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ABSTRACT: There is no doubt that the rate of hydrogen production via the
water splitting reaction is profoundly affected to a remarkable degree based on
the isolation of photogenerated electrons from holes. The precipitation of any
cocatalysts on the substrate surfaces (including semiconductor materials)
provides significant hindrance to such reincorporation. In this regard, a graphite-
like structure in the form of mesoporous g-C3N4 formed in the presence of a
template of mesoporous silica has been synthesized via the known combustion
method. Hence, the resulting g-C3N4 nanosheets were decorated with varying
amounts of mesoporous CoAl2O4 nanoparticles (1.0−4.0%). The efficiencies of
the photocatalytic H2 production by CoAl2O4-doped g-C3N4 nanocomposites
were studied and compared with those of pure CoAl2O4 and g-C3N4. Visible
light irradiation was carried out in the presence of glycerol as a scavenger. The
results showed that the noticeable photocatalytic enhancement rate was due to the presence of CoAl2O4 nanoparticles distributed on
the g-C3N4 surface. The 3.0% CoAl2O4−g-C3N4 nanocomposite had the optimum concentration. This photocatalyst showed
extremely high photocatalytic activities that were up to 22 and 45 times greater than those of CoAl2O4 and g-C3N4, respectively. This
photocatalyst also showed 5 times higher photocatalytic stability than that of CoAl2O4 or g-C3N4. The presence of CoAl2O4
nanoparticles as a cocatalyst increased both the efficiency and productivity of the CoAl2O4−g-C3N4 photocatalyst. This outcome was
attributed to the mesostructures being efficient charge separation carriers with narrow band gaps and high surface areas, which were
due to the presence of CoAl2O4.

1. INTRODUCTION
Currently, fossil fuels have been used to yield approximately 80%
of energy used in the world; hence, an increasing number of
environmental problems and crises have been declared. To
overcome these problems, many ecofriendly sources of renew-
able energy have been classified as important for potential
evolution and progress. Starting from this point, many
researchers have developed the use of another type of fuel,
that is, hydrogen produced from water splitting photocatalytic
systems. These cells used are functional designs used to obtain
clean energy.1−3 In the past decade, a photoelectrochemical
water splitting process for the production of hydrogen and
oxygen in the presence of TiO2 was reported by Fujishima and
Honda.4 This type of conversion involves the transformation of
solar energy to another form of energy, chemical energy. This
conversion can be carried out using different photocatalysts and
constitutes an efficient and appropriate solution to overcome the
most obvious energy and environmental problems.
In addition, two-dimensional semiconductor photocatalysts

have received considerable attention as a result of the
photocatalytic response that they exhibit to visible light.5,6

Among these materials, graphitic carbon nitride, g-C3N4, is a
polymeric metal-free semiconductor with a band gap energy
(Eg) of approximately 2.7 eV, enabling it to absorb the visible
light. It also exhibits many other characteristics, including

nontoxicity, excellent stability, low cost, and versatile structural
properties.7,8 The drawbacks of g-C3N4 nanosheets have been
widely reported in various studies.7−9 Metal or nonmetal
doping, semiconductor coupling, and construction of porous
structures are some of the solutions used to avoid these
drawbacks.10−13 However, these proposed structures still suffer
from a significant number of disadvantages, including the fast
recombination of electron−hole pairs and insufficient absorp-
tion of visible light. Pristine g-C3N4 still displays a considerably
limited performance with respect to photocatalytic activity.14

Heterostructures containing g-C3N4 have been calcified to
produce the best g-C3N4 compositions in the photocatalysis
field, which noticeably promoted photocatalytic achievements
among all previously known types. This outcome may result
from the development of charge carrier separation, which occurs
with each of the catalysts g-C3N4/Ag2MoO4, g-C3N4/Bi2O4, g-
C3N4/perovskite oxide, and g-C3N4/TiO2.
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semiconductors containing CoAl2O4 have been utilized for
photocatalytic decomposition. CoAl2O4 also has a narrow band
gap of 1.80 eV and exhibits a strong response to visible
light.20−30 To the best of our knowledge, hydrogen production
using CoAl2O4−g-C3N4 photocatalysts has not been reported.
In this regard, heterostructure-based CoAl2O4 and mesoporous
g-C3N4 for the formation of CoAl2O4−g-C3N4 were synthesized
by simple sol−gel procedures. The chemical structures of the
resulting products were confirmed using various techniques.
The photocatalytic activities were evaluated for hydrogen
production under visible light. Finally, a likely hydrogen
production mechanism for the mesoporous CoAl2O4−g-C3N4
heterostructured nanocomposites was also proposed.

2. EXPERIMENTAL SECTION

2.1.Materials. EO106-PO70EO106 surfactant was used as a
triblock copolymer with an average MW of 12,600 g/mol (F-
127). Co(NO3)2·6H2O, Al(NO3)3·9H2O, acetic acid, hydro-
chloric acid, and ethanol were all purchased from Sigma-Aldrich.
2.2. Preparation of Mesoporous CoAl2O4. A sol−gel

procedure was used to prepare mesoporous CoAl2O4 using a
structure-directing agent, namely, the F127 triblock copolymer.
The required material was synthesized using molar ratios on the
order of 1:0.02:50:2.25:3.75 for CoAl2O4/F127/C2H5OH/
HCl/CH3COOH, respectively. For example, a solution of 1.6
g of F127 in 30 mL of ethanol was stirred for 60 min. Next, 0.74
mL of HCl and 2.3 mL of CH3COOH were added to the
previous solution, and magnetic stirring was continued for 30
min. Co and Al precursors were weighed out in a 1:2 ratio and
added to the F127−CH3COOH mesophase with additional
stirring for 60 min. A humidity chamber (40%) was used to hold
the prepared mesophase at 40 °C for 12 h to reduce the amount
of ethanol, leading to the formation of a gel. Further aging at 65
°C for 24 h was carried out in the resulting gel. Finally, the
samples were calcined at 600 °C at a heating rate of 1°C/min in
air for 4 h and then cooled at a rate of 2°C/min in order to
eliminate the F127 surfactant and obtain the mesoporous
CoAl2O4 as a final product.
2.3. Synthesis of Mesoporous g-C3N4. Urea and

dicyandiamide were purchased from Sigma-Aldrich. High-
surface-area mesoporous silica (HMS) (∼500−1000 m2 g−1)
was used to prepare g-C3N4 with a large surface area.
Furthermore, pyrolysis of dicyandiamide and urea in air was
performed. The detailed HMS preparation was easily executed

as reported in the literature.31 Approximately 50 mL of distilled
water and 1 g of HMS were dispersed for 30 min. A mixture of
dicyandiamide (3 g) and urea (5 g) was carefully added to the
abovementioned solution. Continuous stirring at 80 °C was
done to enhance the dissolution of both components. The
sample was dried overnight at approximately 80 °C to remove
the excess water. Calcination was performed at 550 °C for 4 h.
Next, the obtained material was immersed in a solution of
NH4HF2 (2 M, 50 mL) with vigorous stirring for 24 h to drive
out the HMS template. To release any contaminants adsorbed
by the produced g-C3N4 nanoparticles, they were easily cleaned
by washing several times with water. Thereafter, the synthesized
pure material was dried by heating for 12 h at 100 °C.

2.4. Synthesis of Mesoporous CoAl2O4−g-C3N4 Nano-
composites.Awater exfoliationmethod was used to synthesize
CoAl2O4−g-C3N4 nanocomposites. The samples were synthe-
sized as follows: 0.2 g of the as-prepared g-C3N4 was mixed with
the required amount of mesoporous CoAl2O4, and the mixture
was then sonicated in 400 mL of deionized water for 3 h at a
power of 40 kHz. This procedure allowed the formation of thin-
layered CoAl2O4−g-C3N4 products. A centrifugation process
was used to collect the final products with the general
abbreviation xCoAl2O4−g-C3N4, where the nominal molar
content of CoAl2O4 was represented by “x” in this formulation
(x = 1, 2, 3, and 4%).

2.5. Characterization. A JEOL JEM-1230 transmission
electron microscope was used to determine the images of the
prepared samples at 200 kV. Phase identification of the prepared
materials was carried out using a Bruker AXSD8 Endeavor X-ray
diffractometer. A Nova 2000 series Chromatech apparatus was
used to determine the texture properties of the prepared
photocatalysts. A Shimadzu system (RF-5301, Japan) was
applied for the determination of the photoluminescence (PL)
spectra of the prepared photocatalysts. The photocurrent
intensity of the prepared photocatalysts was determined using
a Zahner Zennium electrochemical workstation. The Fourier
transform infrared (FT-IR) spectrum was measured in a KBr
dispersion in the range of 400−4000 cm−1 using a PerkinElmer
spectrometer. A V-570 spectrophotometer (Jasco, Japan) was
used to obtain the UV−vis−NIR spectra. The band gap values
were determined by UV−vis diffuse reflectance spectroscopy.

2.6. Photocatalytic Tests. A certain quantity of the
photocatalyst was suspended in 450 mL of H2O in the presence
of a glycerol scavenger (10% vol) prior to the production of

Figure 1. (A): XRD patterns of g-C3N4 and CoAl2O4−g-C3N4 samples. (B)XRD diffraction pattern of the prepared pure CoAl2O4 sample.
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hydrogen. The required experiments were carried out under
normal conditions at room temperature and atmospheric
pressure. To overcome the effect of lamp heating on the
reaction, a cooler made from quartz was used. Before
photocatalysis began, nitrogen gas was bubbled for 30 min to
eliminate oxygen dissolved in water. The area above the
photoreactor was fixed with a 500 W xenon lamp producing
visible light. The photocatalytic process for H2 production
started when the lamp was switched on. An Agilent GC 7890A
gas chromatograph with nitrogen carrier gas was used to
examine the quantity of H2 produced over separate periods of
time throughout the photocatalytic process. Further reactions,
as additional confirmations of the optimized parameters, were
carried out without a lighting source and without the desired
photocatalyst.

3. RESULTS AND DISCUSSION

3.1. Investigation of the Product Samples. The X-ray
diffraction (XRD) patterns for the pure g-C3N4 and CoAl2O4−
g-C3N4 nanocomposites are illustrated in Figure 1A. The XRD
diffraction patterns for pure CoAl2O4 are illustrated in Figure
1A,B. All the diffraction patterns obtained confirm the suggested
structures. g-C3N4 was indicated by the diffraction peak
observed at 27.4° in Figure 1A, according to card number
JCPDS 87-1526. On the other hand, the XRD diffractogram
assigned to pure CoAl2O4 corresponded to that in card number
JCPDS 044-0160, as all essential peaks have been mentioned.
These peaks are attributed to the CoAl2O4 phase, as shown in
Figure 1B. The diffractograms also show that the g-C3N4 peak
intensities showed considerable decreases as the CoAl2O4
content increased (1.0−4.0%). All CoAl2O4−g-C3N4 diffracto-
grams show that no additional peaks related to pure CoAl2O4
were still present, which is attributed to the strong CoAl2O4
adhesion to the surface of g-C3N4 nanosheets. Additionally, this
result was attributed to the lower CoAl2O4 content present in
each composition. The XRD diffraction patterns also showed no
additional equivocal peaks in any samples. This observation
provides good evidence for the formation of the heterojunction
nanocomposite between CoAl2O4 and g-C3N4 nanosheets.
The FT-IR spectra of the prepared pure CoAl2O4, g-C3N4,

and CoAl2O4−g-C3N4 samples are illustrated in Figure 2. The

triazine stretching mode present in both the pure g-C3N4 and
CoAl2O4−g-C3N4 nanocomposites was observed at 808 cm−1.
Along with the peaks for the typical CN-heterocyclic stretching
modes, five additional peaks were observed at 1633, 158, 1408,
1322, and 1243 cm−1.32−34 The FT-IR spectra also revealed that
the intensity of the peak for pure g-C3N4 was significantly
reduced as the CoAl2O4 content increased. An absorption peak
at approximately 664 cm−1 was also present in the FT-IR
spectrum of pure CoAl2O4 nanoparticles.
The X-ray photoelectron spectroscopy analysis for the 3.0%

CoAl2O4−g-C3N4 nanocomposite is shown in Figure 3. The
high-resolution spectra of Co, Al, O, C, and N are shown in
Figure 3A−E. The presence of Co2+ and Co3+ ions in the
prepared nanocomposites was confirmed by the presence of the
major peaks assigned to Co 2p1/2 at∼794.7 and 804.2 eV andCo
2p3/2 at ∼779 eV and 783.6 eV (Figure 3A). It is easily
determined that the obtained values are very similar to those
reported in the literature.35 Furthermore, Figure 3B displays one
peak for Al 2p at 73.5 eV, confirming the presence of Al as Al
oxide.36 Furthermore, Figure 3C shows that the O 1s spectrum
consists of two peaks at 531 and 530 eV that could be related to
the adsorbed oxygen species and CoAl2O4 lattice oxygen,
respectively.37,38 Twomain C 1s peaks at∼287.9 and∼284.6 eV
were also detected, as shown in Figure 3D. These peaks indicate
the presence of sp2 C connected to N in the N-containing
aromatic rings and sp2 C−C bonds. Figure 3E shows that the N
1s peak appears at 398.3 eV, which reveals the presence of sp2-
hybridized N atoms. The structure of graphitic carbon nitride g-
C3N4 was confirmed by all the abovementioned information.39

The transmission electron microscopy (TEM) images of the
CoAl2O4, g-C3N4, and 3.0% CoAl2O4−g-C3N4 samples are
displayed in Figure 4. The average particle sizes of the prepared
CoAl2O4 nanoparticles were in the 5−8 nm range (Figure 4A).
The typical nanosheet structure of g-C3N4 is shown in Figure 4B.
The TEM images of the CoAl2O4−g-C3N4 nanocomposite are
shown in Figure 4C and exhibit a considerable dispersion of
CoAl2O4, in the form of spherical particles, over the g-C3N4
nanosheet. In addition, a significant decoration of CoAl2O4 has
been noted. Figure 4D shows the high-resolution transmission
electron microscopy (HRTEM) image of the 3.0% CoAl2O4−g-
C3N4 nanocomposite product. Examination of the image
confirms the higher distribution of CoAl2O4 on the g-C3N4
surface. The existence of g-C3N4 and CoAl2O4 was also
confirmed by the determination of lattice spacings of 0.320
and 0.460 nm for the (002) and (111) planes, respectively.39

Hence, a strong interfacial interaction between g-C3N4 and
CoAl2O4 is clearly revealed by the HRTEM image.
The surface properties of the obtained nanocomposites were

explored, and Figure 5 demonstrates the N2 adsorption−
desorption isotherms for the g-C3N4, CoAl2O4, and 3.0%
CoAl2O4−g-C3N4 samples. As per the IUPAC convention, the
obtained isotherms are classified as IV-type isotherms, which are
indicative of mesostructured materials. This observation
indicates that after the dispersion of CoAl2O4 nanoparticles
over the g-C3N4 nanosheets, the mesoporous characteristics
remain without any changes. The surface areas of g-C3N4, pure
CoAl2O4, and various loadings of CoAl2O4 on g-C3N4 are listed
in Table 1. As the results show, the surface area of pure g-C3N4 is
175 m2/g, which is considerably larger than the reported
literature value.40 This increase in the obtained surface area is
mainly the result of the presence of the initial HMS precursor, as
previously highlighted in the Experimental Section. The slight
decrease due to the presence of CoAl2O4 could be attributed to

Figure 2. FT-IR spectra of pure CoAl2O4, g-C3N4, and CoAl2O4−g-
C3N4 samples.
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the pore filling of C3N4 with homogeneously dispersed particles
on the surface.
Figure 6 illustrates the UV−vis spectra of the pure CoAl2O4,

g-C3N4, and CoAl2O4−g-C3N4 photocatalysts with varying

CoAl2O4 contents. The results confirm the absorption of visible
light by all samples. The presence of CoAl2O4 also enhanced the
width of both the absorption bands and band edges (Figure 6).
UV−vis spectra were also used to determine the band gaps in all

Figure 3. High-resolution spectra of 3.0 wt % CoAl2O4−g-C3N4 for Co 2p (A), Al 2p (B), O 1s (C), C 1s (D), and N 1s (E) species.

Figure 4. TEM images of CoAl2O4 (A), g-C3N4 (B), and 3.0 wt % CoAl2O4−g-C3N4 (C) samples, and (D) HRTEM image of the 3.0 wt % CoAl2O4−
g-C3N4 sample.
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cases, and the outcomes are listed in Table 2. The calculated
values of the band gaps of g-C3N4 were heavily affected by the
loading percentage of CoAl2O4 in the nanocomposites.
Consistently, the band gap was reduced as the integrated weight
percentage of CoAl2O4 on the surface of the g-C3N4 nanosheets
was increased.
3.2. Evolution of H2 via Visible Light Irradiation with

the Obtained Catalysts. The targeted CoAl2O4−g-C3N4
nanocomposite photocatalysts were examined and compared
with pure CoAl2O4 and g-C3N4 for hydrogen production upon
irradiation with visible light. The initial reaction conditions
included a photocatalyst content of 1.2 g/L, a reaction solution

volume of 450 mL, the presence of glycerol (10 vol %), a Xe
lamp (500 W) light source, and 9 h of irradiation at room
temperature. The effect of different CoAl2O4 loadings from 1.0
to 4.0 wt % in the CoAl2O4−g-C3N4 nanocomposite on the
quantity of hydrogen produced was studied and compared with
the volumes obtained with both pure CoAl2O4 and g-C3N4, as
illustrated in Figure 7A. The results revealed that the quantities
of hydrogen produced were 810 and 400 μmol g−1 for CoAl2O4
nanoparticles and g-C3N4 nanosheets, respectively. The use of
various weight percentages in the CoAl2O4−g-C3N4 samples
(1.0, 2.0, 3.0, and 4.0 wt %) used for the generation of hydrogen
resulted in 1912, 9450, 13050, and 13,095 μmol g−1 of hydrogen,
respectively. The values are greater than those in some published
works40,41 and less than those in other published works.42−44

Thus, the results obtained indicated that the addition of
CoAl2O4 nanoparticles significantly increased the extent of
charge carrier separation and the surface area and decreased the
band gap energy. Therefore, the CoAl2O4 content in the original
photocatalyst showed a direct and positive effect on the H2 yield
until a certain loading weight (3.0%) was reached. Above this
weight percentage, there was no additional effect on the yield,
which did not respond to the addition of any extra photocatalyst
in the reaction mixture. The production of hydrogen was
increased to 8775, 10,125, 13,050, 16,875, and 18,225 μmol g−1

as a result of the gradual increase in the content of photocatalyst
from 0.4 to 2.0 g/L, as shown in Figure 7B. These results may
have occurred because the total number of active sites over the
3.0% CoAl2O4−g-C3N4 photocatalyst surface showed a
noticeable increase. The level of hydrogen production was at
least 15,120 μmol g−1 when the photocatalyst content was
greater than 2.4 g/L. This result may be due to an effective
reduction in light penetration during the illumination process in
the presence of a higher particle content in the reaction
solution.45−49

The measurements of both PL and transient photocurrent
responses emphasize the results obtained in this study. As seen
in Figure 8A, the PL spectrum of g-C3N4 shows the highest PL
emission intensity among all samples. However, upon increasing
the content of CoAl2O4 nanoparticles adsorbed over the g-C3N4
nanosheet surface, the PL emission intensity noticeably
decreased, as illustrated. The observed PL emission intensities
decreased as follows: g-C3N4 > CoAl2O4 > 1.0% CoAl2O4−g-
C3N4 > 2.0% CoAl2O4−g-C3N4 > 3.0% CoAl2O4−g-C3N4 ≈
4.0% CoAl2O4−g-C3N4. The CoAl2O4 nanoparticles have a high
PL emission intensity and show a lower band gap energy (1.80
eV). Therefore, CoAl2O4 displays a low photocatalytic activity,
and the recombination rate of the charge carriers in the presence
of CoAl2O4 is very high. However, the photocatalyst
effectiveness remains clear and apparent from the standpoint
of photocatalytic activity. The photocurrent transient responses
are given in Figure 8B. The results indicate that a lower
photocurrent density was observed for g-C3N4, while a
substantial increase occurred as the content of CoAl2O4

Figure 5. N2 adsorption−desorption isotherms for the g-C3N4,
CoAl2O4, and 3.0% CoAl2O4−g-C3N4 samples.

Table 1. BET Surface Areas of g-C3N4 and CoAl2O4@g-C3N4
Samples

samples SBET (m2/g)

g-C3N4 175.00
1.0 wt % CoAl2O4@g-C3N4 184.00
2.0 wt % CoAl2O4@g-C3N4 188.00
3.0 wt % CoAl2O4@g-C3N4 192.00
4.0 wt % CoAl2O4@g-C3N4 193.00
CoAl2O4 210.00

Figure 6. UV−vis spectra of pure CoAl2O4, g-C3N4, and CoAl2O4−g-
C3N4 samples with various CoAl2O4 contents.

Table 2. BandGaps of g-C3N4 and CoAl2O4@g-C3N4 Samples

samples band gap, eV

g-C3N4 2.70
1.0 wt % CoAl2O4@g-C3N4 2.20
2.0 wt % CoAl2O4@g-C3N4 2.10
3.0 wt % CoAl2O4@g-C3N4 1.94
4.0 wt % CoAl2O4@g-C3N4 1.92
CoAl2O4 1.80
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deposited on the surface of g-C3N4 increased. The photocurrent
densities of the designed nanocomposites increased in the
following order: g-C3N4 < CoAl2O4 < 1.0% CoAl2O4−g-C3N4 <
2.0% CoAl2O4−g-C3N4 < 3.0% CoAl2O4−g-C3N4 ≈ 3.0%
CoAl2O4−g-C3N4. These outcomes also show that the success
of the photocatalytic process for the CoAl2O4−g-C3N4 nano-
composites coincides closely with, and is proportional to, the
results of the PL measurements.
Figure 9 shows the photocatalytic reproducibility of reused

photocatalysts. As previously mentioned, the 3.0% CoAl2O4−g-
C3N4 photocatalyst contains the optimum composition and
shows substantial recycling potential. CoAl2O4−g-C3N4 may be
recycled five times without exhibiting any significant defects.
The fifth round affords 99.7% of the hydrogen evolution
efficiency observed in the first use. From the above results, the
optimized photocatalyst, 3.0% CoAl2O4−g-C3N4, demonstrated
high stability, representing a highly applicable and valuable
photocatalyst for the evolution of hydrogen. The XRD, UV−vis,
and PL characterizations of the photocatalysts used also
confirmed that the photocatalysts are stable. Additionally,
inductively coupled plasma analysis of the solution remaining

after catalysis confirmed that there were no Co or Al ions
present, which confirmed the stability of the photocatalyst.

3.3. Suggested Mechanism for the CoAl2O4−g-C3N4
Nanocomposite. The separation of photoelectrons and holes
in g-C3N4 nanosheet-reinforced CoAl2O4 nanoparticles has
been explained by using the proposed mechanism below
(Scheme 1). The following equations have been used to
calculate the band energy levels

= − +E X E E0.5CB g 0 (1)

= +E E EVB g CB (2)

where the valence and conduction bands are designated EVB and
ECB, respectively; the band gap value is given as Eg and is
determined from optical measurements; the absolute electro-
negativity of the semiconductor is represented as X; and the
normal hydrogen electrode versus the redox-level measurement
on the absolute vacuum scale is given as E0 (E0 = −4.5 eV). A
narrow band gap value for g-C3N4 nanosheets has been
previously reported. Hence, a lower energy is required to excite
the system. As a result of the photocatalytic irradiation, the

Figure 7. (A) Effect of CoAl2O4 content on hydrogen evolved using the g-C3N4 photocatalyst. (B) Effect of the amount of 3.0% CoAl2O4−g-C3N4
photocatalyst used for hydrogen evolution.

Figure 8. (A) PL spectra of pure CoAl2O4, g-C3N4, and CoAl2O4−g-C3N4 samples with various CoAl2O4 contents. (B) Photocurrent transient
responses of pure CoAl2O4, g-C3N4, and CoAl2O4−g-C3N4 samples with various CoAl2O4 contents.
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photogenerated electrons from pure g-C3N4 originate from the
valance band and are promoted to the conduction band.
However, in the CoAl2O4−g-C3N4 nanocomposite, CoAl2O4
accepts the excited electrons, thereby realizing the desired
charge carrier separation. The energy of the CoAl2O4
conduction band (+0.06 eV) exhibits a more positive value
than that of g-C3N4 (−1.13 eV). Additionally, the distribution of
CoAl2O4 nanoparticles across the g-C3N4 nanosheets in the
nanocomposites provides a noticeable increase in the number of
active sites on the CoAl2O4−g-C3N4 photocatalyst surface; the
photocatalytic activity is enhanced and hydrogen production is
considerably accelerated relative to either CoAl2O4 or g-C3N4.
In total, the gross efficiency of the hole-scavenging action is
greatly increased because the reaction solution contains glycerol
as a scavenger. Protons are readily produced by this process and
can additionally react with charge carriers to create more H2.
Therefore, according to Scheme 1, water splitting can occur at
1.23 eV according to ref 50, which lies within the band gap of g-
C3N4. CO2 formation is an obvious product of hole transfer from
p-type CoAl2O4 to the attached g-C3N4, exhibiting an energy of
+1.57 eV. These holes could produce protons and CO2 from the
obvious decomposition of glycerol, as seen in previous literature
reports.51 With the assistance of the separated electrons in the
CB of supported CoAl2O4, hydrogen generation is made
possible by the combination of two protons with electrons.

4. CONCLUSIONS

It is easy to prepare g-C3N4 nanosheets via a combustion process
using a template material of mesoporous silica. Various CoAl2O4

nanoparticle contents (1.0−4.0%) were used as adsorbents on
the g-C3N4 nanosheets as a result of the preparation process.
The g-C3N4 sheets were affected by the dispersion of CoAl2O4

on the surface of the nanocomposites. Prevention of electron−
hole reincorporation was significantly enhanced by the decrease
in the band gap energy. The photocatalyst CoAl2O4−g-C3N4

(3.0 wt %) produced 18,225 μmol g−1 of hydrogen, the
maximum amount produced by the catalysts prepared with
various compositions. In addition, a maximum photocatalyst
weight of up to 2.0 g/L was used, with irradiation carried out for
9 h at room temperature. The synergetic effect of CoAl2O4 and
g-C3N4 enhances the production of hydrogen. The CoAl2O4−g-
C3N4 composites produce a significantly greater amount of
hydrogen than either the g-C3N4 sheets or pure CoAl2O4

nanoparticles. A highly efficient, stable product has been
developed in the form of CoAl2O4−g-C3N4. A maximum of
five repeated cycles was also studied, without any loss of
hydrogen evolution in any of the cycles.
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