
Research Article
Automated White Matter Hyperintensity Detection in Multiple
Sclerosis Using 3D T2 FLAIR

Yi Zhong,1,2 David Utriainen,2 Ying Wang,3 Yan Kang,1 and E. Mark Haacke1,2,3,4

1 School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, Liaoning 110004, China
2Magnetic Resonance Innovations Inc., 440 E. Ferry Street, Detroit, MI 48202, USA
3Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
4Magnetic Resonance Imaging Institute for Biomedical Research, 440 E. Ferry Street, Detroit, MI 48202, USA

Correspondence should be addressed to E. Mark Haacke; nmrimaging@aol.com

Received 11 April 2014; Revised 9 July 2014; Accepted 10 July 2014; Published 22 July 2014

Academic Editor: Sos Agaian

Copyright © 2014 Yi Zhong et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

White matter hyperintensities (WMH) seen on T2WI are a hallmark of multiple sclerosis (MS) as it indicates inflammation
associated with the disease. Automatic detection of the WMH can be valuable in diagnosing and monitoring of treatment
effectiveness. T2 fluid attenuated inversion recovery (FLAIR) MR images provided good contrast between the lesions and other
tissue; however the signal intensity of graymatter tissue was close to the lesions in FLAIR images thatmay causemore false positives
in the segment result. We developed and evaluated a tool for automated WMH detection only using high resolution 3D T2 fluid
attenuated inversion recovery (FLAIR) MR images. We use a high spatial frequency suppression method to reduce the gray matter
area signal intensity. We evaluate our method in 26MS patients and 26 age matched health controls. The data from the automated
algorithm showed good agreement with that from the manual segmentation. The linear correlation between these two approaches
in comparing WMH volumes was found to be 𝑌 = 1.04𝑋 + 1.74 (𝑅2 = 0.96). The automated algorithm estimates the number,
volume, and category of WMH.

1. Introduction

Multiple sclerosis (MS) is considered an autoimmune inflam-
matory demyelinating disease affecting the central nervous
system. It manifests as white matter hyperintensities (WMH)
as seen on T2-weighted imaging (WI) using magnetic reso-
nance imaging (MRI). The high signal intensity lesions are a
hallmark of MS and are believed to represent inflammation
associated with the disease. It has been reported that WMH
lesion volume and brain atrophy are independent risk factors
for conversion to MS [1, 2]. After diagnosis, MS patients
are followed longitudinally and often receive MR imaging
multiple times to monitor lesion development. This neces-
sitates the need for a tool which radiologists, neurologists,
and MS researchers can use to quantify parenchymal WMH
accurately and efficiently.

Although T2-weighted imaging remains important in
imaging MS patients, its ability to delineate WMH is usually
hampered by the fact that WMH and cerebral spinal fluid

(CBF) are both bright. This drawback is overcome by using
T2-weighted fluid attenuated inversion recovery (FLAIR)
which suppresses the CSF signal and yet maintains good con-
trast between the lesions and the whitematter (WM). Despite
this advantage, several challenges remain for quantifying
WMH with FLAIR images, including (1) decreased contrast
between gray matter (GM) and WM especially in elderly
patients; (2) the major spatial variations in the MR images
caused by variable radiofrequency response across the brain
(this is referred to as the bias field); and (3) background noise
whichmakes it difficult to separate lesions fromwhite matter.
Our goal in this paper is to create an automated white matter
lesion detection algorithm which is capable of estimating the
volume ofWMH accurately, allowing for future ease of use in
a clinical setting.

Many automatic WMH quantification techniques for MS
lesion detection are reported in the literature [3–7]. Most
involve the use of various MRI techniques including T1WI,
T2WI, spin density WI, and 2D FLAIR. Although using
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Figure 1: Overall work flow of the automatic quantification of WMH using 3D FLAIR images.

multiple data sets provides more objective information to
identify the WMH, it requires more time and co-registration
processes are needed. Comparing 2D FLAIR image and 3D
FLAIR images, the latter provide the best resolution, signal-
to-noise, and contrast-to-noise and minimize partial volume
effects for detecting WMH [8, 9]. Our goal is to use only 3D
T2 FLAIR images to automate the extraction of brain volume,
CSF volume, ventricle volume, WMH count, and WMH
volume and to automate the categorization of the WMH
based on their locations into either deepWMhyperintensities
(DWMH) or periventricular hyperintensities (PVH).

2. Materials and Methods

2.1. Data Acquisition. Twenty-six (26) MS patients (age
range: 27–51 years, obtained from Synergy Health Concepts,
CA) with a diagnosis of relapsing-remittingmultiple sclerosis
(RRMS) and twenty-six (26) age matched healthy controls
(obtained from Wayne State University, MI) were imaged
using 3T Siemens scanners (Siemens, Erlangen, Germany).
A TRIO scanner was used at Synergy Health Concepts
while a VERIO scanner was used at Wayne State University.
Institutional review board approval was obtained for this
study from both locations and all subjects signed informed
consent.MS patient and volunteer data were collected using a

12-channel head and neck coil arrangement at both sites. Both
scanners used the same 3D T2 FLAIR sequence parameters.
The imaging parameters for the 3D T2 FLAIR sequence were
repetition time (TR) = 6000ms, echo time (TE) = 396ms,
inversion time (TI) = 2200ms, flip angle (FA) = 120∘, 𝑁𝑥 ×
𝑁𝑦 = 512 × 512, field-of-view (FOV) = 256mm × 256mm,
in-plane resolution = 0.50mm× 0.50mm, and slice thickness
= 1.0mm.

2.2. Data Processing. Two novel concepts are introduced to
separate WM from the surrounding tissue. One is a high
spatial frequency suppression method to remove false GM
boundary contributions and the other is a shape-dependent
approach to segmentWMHfromother confounding contrast
changes, since conventional threshold segmentationmethods
contain numerous false positives. The overall workflow, as
illustration of Figure 1, our proposed method consisted of
seven steps: (1) skull stripping for the removal of the nonbrain
tissue; (2) bias field correction for RF field inhomogeneity;
(3) CSF sulcus and ventricle segmentation; (4) removal of
high spatial frequency GM areas (with the receiver operating
characteristic [ROC] curve being used to determine the
Hanning high pass window size and other relevant param-
eters) for WMH segmentation; (5) small lesion detection,
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for lesions less than 0.025mL; (6) estimating the lesions
volume; and (7) automatic labeling of the lesions as DWMH
or PVL.Those lesions with a distance less than 3.0mm to the
edge of the ventricle were considered PVH, while all others
were considered DWMH. We describe below the detailed
implementation of each step.

2.2.1. Preprocessing: Skull Stripping. In order to apply skull
stripping to the 3D T2 FLAIR images, we developed a
moment of inertia structure tensor method, which is used for
brain surface detection, combined with local morphology to
remove nonbrain tissue (previous work in [10]).

2.2.2. Preprocessing: Bias Field Correction. For the bias field
correction, a modified homodyne high pass filter approach
similar to that used in phase processing for susceptibility
weighted imaging [11, 12] and later proposed by Axel et al. for
magnitude imaging [13] was applied via

𝑢 (𝑥) =
V (𝑥)
𝑏 (𝑥)
= V (𝑥) ⋅

𝜅

LPF (V (𝑥))
, (1)

where 𝑢(𝑥) is the inhomogeneity free image, V(𝑥) is the
original image, 𝑏(𝑥) is the bias field estimate image, and V(𝑥)
is a filtered, dilated version of V(𝑥) as described next. LPF
stands for low pass filter, while 𝜅 is a constant based on the
most populated signal (the mode) in the brain. The idea is to
use the LPF version of V(𝑥) to estimate low spatial frequency
bias field effects. However, this approach itself produces edge
effects wherever there are high contrast regions in the brain
or at the boundary of the brain. To alleviate this problem,
we modified the original image V(𝑥) to smooth the image.
First, we used dilation to extrapolate the brain V(𝑥) in order
to reduce high spatial frequency edge artifacts. In order to
get smooth edge expansion, we used a 3 × 3 template to
do grayscale dilation over 20 iteration for the brain edge
expansion.This new image is then referred to as V(𝑥). Finally,
the bias field image was estimated by low pass filtering of
V(𝑥). The original image V(𝑥) is then normalized to the LPF
V(𝑥), which is then multiplied by 𝜅 as shown above.

2.2.3. CSF and Ventricle Extraction. Once the brain has been
isolated, the predominant three tissues remaining (in the
order of decreasing signal intensities) are GM,WM, and CSF.
If there is sufficient contrast between WM and CSF, then
we can use the Otsu [14] algorithm to determine statistically
the best threshold to remove the pixels with low CSF signal.
A binary mask is generated for any value lower than the
threshold and the resulting image is then considered as the
CSF mask image. Because of the fact that CSF occupies
both the subarachnoid space and the ventricle, based on the
anatomic connectivity of the subarachnoid and ventricular
systems,we applied a large scale 3D erosion of the brain image
and multiplied it by the CSF mask image; for the 3D erosion
template size we use a ball radius of 50 pixels about 25mm
to make sure we remove most CSF surrounding the brain.
The largest remaining connected volume was labeled as the
ventricular CSF.

2.2.4. WMH Segmentation with High Spatial Frequency Sup-
pression. White matter lesions have higher intensity and
generally clear boundaries relative to the surrounding WM.
Unfortunately, in the 3D T2 FLAIR images, the GM can also
present with high signal intensity, especially in elderly people.
This leads to numerous false positives when attempting to
isolate WMH. However, GM structures tend to be narrow;
thus they have predominantly high spatial frequency compo-
nents. If we removed these components, which often tend to
mimic lesions in their signal intensities, it may be possible to
eliminate many of these false positives. To accomplish this,
we created a new low pass filtered image defined via

𝑢

(𝑥) = 𝑢 (𝑥) − 𝜆 ⋅HP (𝑢 (𝑥)) , (2)

where 𝑢(𝑥) is the original image, HP(𝑢(𝑥)) is the high pass
filtered version of 𝑢(𝑥), and 𝜆 is a constant to be determined.
There are three parameters that affect the lesion segmentation
result: the window size of the high pass filter, the constant 𝜆,
and a WMH threshold value. This threshold is chosen to be
1.2 ⋅ SWM + 4 ⋅ 𝜎WM, where SWM is the mean value of the WM
over the entire brain and 𝜎WM is the standard deviation of the
noise. The factor of 1.2 raises the baseline of the WM signal
closer to that of the GM signal. This is a very conservative
threshold designed to avoid false positives. A typical patient
case from the patient’s group (with many lesions and a total
WMH volume more than 10mL) was chosen to analyze the
receiver operator characteristic (ROC) curve to determine
the high pass filter window size and 𝜆 which minimize the
number of false positives. The segmentation results of the
candidate lesions were labeled in 3D, and their distance
from the ventricular CSF and their fractional anisotropy (FA)
values were calculated. Here we use FA value to denote the
shape character of the candidate lesion, using the moment of
inertial structure tensor [15] instead of the diffusion tensor to
calculate FA value. The candidate lesions signal intensity was
weighted to calculate the eigenvectors in three orthogonal
directions. Finally, candidate lesions were removed if they
had either a very small distance to the cortical CSF (2.0mm)
in the sulci or a very thin prolate spheroid shape (high FA
value over 0.6).

2.2.5. Small Lesion Segmentation. The high frequency sup-
pression step not only removes the GM boundary false
positives, but also tends to remove small lesions (since they
are intrinsically high spatial frequency in nature). Here, we
define a lesion with less than 0.025mL (100 pixels) as a
small lesion. These can be detected using a higher threshold
(1.2 ⋅ SWM + 4 ⋅ 𝜎WM) in the bias field corrected image.
Then the distance from CSF, FA characteristic and ventricle
information were utilized to remove the false positives.

2.2.6. Lesion Volume Estimation. Since the edges of bigger
lesions were removed in step 4, and only the highest com-
ponents of the smaller lesions were kept in step 5, we applied
a region growing algorithm (dynamic programming) [16] to
return the candidate lesions to their actual size. From this
point, the number of lesions and the size and intensity of
information of each lesion can be measured.
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2.2.7. Categorizing the Lesions. Finally, the ventricle position
information can be used to determine the category of the
lesions.Those lesions with an edge that is less than 3.0mm to
the ventricles are classified as PVHwhile the rest are classified
as DWMH.

2.3. Human Interfacing and Correction Schemes. The total
number of lesions and the volume of the lesions were
measured through manual segmentation to generate a gold
standard for lesion number and volume. To assess the agree-
ment between the gold standard and the proposed method,
we used the similarity index (SI) measures:

SI =
2 ⋅ (𝑉auto ∩ 𝑉GS)

𝑉auto + 𝑉GS
, (3)

where 𝑉auto denotes the lesion area obtained from automated
segmentation and𝑉GS is the gold standard obtained from the
processor’s manual segmentation (two processors reviewed
each other). The SI value ranges from zero to unity, with zero
for total disagreement and unity for a hundred percent agree-
ment of the twomethods.The algorithmwas implemented in
C++ and integrated into our in-house software SPIN (Signal
Processing in NMR, Detroit, Michigan).

3. Results

In order to evaluate the method as a whole, the high spatial
frequency suppression parameters were first optimized. This
was done using the ROC curve approach as shown in Figure 2
where we plot the similarity index as a function of both filter
size and constant value 𝜆 used to enhance the reduction
of high spatial frequency or GM edge information. These
results suggest that the best choice of high pass window
size is 130 pixels with a 𝜆 value of 1.2. With these variables
fixed, the algorithm can be run automatically and compared
to a manual segmentation approach. An example set of
processed images is shown in Figure 3.TheDWMHandPVH
were denoted by black contour and white contour. The total
processing time for each case takes less than 5 minutes (Intel
i7 2.8GHz, 8G RAM).

The scatter plot of the WMH volume obtained using
both the manual segmentation and the automated method
is shown in Figure 4. The correlation between these two
approaches in comparing WMH volumes for all 26 MS cases
was found to be 𝑌 = 1.04 ⋅ 𝑋 + 1.74 (𝑅2 = 0.96). Clearly, the
age matched healthy controls showmuch lessWMH than the
MS patients.The results for the similarity index for theWMH
volume reveal that the larger lesions were well detected by
the proposed method (Figure 5). A review of three random
cases showed that lesions as large as 0.15mL could be missed
if the contrast-to-noise in that area was poor but most lesions
missed were closer to 0.012mL.

4. Discussion

We have presented an effective method for automatic seg-
mentation of WMH using 3D T2 FLAIR images. FLAIR
imaging is one of the most popular protocols for MS. In

particular, it has been shown that 3D FLAIR reveals more
lesions than conventional axial T2WI [17]. Using 3D FLAIR
also avoids the need for registration or collection of different
datasets such as T1WI, T2WI, and spin density WI when
brain volume and lesion load are needed. This algorithm is
easy to set up for batch processing of data collected from
the same site with the same imaging parameters for each
patient. The output of this algorithm includes lesion number,
volume, and lesion type such as PVHorDWMH.Aparticular
strength of this approach is that all the image processing steps
are integrated within a single interface, with a clear work flow
interface that allows the user to change options as desired.
Several semiautomated and manual assist methods are also
provided to allow the user to override some of the automated
components.

Other methods to segment WMH have been presented
in the literature [5]. Most other approaches require more
than one type of imaging technique. For example, Khayati
et al. [18] used 2D FLAIR images with low resolution and
the partial volume effect reduced the accuracy of the seg-
mentation results. More recently, Simões et al. [6] developed
an automatic segmentation using only 3D FLAIR images but
required BET and FAST for the preprocessing and 3D Slicer
for evaluation. To the best of our knowledge, our approach
is the only integrated software tool using only 3D FLAIR
images.

The choice of 𝜆 also had an effect on the scaling factor
used to raise the WM baseline level to that of the GM when
the threshold 𝑝 ⋅ SWM + 4 ⋅ 𝜎WM is used. For 𝜆 = 1.2, p
was 1.2 while for 𝜆 = 1.4, p was 1.0. We chose the former
based on its higher similarity index. The factor of 4 ⋅ 𝜎WM
appears in the thresholding for small lesions because the
background variation of WM was such that the usual choice
of 2 ⋅ 𝜎WM or 3 ⋅ 𝜎WM still captured false positives.

This study has several limitations. First, the false positives
caused by the gray matter boundaries are problematic. We
have made major strides in dealing with this by using our
high pass filter approach, but there still remained a few false
positives that escaped automatic removal. Figure 5 shows the
relationship between the similarity index and the candidate
WMH volumes. The cases with total lesion volume over
0.5mL achieved the highest similarity index values (average
SI = 0.77). Second, the optimal data processing parameters are
dependent on the imaging parameters. If the FLAIR imaging
parameters are changed significantly, it may be necessary to
redo the ROC analysis to find the optimal parameter settings.
Third, we use the location of the lesions relative to CSF in
the sulci to remove false positive lesions from GM. However,
some of these cannot be easily detected. In addition, the
lesions in the GM may also be falsely removed, if they are
too close to the CSF. The type of lesion was classified by its
distance from the nearest ventricle edge. When the ventricles
could not successfully extracted then the lesions could not be
classified correctly.

In conclusion, we have developed an algorithm that
automatically estimates the volume and category of WMH
using a 3D T2 FLAIR series of images. The automated
quantitative algorithm has been shown to correlate well with
the manual segmentation result. This approach should make
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Figure 3: A 3D sagittal view FLAIR brain image. (a) Original images; (b) after skull stripping and bias field correction; (c) after high pass
suppression of GM edges; and (d) the final segmentation of lesions and assignment of their locations (black contour for DWMH, white
contour for PVH).
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it easier to study how the lesion load relates to other factors
inMS and to monitor the number and volume of lesions over
time.
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