRNAs of 

them which revealed the most differential expression (s-Table 1, highlighted in red) for 

further verification, and showed that three miRNAs, miR-224, miR-200b and miR-559, were 

most downregulated or upregulated (Fig. 3B). Initial characterization suggested a role of 

miR-224 in cell invasion and the computer-aided algorithms indicated that several 

metastasis-related genes are potential targets for miR-224. Furthermore, suppression of 

miR-200b and miR-559 by antagomirs revealed only a slight inhibition of invasion. 

Therefore, we chose miR-224 in this study. We further confirmed that both Ubc9-WT and 

Ubc9-DN suppressed miR-224 by TaqMan real time PCR (Fig. 3C). In contrast, Ubc9-

siRNAs increased its expression (Fig. 3D).

Suppression of cell invasion by miR-224

Suppression of miR-224 by Ubc9 suggests that miR-224 may play a suppressive role in 

invasion. Thus, we first ectopically expressed miR-224 in MDA-MB-231 cells and then 

measured their invasion ability. Fluorescence microscopy confirmed a high transduction rate 

(over 90%) and real-time PCR revealed a high level of mature miR-224 compared to vector 

control (s-Fig. 4A). As expected, miR-224 significantly reduced the number of invaded cells 

(Fig. 4A). For example, miR-224 infected cells revealed only 45% of invaded cells. To 

further determine the role of miR-224 in invasion, we suppressed miR-224 by anti-miR-224. 

As expected, anti-miR-224 significantly enhanced cell invasion, further supporting a 

suppressive role of miR-224 in cell invasion (Fig. 4B). Real time PCR assays confirmed that 

anti-miR-224 suppressed the endogenous miR-224 level (s-Fig. 4B).

To determine whether miR-224 is an important effector in the Ubc9-mediated cell invasion, 

we introduced the miR-224 expression vector into the Ubc9 overexpressing MDA-MB-231 

cells by infection and then tested whether miR-224 can block Ubc9 induced-invasion. As 

shown in Fig. 4C, miR-224 significantly suppressed Ubc9-induced invasion. Compared to 

the pCDH vector control, miR-224 caused over 50% reduction of invasion in the cells which 

were previously transfected with the pCMV vector control. In the cells which were 

previously transfected with Ubc9-WT, we also found a similar reduction of invasion when 

miR-224 was compared to the pCDH vector control (Fig. 4C). Consistent with our previous 
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findings (Fig. 2A), the number of overall invaded cells for the Ubc9-WT cells (both pCDH 

and miR-224) was higher than for the pCMV vector controls (both pCDH and miR-224). 

Therefore, the Ubc9-mediated cell invasion can be partially reversed by ectopic expression 

of miR-224.

miR-224 directly targets CDC42 and CXCR4

To determine how miR-224 impacts cell invasion, we tested several predicted target genes 

based on computer-aided analysis, which included several commonly cited miRNA target 

prediction programs TargetScan4 (13), miRBase Target5 (http://microrna.sanger.ac.uk/cgi-

bin/targets/v5/search.pl), PicTar (14) and miRanda (17). This search combined with 

luciferase reporter assays identified CDC42 and CXCR4 as targets for miR-224; on the other 

hand, miR-224 had no effect on another two putative targets ATF2 and Jag1 although 

miR-224 was predicted to interact with the 3’-UTR of these two genes. As shown in Fig. 5B, 

miR-224 suppressed the luciferase activity of Luc-CDC42-UTR by 60% compared to vector 

control. To determine the importance of the putative miR-224 binding site in CDC42-UTR 

(Fig. 5A, top), we deleted this site, generating Luc-CDC42-UTR-d. This deletion abolished 

the suppression activity of miR-224 (Fig. 5B, left), suggesting that miR-224 silences CDC42 

expression through interaction with this binding site. To further determine the effect of 

miR-224, we suppressed the endogenous miR-224 by anti-miR-224 and this suppression was 

able to enhance the luciferase activity by about 30% (Fig. 5B, right). Finally, western blot 

detected a reduced level of the endogenous CDC42 by miR-224 compared to vector control, 

further supporting a suppressive role of miR-224 in CDC42 (Fig. 5C).

Similar to the results of CDC42, we showed that miR-224 also suppressed CXCR4 (Fig. 5E). 

Further analysis indicated that miR-224 exerted its silencing function by directly binding to 

the miR-224 site in the 3’-UTR of CXCR4 (Fig. 5E). In contrast, anti-miR-224 enhanced the 

luciferase activity of Luc-CXCR4-UTR (Fig. 5E, right). Finally, miR-224 suppressed the 

endogenous CXCR4 (Fig. 5F).

Suppression of CDC42 and CXCR4 inhibits Ubc9-mediated cell invasion

To address whether Ubc9 indirectly affects CDC42 and CXCR4 levels, we examined 

CDC42 and CXCR4 levels in Ubc9-DN or Ubc9-WT cells. As expected, Ubc9-DN and 

Ubc9-WT upregulated CDC42 and CXCR4 (Fig.6A). Next, we suppressed CDC42 and 

CXCR4 by RNAi (Fig. 6B). We noted that knockdown of CDC42 also slightly suppressed 

CXCR4, and vise versa for some reason. We then determined the effect of knockdown of 

these two genes on cell invasion. As shown in Fig. 6C, the number of invaded cells for 

CDC42-sh#2 or CXCR4-sh#4 was substantially lower than that for vector control even 

under different backgrounds (vector, Ubc9-DN or Ubc9-WT). Moreover, double knockdown 

(CDC42-sh#2 + CXCR4-sh#4) caused further suppression of invasion. Separate knockdown 

experiments with shRNA (or siRNA) derived from different parts of these two genes also 

suppressed cell invasion (s-Fig.5). Together, these results are consistent with previous 

findings that CDC42 and CXCR4 play a role in cell migration and tumor metastasis (Fukata, 

Kaibuchi, 2001; Hinton et al., 2008), and specific suppression of CDC42 and CXCR4 by 

RNAi inhibited cell mobility or cell migration (Chen et al., 2003; El-Sibai et al., 2007), 
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which may provide a molecular explanation as to why Ubc9 is able to promote cell invasion 

and metastasis.

Discussion

Ubc9 is well known for its key role in protein sumoylation and sumoylation-mediated 

cellular pathways, ultimately impacting tumor initiation and progression (Mo, Moschos, 

2005). However, there is scarce information available in the literature as to whether and how 

Ubc9 impacts cell invasion and metastasis. In one report, ectopic expression Ubc9 was 

shown to be able to enhance invasion in prostate cancer cells through regulation of 

sumoylation of reptin because sumoylation is required for its repressive function, and 

disruption of sumoylation causes repression of the metastatic suppressor KAI1 (Kim et al., 

2006). Our study provides evidence, for the first time to our knowledge, that Ubc9 can 

promote invasion and metastasis in a sumoylation independent manner.

As a multi-functional protein, Ubc9 has been shown to mediate diverse cellular pathways. 

Unlike other E2 conjugating enzymes involved in ubiquitination, Ubc9 is the only E2 

enzyme essential for sumoylation and thus, it plays a crucial role in determining 

sumoylation status of many SUMO substrates. Therefore, its expression or activity is 

believed to be essential for these SUMO pathways. In contrast to the well-known 

sumoylation associated function of Ubc9, much less is known about its sumoylation 

independent function. Emerging evidence suggests that Ubc9 can function as either a 

modulator of enzymatic activity or a transcriptional co-factor. In addition to the previously 

mentioned proteins such as Vsx-1 (Kurtzman, Schechter, 2001), GR (Kaul et al., 2002) and 

ERα (Kobayashi et al., 2004; Sentis et al., 2005), a recent report indicates that 

overexpression of either Ubc9-WT or Ubc9-DN inhibits GLUT4 degradation and promotes 

its targeting to the unique insulin-responsive GLUT4 storage compartment (Liu et al., 2007). 

Thus, Ubc9 is implicated in the insulin-responsive glucose transport by a mechanism 

independent of its catalytic activity (Liu et al., 2007). With regard to the function of Ubc9 as 

a transcriptional co-factor, Ubc9 was shown to be able to enhance pleomorphic adenoma 

gene like-2 (PLAGL2), a transactivator of the surfactant protein-C (SP-C), by a similar 

sumoylation-independent mechanism (Guo et al., 2008). Moreover, ChIP assay identifies the 

association of PLAGL2 and Ubc9 with the SP-C promoter in vivo, demonstrating the 

function of Ubc9 as a co-factor of PLAGL2 to mediate PLAGL2 interactive SP-C promoter 

activity (Guo et al., 2008). This finding is consistent with the report that both wild type and 

mutant Ubc9 can interact with COUP-TFI to activate the CYP11B2 promoter (Kurihara et 

al., 2005). In agreement with these reports, our study further suggests that Ubc9-mediated 

invasion could be separated from its ability to conjugate SUMO to the substrates because 

sumoylation deficient Ubc9 (Ubc9-DN), like Ubc9-WT, is able to promote cell invasion and 

metastasis. More importantly, both Ubc9-DN and Ubc9-WT have the same negative effect 

on miR-224 expression.

The mechanism underlying the Ubc9-mediated invasion and metastasis may be complex. 

Our study suggests that at least, miRNAs such as miR-224 could be one of its downstream 

players. MicroRNAs are small RNA molecules that are capable of regulating coding genes 

at the posttranscriptional level (Bartel, 2004; Pillai, 2005; Zamore, Haley, 2005). Increasing 
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evidence indicates that miRNAs are the key players that affect not only tumor growth, but 

also tumor invasion and metastasis (Calin, Croce, 2006; Ma, Weinberg, 2008). For example, 

miR-10b serves as a breast cancer metastasis initiation factor because ectopic expression of 

miR-10b affects invasion and metastasis, but not tumor growth (Ma et al., 2007). On the 

other hand, miR-200 is a metastatic suppressor by directly targeting the mRNA of the E-

cadherin transcriptional repressors ZEB1 and ZEB2, leading to up-regulation of E-cadherin 

(Korpal et al., 2008; Park et al., 2008). These findings prompt us to profile miRNA 

expression in the MDA-MB-231 cells overexpressing Ubc9. Our study demonstrates that 

miR-224 is specifically suppressed by Ubc9.

Therefore, our study establishes a novel role of Ubc9 as a regulator of miRNA expression. 

However, it is not clear how Ubc9 regulates miRNA expression. Available evidence 

suggests that regulation of miRNAs can take place at the transcriptional or 

posttranscriptional level. At the transcriptional level, several miRNAs, such as miR-17~92, 

miR-34, miR-21, and miR-223 have been shown to be regulated by transcription factors, 

such as c-MYC (He et al., 2005), p53 (He et al., 2007), Stat3 (Loffler et al., 2007), REST 

(Singh et al., 2008), NFI-A and C/EBPα (Fazi et al., 2005). On the other hand, the 

posttranscriptional regulation could take place at the miRNA processing or miRNA stability. 

For instance, Lin28, a developmentally regulated RNA binding protein, was shown to 

selectively block the processing of pri-let-7 miRNAs in embryonic cells (Viswanathan et al., 

2008).

Based on our preliminary results indicating that levels of both pre-miR-224 and pri-miR-224 

are also downregulated by Ubc9 (Zhu et al, unpublished), we believe that Ubc9-mediated 

repression of miR-224 is more likely to occur at the transcriptional level. Since miR-224 is 

an intronic gene embedded in the GABRE gene (Wilke et al., 1997), there are at least two 

possibilities that miR-224 can be transcriptionally regulated. One possibility is that miR-224 

is co-regulated by the GAGRE gene. Alternatively, miR-224 may carry its own promoter. 

These possibilities are currently under investigation. Dissection of Ubc9-mediated miRNA 

expression will provide a better understanding of how Ubc9 impacts cell invasion and 

metastasis.

In summary, we demonstrate that Ubc9 is a multi-functional protein that promotes cell 

invasion and metastasis independent of sumoylation. Moreover, Ubc9 negatively regulates 

miR-224. Finally, identification of CDC42 and CXCR4 as direct targets for miR-224 

provides new insight into Ubc9-mediated cell invasion and metastasis. Therefore, given its 

important role in these aspects, Ubc9 may prove to be a potential therapeutic target for 

cancer intervention because Ubc9 is often upregulated in various types of tumors 

(McDoniels-Silvers et al., 2002; Mo et al., 2005; Moschos et al., 2007; Wu et al., 2009).

Materials and Methods

Reagents

Primary antibody against Ubc9 was custom made; other primary antibodies were from the 

following vendors: CDC42 from Cell Signal, CXCR from Applied Biological Materials 

(British Columbia, Canada), SUMO-1 from Invitrogen (Carlsbad, CA). Secondary 
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antibodies conjugated with IRDye 800CW or IRDye 680 were purchased from LI-COR 

Biosciences (Lincoln, NE). PCR primers were purchased from Sigma-Genosys (Woodland, 

TX) or IDT (Coralville, IA) and LNA antagomirs were purchased from IDT. CDC42 

shRNAs and CXCR4 shRNAs were purchased from Open Biosystems (Huntsville, AL). 

Synthetic CDC42 siRNA was from Santa Cruz (Santa Cruz, CA). Ubc9-siRNAs were from 

Applied Biosystems (Foster City, CA)

Cell culture

All cell lines were purchased from ATCC (Manassas, VA) except LM2-4142 (Minn et al., 

2005), a generous gift from Dr. Joan Massagué. MDA-MB-231, LM2-4142 and MDA-

MB-468 cells were grown in RPMI 1640 (Cambrex, Walkersville, MD) supplemented with 

10% fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO). 293T cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) (Cambrex) supplemented with 10% FBS. 

All media contained 2 mM glutamine, 100 units of penicillin/ml, and 100 µg of 

streptomycin/ml. Cells were incubated at 37 °C and supplemented with 5% CO2 in the 

humidified chamber.

miRNA profiling

Total RNA was extracted from MDA-MB-231 cells stably overexpressing Ubc9-WT and 

then was subject to miRNA profiling using QuantiMir kit (System Biosciences, Mountain 

View, CA). A total of 474 miRNAs registered in Sanger miRBases (version 9.2) were 

profiled in this study. Three µg total RNA was first anchor-tailed by poly A polymerase, and 

then annealed by an oligo dT adapter at 60°C for 5 min. For reverse transcription, 10 µL of 

RT master mix (1.5 µL of water, 4 µL 5 × buffer, 1.5 µL of 0.1 M DTT, 2 µL of 10 mM 

dNTPs, 1 µL of Reverse transcriptase) were combined with 10 µL template (poly A tailed). 

The 20 µL RT reaction was incubated at 42°C for 60 min, 95° C for 10 min, cooled to room 

temperature, and then diluted 6-fold with 100 µL of water. Following reverse transcription, 

real-time PCR was performed in a 96-well optical PCR plate using 7500 HT PCR 

instrument (Applied Biosystems). The reaction solution contained 10 µL of 2 × SYBR green 

PCR master mix (Applied Biosystems), 5.5 µL of water, 0.5 µL of 5 µM universal primer, 2 

µL of 5 µM forward primer (the mature miRNA sequence converted to DNA), and 2 µL of 

the diluted cDNA. Dissociation curves were typically generated post-run for analysis of 

amplicon species. U6 was used as an internal control.

Plasmids

Wild type Ubc9 (Ubc9-WT) or dominant negative mutant Ubc9 (Ubc9-DN) was constructed 

in pCMV-Myc as previously described (Lu et al., 2006). The same DNA fragment carrying 

Myc-Ubc9 or Myc-Ubc9-DN was also cloned into a lentiviral vector pCDH-CMV-MCS-

EF1-copGFP (pCDH, System Biosciences). Restriction enzymes sites were introduced by 

PCR using standard methods.

To construct a plasmid expressing miR-224, we first amplified ~0.5 kb DNA fragment 

covering the pre-microRNA, using genomic DNA from a healthy blood donor as a template. 

PCR reactions were performed using the high fidelity Phusion enzyme (New England 

Biolabs Ipswich, MA) and corresponding specific primers: miR-224-5.1 (sense) 5’-
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AGTCAGTCTCTGGATGAGGG; miR-224-Not1-3.1 (antisense) 5’-

GCGGCCGCGTAAGTATGCTCCAGATGG where Not1 site was underlined. The 

amplified fragment was first cloned into a PCR cloning vector (PCR8, Invitrogen) and 

subsequently cloned into the lentiviral vector pCDH at EcoR1 and Not1 sites where the 

EcoR1 site was from the PCR cloning vector. Expression of the mature miR-224 was 

verified by TaqMan real-time PCR.

The luciferase-UTR reporter plasmids, such as Luc-CDC42-UTR and Luc-CXCR4-UTR, 

were constructed by introducing the CDC42 or CXCR4 3’-UTR carrying a putative miR-224 

binding site into pGL3 control vector (Promega, Madison, WI). We amplified the CDC42 or 

CXCR4 3’-UTR sequence from MCF-10A cDNA using PCR primers: CDC42-

UTR-5.1(sense) 5’-AATTCATTAACCAGTGGTTAGC CDC42-UTR-Not1-3.1 (antisense) 

5’-GCGGCCGCACAGATGTCTGTCTTCTAGCAC CXCR4-UTR-5.1 (sense) 5’-

CACAGATGTAAAAGACTTTTTTT CXCR4-UTR-Not1-3.1 (antisense) 5’-

GCGGCCGCTTTAACATGTACTTTTATTAAC The PCR products were also first cloned 

into a PCR cloning vector and then subcloned into a modified pGL3 control vector as 

described previously (Sachdeva et al., 2009). To delete the putative miR-224 binding site in 

the 3’-UTR of CDC42 or CXCR4, we used the two step PCR method where two sets of 

overlapped primers were used to amplify two fragments followed by a second PCR as 

described previously (Zhu et al., 2008). All the amplified products were verified by DNA 

sequencing before cloning into the final destination vector.

Transfection

Transfection of Ubc9-siRNAs and anti-miR-224 locked nucleic acid (LNA) oligo was 

performed using RNAifectin reagent (Applied Biological Materials) following the 

manufacturer’s protocol. In brief, cells (1×105) were seeded in 6-well plates and incubated 

overnight. About 100 pmol Ubc9-siRNAs or anti-miR-224 per well was used for 

transfection.

Transfection of 293T cells was carried out using the calcium phosphate method, as 

described previously (Mo, Beck, 1999). The transfected cells were cultured overnight before 

they were harvested and lysed for luciferase assay or for extraction of protein or RNA.

Stable clones

Stable Ubc9-WT or Ubc9-DN expressing clones were established by transfection, followed 

by selection in the presence of puromycin (1 µg/ml). Individual colonies (over 10) were 

pooled after verification of the exogenous gene expression by western blot.

Luciferase Assay

Luciferase assay was carried out in 293T cells to determine the effect of miR-224 on the 

activity of Luc-CDC42-UTR or Luc-CXCR4-UTR. First, cells were transfected with 

appropriate plasmids in 12-well plates. Then, the cells were harvested and lysed for 

luciferase assay 24 h after transfection. The assays were carried out using a luciferase assay 

kit (Promega) according to the manufacturer’s protocol. β-galactosidase or renilla luciferase 

was used for normalization.
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PCR/RT-PCR and real-time RT-PCR

PCR reactions were performed to amplify the 3’-UTR of CDC42 or CXCR4 according to 

the standard three-step procedure. Annealing temperature varied depending on the primers 

used. For RT-PCR, we isolated total RNA using Trizol reagent (Invitrogen) per the 

manufacturer’s protocol. To detect mature miR-224 expression in cell lines, we also used 

Trizol reagent to isolate total RNA, which was then amplified by TaqMan stem-loop RT-

PCR method, as described previously (Chen et al., 2005; Lao et al., 2006).

Western Blot

Cells were harvested and protein was extracted 2 days after transfection as previously 

described (Si et al., 2007).

Invasion assays

Effect of Ubc9 or miR-224 on the invasion ability of MDA-MB-231, LM2-4142 or MDA-

MB-468 cells was determined using matrigel invasion chambers (BD Biosciences). Cells 

infected with Ubc9-WT, Ubc9-DN and miR-224 or cells transfected with Ubc9-siRNAs 

were seeded into inserts at 2–4 × 104 per insert in serum-free medium and then transferred to 

wells filled with the culture medium containing 10% FBS. After 24 h incubation, non-

invading cells on the top of the membrane were removed by cotton swabs. Invaded cells on 

the bottom of the membrane were fixed, followed by staining with 0.05% crystal violet. 

Invaded cells on the membrane were then counted as follows. Since the distribution of cells 

on the membrane was not always even, we first took a picture at a low magnificence and 

then enlarged the image in a computer screen with grids so that all of the cells on the entire 

membrane were counted.

Experimental metastasis assay

Female athymic nude (nu/nu) mice (4–5 weeks old) were purchased from Harlan Sprague 

Dawley (Indianapolis, IN) and were maintained in the Southern Illinois University School of 

Medicine’s accredited animal facility. All animal studies were conducted in accordance with 

NIH animal use guidelines and a protocol approved by SIU Animal Care Committee. In 

brief, 1.5 × 106 exponentially growing MDA-MB-231 cells (vector control, Ubc9-WT, 

Ubc9-DN, scrambled oligo or Ubc9-siRNA-1) were injected into nude mice through tail 

veins. Four weeks after injection, the animals were sacrificed. The lungs were harvested, 

fixed in Bouin's solution and tumor nodules were countered.

Statistical analysis

Statistical analysis of data was performed using the Student’s t test. Differences with p 

values less than 0.05 are considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Effect of Ubc9-WT, Ubc9-DN and Ubc9-siRNAs on cell invasion
Stable transfected or transiently transfected MDA-MB-231 cells (2 × 104 per insert) were 

subject to cell invasion assays as detailed in Materials and Methods. Cell number on the 

membrane was counted 24 h later. A and B, Both Ubc9-WT and Ubc9-DN promote cell 

invasion. Top panel in A is a western revealing expression of exogenous Ubc9 (DN or WT), 

as denoted by Ubc9*. C and D, Suppression of cell invasion by Ubc9-siRNAs. V, vector 

(pCMV-Myc); DN, Ubc9-DN; WT, Ubc9-WT; SC, scrambled oligo; Si-1, Ubc9-siRNA-1; 

Si-2, Ubc9-siRNA-2. Values in A and C are means ± SE of three independent experiments. 

** p<0.01.
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Fig. 2. Effect of Ubc9-WT, Ubc9-DN and Ubc9-siRNA-1 on lung metastasis in an experimental 
metastasis model
Stable transfected or transiently transfected MDA-MB-231 cells (1.5 × 106) were injected 

into female nude mice through tail veins as described in Materials and Methods. Mice were 

sacrificed and tumor nodules in lung were counted 4 weeks after injection. A and C, 

Representative tumor bearing lungs; B and D, Average lung tumor nodules (n = 5). V, 

vector; WT, Ubc9-WT; DN, Ubc9-DN; SC, scrambled oligo; Si-1, Ubc9-siRNA-1. ** 

p<0.01.

Zhu et al. Page 15

Oncogene. Author manuscript; available in PMC 2010 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Effect of Ubc9 on miRNA expression
A, MDA-MB-231 cells transfected with vector alone or Ubc9-WT were subject to miRNA 

profiling by QuantiMir real-time PCR. Shown here is the initial profiling result based on 

ΔCt values. B, Secondary profiling result for 35 miRNAs which were most differentially 

expressed. It is obvious that Ubc9 represses miR-224 (dark red); at the same time, Ubc9 

upregulates miR-200b and miR-559 (dark red). Relative miRNA levels were expressed as 

fold changes based on ΔΔCt values (Ubc9 vs vector control after normalization with U6), C, 

Further confirmation of the negative effect of both Ubc9-WT and Ubc9-DN on miR-224 by 

TaqMan real-time PCR. D, Ubc9-siRNAs enhances miR-224 expression, as detected by real-

time PCR. The values in C and D are means ± SE of three independent experiments. **, P< 

0.01.
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Fig. 4. While miR-224 suppresses, anti-miR-224 enhances cell invasion
A, Ectopic expression of miR-224 suppresses cell invasion. MDA-MB-231 cells were 

infected with vector (pCDH) or miR-224 expression vector (miR-224) and then were subject 

to cell invasion assays as described in Materials and Methods. B, Anti-miR-224 enhances 

cell invasion. MDA-MB-231 cells were transiently transfected with scrambled LNA oligo 

(scrambled) or anti-miR-224 LNA oligo. The cells were subjected to invasion assays 2 days 

after transfection. C, Ubc9-mediated invasion can be blocked by miR-224. Stable transfected 

MDA-MB-231 cells (Vector pCMV or Ubc9-WT) were first infected with vector (pCDH) or 

miR-224. Two days later, the cells were subjected to invasion assays as described in 

Materials and Methods. Values in A, B, and C are means ± SE of three independent 

experiments. ** p<0.01. Representative fields of invaded cells are shown either on the right 

(A and B) or above the chart (C).
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Fig. 5. Identification of CDC42 and CXCR4 as direct targets for miR-224
A, A putative miR-224 binding site in the CDC42-UTR. The sequence in red matched with 

the miR-224 seed sequence (underlined) was deleted in Luc-CDC42-UTR-d. B, Effect of 

miR-224 on the luciferase activity of Luc-CDC42-UTR (CDC42-UTR) and Luc-CDC42-

UTR-d (CDC42-UTR-d). 293T cells were transfected with Luc-CDC42-UTR along long 

with vector control (V) or miR-224 (224), scrambled LNA oligo (SC) or anti-miR-224 LNA 

oligo (Anti). Similarly, 293T cells were transfected with Luc-ATF2-UTR (ATF2-UTR) 

along with vector control or miR-224. Luciferase assays were carried out 24 h after 

transfection. Only one normalized vector control (100%) is shown here. ATF2-UTR serves 

as a negative control. C, Suppression of the endogenous CDC42 protein by miR-224 in 

MDA-MB-231 cells. D, A putative miR-224 binding site in the CXCR4-UTR (in red) which 

was deleted in Luc-CXCR4-UTR-d. E, Effect of miR-224 on the luciferase activity of Luc-

CXCR4-UTR (CXCR4-UTR) and Luc-CXCR4-UTR-d (CXCR4-UTR-d). Luciferase assays 

were performed same as in B. F, Suppression of the endogenous CXCR4 protein by 

miR-224 in MDA-MB-231 cells. The values in B and D are means ± SE of three 

independent experiments. **, P< 0.01; n.s, not significant.
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Fig. 6. Suppression of CDC42 and CXCR4 inhibits Ubc9-mediated cell invasion
A, Western blot reveals upregulation of CDC42 and CXCR4 in Ubc9-DN and Ubc9-WT 

cells, respectively. B, Suppression of CDC42 and CXCR4 by RNAi. MDA-MB-231 cells 

were infected with CDC42 or CXCR4 shRNA and their expression levels were detected by 

western blot. C, Both CDC42 and CXCR4 shRNAs suppress cell invasion. The cells as 

indicated were subject to Matrigel chamber assays as detailed in Materials and Method. 

Values were means ± SE of three independent experiments.
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