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Abstract
Background  Intrauterine growth restriction (IUGR) may directly affect cardiovascular function in early life. Longitudinal data 
on left ventricular longitudinal strain (LVLS), a key measure of cardiac function independent of body size, is not available. 
We hypothesize impaired cardiac function among IUGR newborns and persistence of the impairment until age 3 months.
Method  This is a prospective cohort study of consecutive pregnancies where IUGR was identified at 18–38 weeks gesta-
tional age (GA) with healthy controls randomly selected at 18–20 weeks GA. Echocardiograms were performed at birth and 
at age 3–4 months, and then compared.
Results  At birth, mean (SD) LVLS did not differ between the IUGR group [N = 19; − 15.76 (3.12) %] and controls 
[N = 35; − 15.53 (3.56) %]. The IUGR group demonstrated no significant change in LVLS at age 3–4 months [− 17.80 
(3.82) %], while the control group [− 20.91 (3.31) %] showed a significant increase (P < 0.001). Thus, LVLS was lower in 
the IUGR group at age 3–4 months (P = 0.003).
Conclusion  The lack of increase in LVLS may suggest that IUGR has a direct impact on cardiac function as early as during 
the first months of life.
Trial registration Clinical trials.gov Identifier: NCT02583763, registration October 22, 2015. Retrospectively registered 
September 2014–October 2015, thereafter, registered prospectively.

Keywords  Cardiac strain · Cardiac function · Fetal growth retardation (FGR) · Intra-uterine growth restriction (IUGR) · 
Infant

Impact Statement

•	 No change in left ventricular longitudinal strain (LVLS) 
was observed among IUGR infants between birth and age 
3–4 months.

•	 LVLS significantly increased in controls during the same 
period, resulting in the finding of lower LVLS among 
IUGR infants compared with controls at age 3–4 months.

•	 Lack of increase in LVLS among IUGR infants may sug-
gest an impact on cardiac function as early as the first few 
months of life.

Introduction

Low birthweight is associated with development of ischemic 
heart disease, hypertension, and type 2 diabetes later in life 
[1]. Cardiovascular disease may result from fetal metabolic 
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programming, leading to early development of insulin resist-
ance [2]. Intrauterine growth restriction (IUGR) may also 
have a direct impact on cardiovascular function in the fetus, 
neonate, and young child [3–6]. IUGR is common among 
children born preterm [7] and preterm birth itself increases 
the risk of clinical heart failure during childhood and pre-
adolescence [8], while also being a risk factor for cardiovas-
cular disease later in life [9].

IUGR neonates have smaller, more spherically shaped 
hearts at birth than do controls [10, 11]. These changes per-
sist at both one and six months post term [12] and may last 
up to 8–12 years of age [13], one study describes these ana-
tomical differences at one month post-term, but not at six 
months or beyond [4].

Echocardiographic parameters reported from studies of 
the fetus and newborns with IUGR demonstrate a differ-
ence in left ventricular stroke volume, cardiac output, and 
the myocardial performance index between IUGR neonates 
and controls as early as the first days after birth. Diastolic 
left ventricular function is affected by IUGR, showing a ten-
dency toward an elevated ratio between early mitral inflow 
velocity and mitral annular early diastolic velocity, as well 
as impaired left ventricular isovolumetric relaxation time 
[14, 15].

Children born preterm show changes in both cardiac 
morphology and cardiac function similar to those described 
among IUGR children at birth and in childhood [4, 5].

Most prior studies of left ventricular systolic function in 
IUGR children have not demonstrated alterations in ejec-
tion fraction (EF) [3] while echocardiographic determina-
tions of longitudinal myocardial strain have shown changes 
associated with IUGR before and after birth [16, 17]. Strain, 
quantified as deformation of the myocardium expressed as 
a percentage of uncontracted size, has been proposed as a 
more sensitive parameter for detection of subclinical left 
ventricular dysfunction in an array of other conditions 
[18–20]. IUGR infants demonstrate less LVLS one week 
post-term than age-matched appropriate for gestational age 
(AGA) controls [21], suggesting compromised postnatal 
systolic function in the former group. Lower LVLS was 
also observed in IUGR-born children at 8–12 years of age 
compared with AGA controls [13]. Infants born extremely 
preterm show a gradual increase in LVLS from birth until a 
few weeks before their estimated due date [22].

In normal pregnancy, fetal LVLS does not change sig-
nificantly with gestational age (GA) [23]. Systematic meta-
analysis of left ventricular strain based on aggregated cross-
sectional data has established reference ranges for newborns 
[24] and for children and adolescents [25]. Children aged 
one to 18 years show a minimal yet significant decrease in 
LVLS with age [26].

Thus, previous cross-sectional data indicate that IUGR 
infants, often born preterm as well, have impaired cardiac 

function involving a variety of morphological and echo-
cardiographic parameters at birth and during childhood 
compared with unaffected infants. LVLS varies with age, 
although changes in LVLS with repeated examinations of 
the same cohort over time have not been reported.

Among fetuses identified as having IUGR, we studied 
cardiac function in the newborn and longitudinally in the 
growing child with assessment of LVLS and other echocar-
diographic parameters. Here, we present data obtained at 
birth and at age three months and compare them with data 
from controls from normal pregnancies. Our overarching 
hypothesis is that cardiac function is impaired in the IUGR 
newborn and that this impairment persists through the first 
3 months of life.

Subjects and Methods

Subjects

This is a prospective cohort study of consecutive IUGR 
pregnancies, as defined by a fetal weight at least 2.5 SD 
under or 22% lower than predicted fetal weight for GA 
[27], and/or as a 10% or greater drop in fetal growth veloc-
ity based on the weight that would be predicted from the 
most recent ultrasound examination. Such pregnancies were 
identified from routine fetal ultrasound examinations per-
formed during the interval from GA 18–20 weeks and up 
to 38 weeks, as part of standard clinical care at the tertiary 
referral university center in Linköping, Sweden. The goal 
was to include a total of 20 IUGR pregnancies. Inclusion 
was based on ultrasound-confirmed IUGR as defined above.

From pregnancies where fetal weight was estimated to be 
within normal limits [at 18 weeks a mean (SD) of 196 (20) g 
and at 20 weeks 293 (35) g] [27] during routine ultrasound 
examinations at GA 18–20 weeks, we randomly selected 
controls at regular intervals during the inclusion period, aim-
ing for a total of 40 controls. Two prenatal examinations, 
separated by a four-week interval, were performed starting 
at week 28. The inclusion period ranged from Sept. 2014 to 
June 2018.

Exclusion criteria included significant malformations, 
twin pregnancy, intrauterine infections during pregnancy, 
and serious maternal disease requiring treatment, as well as 
participation in any interventional study.

Protocol

Echocardiography was performed 12–72 h and 3–4 months 
after birth in both IUGR and control infants. Standard-
ized 4-chamber cine loops were recorded for blinded off-
line analysis (Vivid E9 and E 95, GE Healthcare Horten, 
Norway). Velocity vector imaging v. 2.0 (VVI, Siemens 
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Healthcare, Erlangen Germany) was used to determine car-
diac motion by tracking the grey scale image.

Measurements

Images of high-technical quality were selected from each 
examination and anonymized. Loops of 1–3 beats were ana-
lyzed three times (one observer) and the mean values were 
calculated. Longitudinal velocity, displacement, and LVLS 
were assessed tangential to the endocardial outline. When 
analyzing the 4-chamber cine loops, the left ventricle was 
divided into six segments; longitudinal velocity and dis-
placement were calculated from the basal segments. LVLS 
was calculated for all six segments, from which the aver-
age of the two basal segments and the two middle segments 
was reported as LVLS. Apical segments were excluded due 
to software limitations. Sufficient quality of the 2-chamber 
and 3-chamber views were not obtained in all subjects. To 
avoid missing data, we therefore, report LVLS obtained from 
the 4-chamber view. Data from the 2-and 3-chamber images 
with good quality did not differ systematically from those 
obtained in the 4-chamber view.

We follow the EACVI/ASE/Industry Task Force recom-
mendation referring to strain as an absolute value, which 
means that increasingly negative values were reported as 
increases in LVLS [28].

The sphericity index (SI) was calculated by measuring 
left ventricular length in diastole and dividing by maximum 
diameter in diastole, as obtained from the standard 4-cham-
ber view. Left ventricular mass was calculated from meas-
urements in the parasternal long axis projection using the 
Devereux formula [29].

Birth weight corrected for GA and postnatal weight SD 
were calculated by extrapolation using reference values 
obtained from standard Swedish growth charts [30].

Reproducibility

To assess interobserver variability, 10 randomly selected 
subjects were identified—3 IUGR infants and 7 controls. 
Two operators carried out LVLS measurements on the same 
images at birth and at 3–4 months of age. The population 
mean for the two assessors was 17.31 with a mean difference 
of 0.788 and an intraclass correlation coefficient (ICC) of 
0.90, which is consistent with high agreement.

Data Analysis

Sample size and power calculations were performed based 
on publications showing annular velocity data [31, 32], 
obtaining a power of 80% and a significance level of 5%, 
assuming 20% variation in SD.

The data in this report are presented as a mean (SD) or 
a median (interquartile range, IQR) as appropriate. Normal 
distribution was checked with the Shapiro–Wilk test. For 
comparison independent samples T test and paired sam-
ple T test were used to analyze normally distributed data. 
Mann–Whitney U test and the Wilcoxon Signed Rank test 
was used for skewed data. The results include data on all 
subjects remaining at any particular timepoint and were 
analyzed using IBM SPSS Statistics software, RRID:SCR 
019096, (IBM, Armonk, New York, United States).

Ethical Approval

Ethical approval was obtained from the Regional Ethical 
Review Board in Linköping Sweden (Ref. No. 2012/257-
31). Written informed consent was obtained from the parents 
prior to inclusion of the infant and the study was registered 
at clinical trials.gov, Identifier: NCT02583763, registration 
October 22, 2015. Retrospectively registered September 
2014–October 2015, thereafter, registered prospectively.

Results

The study included 21 IUGR infants, mean GA 33.3 (range: 
29.5–35.2) weeks, of whom 19 were available for follow up 
(Fig. 1). Of the 40 controls included at a mean GA of 19.3 
(18.9–19.7) weeks, 35 were available for follow-up (Fig. 1). 
Table 1 shows that the IUGR infants demonstrated a mean 
deviation in weight of -28% (range: − 38 to − 25) at inclu-
sion and remained growth retarded with a mean weight − 2.9 
(1.27) SD lower at birth compared with controls, a signifi-
cant difference. In addition, the IUGR infant group was born 
at an earlier GA; 6 required ICU admission, although they 
did not need ventilator treatment or inotropic medication. All 
but two of the IUGR infants demonstrated catch-up growth 
with a mean weight gain of 2.2 (1.5) SD, but still had a sig-
nificantly lower SD in weight when echocardiography was 
repeated at age 3–4 months. The SD in weight of controls 
was close to the reference mean on both assessment occa-
sions (Table 1). 

The only difference between IUGR mothers and control 
mothers was a higher diastolic blood pressure in early preg-
nancy and prior to delivery in the former group (Table 1).

Initial echocardiographic examinations were performed 
on IUGR infants 44 (18) hours post-delivery and on con-
trols at 47 (24) hours (Table 2). The 3–4 month examina-
tions of IUGR infants were conducted on average at day 116 
(95–137) chronological age (CA) and day 100 (57) gesta-
tionally corrected age (GCA). The corresponding examina-
tions on controls were performed on day 116 (23) CA and 
day 116 (25) GCA.
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Left Ventricular Longitudinal Strain

LVLS did not differ between the groups at birth (Table 2). 
In IUGR infants, no change in LVLS was observed between 
birth and age 3–4 months. In contrast, LVLS among con-
trols increased significantly during this period (P < 0.001). 
Thus, LVLS was lower in IUGR infants than in controls 
(P = 0.003) at age 3–4 months. Figure 2a and b show indi-
vidual plots of LVLS over time in relation to GCA. 

To analyze the lack of a normal increase in LVLS in the 
IUGR group, we performed univariate correlation analysis 
in all subjects, considering the two groups as a continuum. 
This showed a positive correlation between the increase 
in LVLS (birth to 3–4 months) and both prenatal weight 

deviation at inclusion (R = 0.310, P = 0.032) and birth 
weight (R = 0.277, P = 0.046). In addition, the increase in 
LVLS (birth to 3–4 months) correlated positively with GA 
(R = 0.296, P = 0.033), but not with birth weight stand-
ard deviation score (SDS) (R = 0.232, P = 0.098). We 
also found that LVLS at age 3–4 months correlated posi-
tively with both weight deviation at inclusion (R = 0.389, 
P = 0.006) and birthweight (R = 0.342, P = 0.012), but cor-
related negatively with weight SDS gain between birth and 
age 3–4 months (R = 0.320, P = 0.019). However, LVLS at 
age 3–4 months also showed a positive correlation with GA 
at birth (R = 0.366, P = 0.007). Children in whom LVLS 
was lower did not differ on an individual basis from the 
remaining children with increasing LVLS regarding GA, 

Fig. 1   Flow diagram of progress throughout the study
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birth weight, birth weight SDS, or weight gain SDS. None 
of these variables showed significant correlation in a multi-
variate regression model.

Heart Dimensions

The left ventricular mass index (LVMI) in the newborn was 
significantly lower in the IUGR group with smaller hearts 
(28.2 vs. 33.7 g/m2; P < 0.01) (Table 2), but after catch-up 

growth at age 3–4 months the IUGR infants had a larger 
LVMI (37.7 vs. 35.5 g/m2; P < 0.05).

The left ventricular sphericity index was higher at birth 
in IUGR newborns compared with controls, indicating a less 
spherical ventricle in the IUGR group (P < 0.05). However, 
the sphericity index decreased in the IUGR group and by age 
3–4 months there was no longer any difference compared 
with controls.

Table 1   Characteristics of the 
study group

IUGR versus Control
SBP systolic blood pressure, DBP diastolic blood pressure
P value: †  < 0.05, ††  < 0.01, †††  < 0.001

IUGR​ Control

Fetus
N 19 35
Prenatal weight deviation, %  − 28(− 38 to 25)% †††  − 1.3 (8.9)
Gestational age at 1st ultrasound, weeks 31.8 (5.0) 29.7 (3.2)
Newborn
N 19 35
Girls, N (%) 9 (47) 17 (49)
Gestational age at birth, weeks 36.4 (3.9)††† 39.7 (1.5)
Birth weight, gram 2077 (773)††† 3415 (381)
Birth weight, SD  − 2.91 (1.27)††† 0.75 (0.13)
Apgar score at 5 min 9.5 (1.43) 9.9 (0.36)
Ventilator, N (%) 0 (0) 0 (0)
Intensive care unit, N (range of days in ICU) 6 (8–54) 0 (0)
3–4 months
N 18 35
Girls, N (%) 8 (44) 17 (49)
Weight SDS  − 0.69 (1.46)†† 0.3 (0.79)
Weight SDS change from birth to 3–4 months of age 2.22 (1.49)††† 0.4 (0.96)
Mothers
Age at birth, years 31.8 (5.50) 30.0 (5.35)
BMI at birth 27.7 (5.35) 29.5 (2.33)
Prior pregnancies, grava 2.8 (1.78) 2.6 (1.54)
Prior deliveries, para 0.9 (1.41) 1.0 (0.97)
Weight gain during pregnancy, kg 14.5 (13.4) 13.9 (10.6)
Hemoglobin in early pregnancy, g/L 126 (9.63) 125 (9.20)
Proteinuria during pregnancy, N (%) 3 (16) 0 (0)
SBP in early pregnancy, mmHg 110 (105–120) 110 (9.0)
DBP in early pregnancy, mmHg 65 (70–75)†† 70 (11.7)
SBP prior to delivery, mmHg 120 (110–135) 116 (11.0)
DBP prior to delivery, mmHg 80 (70–85)†† 70 (7.5)
Smoking prior to pregnancy, N (%) 2 (10) 3 (9)
Smoking during pregnancy, N (%) 1 (5) 1 (3)
Alkohol at most once a week, N (%) 5 (26) 11 (31)
Alkohol during pregnancy 0 0
Druguse prior pregnancy 0 0
Druguse during pregnancy 0 0
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Longitudinal Displacement and Velocity

Left ventricular longitudinal displacement and velocity at 
birth, corrected for ventricular length, did not differ between 
the groups with the exception of systolic longitudinal veloc-
ity in the lateral wall at age 3–4 months (0.089 vs. 0.105; 
P < 0,01) (Table 2). No change in corrected left ventricu-
lar lateral wall displacement and velocity was observed 
between birth and age 3–4 months in the IUGR group, but 
such changes were significant among controls. Concerning 
the right ventricle, no differences were observed between 
groups either at birth or at age 3–4 months, and no changes 
occurred over time with the exception of minor differences 
in the right free wall.

Discussion

We have observed that LVLS increases in normal non-
affected newborns during the first 3–4 months after birth, 
but such changes were not seen among IUGR infants. This 
paper is the first to present longitudinal data on normal 
developmental changes in LVLS during the first 3–4 months 
of life among infants from non-IUGR pregnancies. Further-
more, our finding that left ventricular systolic deformation in 
IUGR infants does not increase may indicate a propensity for 
cardiovascular disease later in adult life. Since the metabolic 
programming associated with IUGR may require time before 
heart function is impacted, our findings may suggest that 

Fig. 2   a Change in left ventricu-
lar longitudinal strain (LVLS) 
in relation to gestationally 
corrected age (GCA), IUGR. b 
Change in left ventricular longi-
tudinal strain (LVLS) in relation 
to gestationally corrected age 
(GCA), Controls
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IUGR also has a direct impact on cardiac function as early 
as during the first months of life.

However, it’s too early to make any clear conclusion 
about the adult consequences of these early findings and 
future studies needs to confirm the lack of increase in LVLS 
in the early life of newborn IUGR children. Longitudinal 
follow-up of cardiac function into later childhood and adult 
life is necessary.

Few studies address LVLS among IUGR infants. In the 
cross-sectional study by Akazawa et al. [21], small for ges-
tational age (SGA) infants demonstrated an approximately 
10% lower LVLS than controls at one week of age. In their 
study, both the SGA and control infants were born slightly 
preterm (GA around 35 weeks). The SGA infants with IUGR 
had not been identified prior to birth, but the more impacted 
group showed a birth weight SD of − 2.6, which was quan-
titatively similar to the growth retardation seen in our IUGR 
group. Left ventricular strain was determined by a 16-seg-
ment model and examinations were performed approxi-
mately 5 days later than in our study, although the exact 
time was not reported. Our study showed that the IUGR 
group had a non-significant ≈ 15% increase in LVLS at age 
3–4 months, while our controls demonstrated a significant 
≈35% increase. However, our study design does not allow 
us to specify the exact time when this increase occurred.

In preadolescent IUGR children, an 18-segment model 
demonstrated a significant ≈ 5% lower LVLS compared with 
controls, suggesting that these changes persist, at least par-
tially, over time [13].

Although this suggests that IUGR affects cardiac func-
tion, children with growth restriction are also more prone 
to preterm birth [33], for which reason it may be difficult to 
separate the effects of growth restriction from those of pre-
term birth. The mean GA at birth in our study is 36.4 weeks 
in IUGR infants and 39.7 weeks in controls. Since the IUGR 
infants in our study were born more preterm than the con-
trols, the lack of changes in LVLS over time may, to some 
extent, be related to preterm birth. Although our individual 
analysis of GA vs changes in left ventricular strain showed 
that the two most preterm children demonstrated a decrease 
in LVLS between birth and age 3–4 months, our results also 
found that IUGR infants born near term showed decreasing 
LVLS, while IUGR infants born before 37 weeks showed 
increasing LVLS. Moreover, we were unable to ascertain any 
other variables, including birth weight, birth weight SDS, 
or weight gain SDS between birth and age 3–4 months that 
could identify individuals (IUGR or controls) with decreas-
ing LVLS.

James et al. reported that extremely preterm children 
(born week 26–30), who were less affected by IUGR than 
our cohort (12% of the study group below the 10th percen-
tile birth weight SD), had a small but significant increase in 
LVLS between birth and reaching a GCA of 36 weeks [22]. 

However, this study is only relevant as a surrogate control for 
the most preterm IUGR infants in our cohort, given that the 
mean GA at birth among our IUGR infants was 36.4 weeks. 
A cross-sectional study determined LVLS among fetuses in 
utero, showing only a minor increase during the last trimes-
ter [23]. However, this information becomes less relevant in 
the current context due to important changes in hemodynam-
ics and left ventricular function that occur at birth.

The study by Akazawa et al. [21] collected GA-matched 
controls. Our study design did not allow for collection of 
GA-matched controls due to the inclusion of IUGR fetuses 
and non-affected controls and subsequent longitudinal exam-
inations at various timepoints in utero, at birth, and during 
childhood. Our findings—that both LVLS at age 3–4 months 
and the increase in LVLS between birth and age 3–4 months 
show a positive correlation with GA in univariate analy-
sis – support a significant impact of GA on LVLS. Earlier 
studies have found that GA affects postnatal development of 
LVLS in the left free wall, where extremely preterm infants 
(GA 26–30) showed similar LVLS at term-equivalent age 
compared with controls, but lower LVLS at age 6 months 
[34]. This observation is also consistent with our finding 
that LVLS does not correlate with birth weight SDS since 
this parameter increased with GA, suggesting that low GA 
is more important than birth weight SDS as a determinant 
of impaired increase in LVLS during the first three months 
of life among IUGR infants. On the other hand, Cohen et al. 
found that both IUGR and prematurity are independently 
related to subclinical changes in diastolic function with a 
higher ratio of early mitral inflow velocity to mitral annular 
early diastolic velocity among preterm infants, both with and 
without IUGR, but not among term infants without IUGR. 
The Cohen study found no differences in systolic function 
among the three groups [4]. Although it may be difficult to 
fully ascertain the relative importance of IUGR and preterm 
birth, the two are often associated and cause direct effects on 
cardiac function. Metabolic programming may also contrib-
ute to cardiovascular disease later in adult life and both the 
metabolic and direct cardiac mechanisms may explain the 
reduction in LVLS found among adults born both term and 
preterm when compared with controls, all of which suggest 
that the early findings persist into adulthood [35].

We noted rapid weight gain during the first few months of 
life in our IUGR group; catch-up growth has previously been 
suggested to be an independent risk factor for cardiovascu-
lar disease in adult life [36]. We found that children with 
a more pronounced weight SDS gain demonstrated a less 
increase in LVLS at 3–4 months, which is in line with the 
hypothesis that rapid weight gain has a negative impact on 
cardiac function. It also points to the IUGR children with a 
more pronounced weight SDS gain being responsible for the 
lack of LVLS increase in the IUGR group. An association 
has been demonstrated between adult coronary heart disease 
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and catch-up growth to achieve average or above average 
weight between ages 7 and 15 years [37]. Postnatal growth 
up to 6 months of age is more predictive of the risk of devel-
oping elevated blood pressure by age 3 years than is birth 
weight [38]. IUGR infants are at increased risk of develop-
ing metabolic syndrome, type 2 diabetes, insulin resistance, 
and cardiovascular diseases if they experience rapid catch-up 
growth early in life [39]. Finally, rapid weight gain is com-
monly seen in children born with IUGR [40–42] and this 
effect may be related to both IUGR and preterm birth.

Our study also examined heart measurements and found 
that the controls were born with more spherical ventricles than 
the IUGR infants and that this difference disappeared at age 
3–4 months. This finding contrasts with one previous study that 
found a more spherical heart shape among IUGR infants at age 
1 month [3], while yet another study described preterm infants 
born with IUGR as having more spherical heart chambers than 
preterm infants without IUGR at age 1 month [4].

We found that the IUGR-associated differences in myo-
cardial longitudinal velocity and displacement of basal seg-
ments were related to cardiac size, as has been previously 
reported. After correcting for ventricular length, no signifi-
cant group differences were found other than the lack of 
change in displacement or velocity in the left lateral ven-
tricular wall among IUGR infants between birth and age 
3–4 months; such changes during this time interval were 
found to be significant in the control group. When compar-
ing average LVLS in the left lateral ventricular wall, a larger 
difference was noted at age 3–4 months between the IUGR 
group and controls than any changes seen in the septal wall. 
Earlier studies have indicated the presence of a more spheri-
cal heart and left ventricular dilatation secondary to early 
cardiac remodeling among IUGR infants [3], one hypothesis 
states that cardiac remodeling may affect movement of the 
lateral wall more than the septal wall of the left ventricle.

The strength of our study lies in its design of longitudinal 
pre- and postnatal examinations of infants who were identified 
in utero as having or not having IUGR. IUGR pregnancies were 
diagnosed as early as GA week 20 and up to week 37, thereby 
representing a spectrum of early to late onset of growth restric-
tion. Very few infants were excluded or lost to follow-up at the 
3–4-month visit. However, the number of infants in the IUGR 
and control groups is limited, which is typical for this kind of 
study, but this imposes limitations on the ability to analyze sub-
groups (for example, early vs. late growth restriction).

In summary, the IUGR infants in our study, born slightly 
preterm on average, demonstrate an attenuated increase in 
left ventricular longitudinal strain during their first “pre-
term” months of life.
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