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Abstract

Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain
cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated
cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts
paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether
a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to
determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature
consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for
genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas
study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient
cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue
microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene
expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with
invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in
invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer
was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and
promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be
used as design constraints in genetically engineering better pre-clinical models of breast cancer.
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Introduction

The discovery of molecular targeted therapies revolutionized

the treatment of breast cancer. Tamoxifen, a small molecule

inhibitor of the estrogen receptor, was the first drug to inhibit the

growth of breast cancer cells that depend on female sex hormones.

More recently, trastuzumab was developed to inhibit the growth of

breast cancer cells that overexpress HER2, an oncogenic member

of the epidermal growth factor family of receptors [1]. Based upon

their demonstrated clinical impact, a pre-operative biopsy sample

is used to guide treatment based upon expression of the hormone

receptors for estrogen (ER) and progesterone (PR) and the

epidermal growth factor receptor HER2 [2]. While these

molecular targeted therapies have improved survival, de novo

and acquired resistance to these therapies present challenges for

achieving a durable clinical response [3,4].

The difficulties in achieving a durable clinical response using

molecular targeted therapies have sparked a renewed interest in

viewing cancer from an evolutionary perspective [5–7]. Thinking

about cancer from an evolutionary perspective involves three key

concepts. First, tumors are comprised of a heterogenous population

of cells. While non-genetic sources of heterogeneity have been

recognized for several decades [8], recent studies of breast cancer

using next generation sequencing have revealed the genetic

heterogeneity associated with oncogenesis [9–14]. Second, the

different cell types contained within the tumor microenvironment -

stromal cells, malignant clones, and cells of the immune system -

and their collective interactions comprise a dynamic system.

Dynamic systems typically have control mechanism that aim to

maintain the system in a desirable state, such as tissue homeostasis,

in the presence of external perturbations [15]. Identifying the

control architecture in biological systems remains a central

challenge. Third, cells of the population impinge upon a selective

fitness landscape that determines their fate. The selective landscape

is composed of intracellular and extracellular adaptive control

mechanisms that regulate tissue homeostasis. Many intracellular

PLOS Computational Biology | www.ploscompbiol.org 1 January 2014 | Volume 10 | Issue 1 | e1003409



control mechanisms are well studied and form the foundation of the

hallmarks of cancer [16]. Innate and adaptive immunity function as

extracellular control mechanisms that regulate cellular homeostasis

[17] and, in contrast, are not well understood [5].

Cytokines coordinate innate and adaptive immunity and defects

in their action have pathogenic implications. For instance,

Interleukin-12 (IL12) is a cytokine that is produced by innate

immune cells and acts upon Natural Killer cells, CD8+ Cytotoxic

T cells, and CD4+ T helper cells to initiate a type 1 cell-mediated

adaptive immune response [18]. Genetic mutations in IL12p40

and one component of the IL12 receptor, IL12Rb1, have been

observed in patients with recurrent mycobacterial disease,

suggestive of insufficient type 1 cell-mediated immunity [19,20].

Genetic deletion of other component of the IL12 receptor,

IL12Rb2, increases susceptibility to spontaneous autoimmunity,

B-cell malignancies, and lung carcinomas [21]. Originally called

Natural Killer (NK) Cell Stimulating Factor, IL12 also enhances

the ability of NK and CD8+ Cytotoxic T cells to lyse target cells, a

mechanism exploited for tumor immunotherapy. For example,

IL12 was used as an adjuvant to promote NK-cell mediated killing

of HER2-positive breast cancer cells in patients treated with

trastuzumab [22]. As an adjuvant for tumor immunotherapy,

toxicity restricts the systemic delivery of IL12 [23]. However, local

delivery of IL12 to the tumor microenvironment promotes tumor

regression in the B16 melanoma model [24] and in the EL4

thymoma model [25]. Given that genetic defects in IL12 signaling

increase cancer incidence and enhanced local delivery of IL12

promotes tumor regression, we recently asked whether malignant

cells alter the selective fitness landscape by locally inhibiting the

response of immune cells to IL12. Using the B16 model for

melanoma, we identified that tumor-derived Wnt-inducible

signaling protein 1 (WISP1), a beta-catenin responsive oncogene

[26], exerts paracrine action on immune cells by inhibiting their

functional response to IL12 [27]. The objective of this retrospec-

tive study of invasive breast cancer was three-fold: 1) to determine

whether the gene signature associated with type 1 cell-mediated

cytotoxic immunity was correlated with overall survival, 2) to

determine whether WISP1 expression is increased in invasive

breast cancer, and 3) to determine whether a pattern of gene

expression consistent with inhibition of IL12 signaling axis

correlates with WISP1 expression.

Results

Type 1 cell-mediated immunity correlates with improved
survival in patients with invasive triple negative breast
cancer

In this retrospective cohort study, our first objective was to

determine whether there were distinct cohorts within the invasive

breast cancer arm of the TCGA study that can be defined based

upon type 1 cell-mediated immune response. Samples included in

the analysis were limited to those derived from patients diagnosed

with variants of invasive breast cancer (n = 520) and to those

obtained from normal breast tissue (n = 61) (see Dataset S1). As

listed in Table 1, normalized expression values were obtained for

genes that are associated with T cells, macrophages, and Natural

Killer cells and the functional roles that these cells play in cell-

mediated immunity. As macrophages and T cells can enhance or

inhibit cell-mediated immunity depending on polarization bias,

genes associated with alternative polarization states were also

included. Specifically, macrophages within the tumor microenvi-

ronment are thought to either promote (M1) or inhibit (M2)

cytotoxic cell-mediated immunity [28,29]. Similarly, effector T

cells alter their functional role in coordinating adaptive immunity

depending on the cytokines secreted by and the transcription

factors expressed by different subsets, which include type 1, type 2,

type 17, or T regulatory subsets [30,31]. We also included genes

associated with the IL12 cytokine family, as IL12 links innate to

adaptive immunity and other members of this cytokine family

have competing effects on immune bias (e.g., [32]).

Based upon immune-related gene expression, tissue samples

hierarchically clustered into two main groups (Figure 1 and Figure

S1). While more patients were associated with Group 1 (n = 370

versus n = 150), the two groups had similar patient population

characteristics with no difference between age, tumor stage,

menopause status, or lymph node status (Table 2). Based on either

molecular pathology or PAM50 intrinsic subtypes [33], the

molecular characteristics of tumors associated with these two

groups were significantly different (p{valuev1|10{4 - Table 2).

Triple negative (TN) breast cancer samples were significantly

enriched in group 2 with an odds ratio of 3.48 versus 0.38 for group

1. As expected, samples positive for either estrogen receptor (ER) or

progesterone receptor (PR) and negative for HER2 were enriched

in group 1. Given that molecular subtyping guides therapy selection,

6-year overall survival was estimated using Kaplan-Meiers curves

for group 1 versus group 2 cohorts stratified by adjuvant treatment,

if known, and by molecular pathology (Figure 2). Patients with TN

breast cancer that clustered with group 2 exhibited an increase in

overall 6-year survival compared with patients with TN breast

cancer that clustered with group 1 (p{valuev0:03 with hazard

ratio = 0.191 (95% C.I. 0.037–0.995)). While the number of events

is low for the TN breast cancer group, the overall trend in survival

was also observed at earlier time points (1-year survival

p{valuev0:032 with hazard ratiov0:01; 3-year survival p-

value = 0.126 with hazard ratio = 0.28; and 5-year survival p-

value = 0.054 with hazard ratio = 0.22). Patients with HER2+
breast cancer also exhibited a similar trend, but the difference in

overall survival did not reach a similar level of significance. In

contrast, no difference in 6-year survival was observed between the

group 1 and group 2 cohorts treated using adjuvant hormone

therapy, if known, or were positive for either ER or PR.

Author Summary

Effective anti-tumor immunity is proportional to the
number and to the cytotoxic activity of immune cells that
enter the tumor microenvironment. Recent advances in
cancer immunotherapy stem from increasing the number
of tumor-infiltrating immune cells by inhibiting immune
checkpoints or adoptive T cell therapy. Here, we used
computational methods to identify potential mechanisms
present within the tumor microenvironment that limit the
efficacy of anti-tumor immunity. Specifically, we found that
oncogenic transformation is associated with the induction
of tumor-derived biochemical cues, namely Wnt-inducible
signaling protein-1, that locally suppress anti-tumor
immunity. Moreover, we used model-based inference to
demonstrate that a gene signature consistent with
effective type 1 cell-mediated cytotoxic immunity is a
predictor of overall survival independent of molecular
pathology. Interestingly, patients with triple negative
breast cancer were more enriched in the cohort associated
with type 1 cell-mediated immunity. As this immune gene
signature is not present in current genetically engineered
mouse models of breast cancer, the results help identify
design constraints for engineering better pre-clinical
models of breast cancer. Demonstrating efficacy in pre-
clinical animal models is a pre-requisite for bringing
improved cancer immunotherapies into the clinic.

WISP1 Inversely Correlates with Type 1 Immunity
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Effective anti-tumor immunity depends on the product of the

number of immune cells present within the tumor microenviron-

ment and the efficacy of the immune cells present to elicit cell-

mediated cytotoxic immunity. To infer mechanistic differences in

anti-tumor immunity between the patient cohorts, we estimated

the magnitude and the quality of anti-tumor immunity from the

gene expression measurements. The relative magnitude of

immune cell infiltration was inferred from the average expression

values for genes associated with NK cells, T cells and macrophages

(Table 1). Compared to samples derived from normal tissues, the

group 1 cohort exhibited a gene expression signature associated

with reduced NK cell, T cell, and macrophage recruitment

(Figure 3A). In contrast to group 1, the immune cell signature in

the group 2 cohort suggested an increase in NK cell, T cell, and

macrophage recruitment relative to normal breast tissue. As

immune cell polarization influences the efficacy of anti-tumor

immunity, we used model-based inference to determine the

polarization signature. In normal breast tissue, T helper cells

were primarily polarized towards Th2 (p{valuev0:001) and

macrophages were polarized towards a M2 phenotype (Figure 3B,

p{valuev0:001). In invasive breast cancer, group 1 cohort

exhibited a mixed Th2 and Th17 immune bias and a strong Th1

bias was associated with group 2 samples (p{valuev0:001).

Consistent with the Th1 bias in group 2 samples, the genes

associated with a type 1 cell-mediated immune response were also

consistently expressed at higher levels in the group 2 cohort

compared to group 1 and normal tissue samples. Compared to the

null hypothesis for immune cell polarization, the macrophage

polarization bias in the group 1 cohort could not be distinguished

from a pattern of random gene expression and samples from the

group 2 cohort exhibited a strong M1 bias (p{valuev0:001).

Collectively, the genes associated with type 1 cell-mediated

immunity can be used to identify cohorts within invasive breast

cancer that correlate with improved 6-year survival, specifically in

patients with TN invasive breast cancer.

Increased WISP1 associates with oncogenic
transformation in invasive breast cancer

Principal component analysis (PCA) was used to gain insight

into the molecular differences between cohorts identified using

hierarchical clustering. As the samples from normal tissues

clustered predominantly with group 1, the group 1 cohort was

subdivided into three subsets (Figure S2A) with normal tissue

samples clustering into group 1a. Of the total variation contained

within the gene expression data, the first four principal compo-

nents (PCs) captured 54% of the variance (Figure S2B).

Differences among the clustered cohorts were observed for the

first four PCs while no significant differences among groups were

observed for the rest of the PCs (Figure S2C). Based upon the

loading coefficients for individual genes, the magnitude of PC1

corresponded to the extent of T cell-mediated (increases with CD2,

CD247, CD3G, CD3D, CD8A, and CD28 expression) type 1

cytotoxic immunity (increases with FASLG, IFNG, GZMB, TBX21,

IL12RB2, EOMES, PRF1, B2M and decreases with GATA3

expression) and PC2 captured a correlation between WISP1 and

the T cell lineage-defining transcription factors GATA3 and

PPARG. As described in the supplemental Text S1, a similar gene

expression signature was observed in the gene expression results

reported by Gluck et al. (GSE22358 [34]). PC projections of the

patient samples suggest that the extent of T cell-mediated

cytotoxic immunity within invasive breast cancer is a continuous

property, with TN breast cancer more prevalent at higher values

for PC1 and HER2+ breast cancer more prevalent at lower values

for PC1 (Figure S2C). Yet, the hierarchical clustering subdivided

Table 1. Genes associated with type 1 cell-mediated immunity.

Functional Annotation Genes Refs

CD4/CD8 T cell surface molecules CD247 CD3D CD3E CD3G ITGAL ITGB2 ICAM1 CD2 CD28 THY1 PTPRC [74]

T helper cell polarization

Th1 CD4 IFNG IL10 FASLG EOMES TBX21 [31]

Th2 CD4 IL4 IL5 IL6 IL10 GATA3 PPARG [31]

Th17 CD4 IL17A IL17F RORA RORC [31]

iTreg CD4 TGFB1 IL10 IL12A EBI3 RORC FOXP3 TBX21 CCR6 MYB [31]

IL12 and Stat4 Dependent Signaling
Pathways in Th1 Development

CD247 CD3D CD3E CD3G JAK2 CCR5 CXCR3 ETV5 IFNG IL12RB1 IL12RB2 IL12A IL12B
IL18 IL18R1 JUN MAPK14 MAPK8 MAP2K6 STAT4 TYK2

[74]

CTL mediated immune response
against target cells

CD247 CD3D CD3E CD3G CD8A FAS FASLG B2M GZMB ITGAL ITGB2 ICAM1 HLA-A PRF1 HLA-B
HLA-C

[74]

Natural Killer Cells KLRC1 KLRC2 KLRC3 KLRD1 –

Natural Killer Cell mediated cytotoxicity IFNA1 IFNA2 IFNG CD247 FAS FASLG GZMB ICAM1 KLRC1 KLRC2 KLRC3 KLRD1 PRF1 ITGAL ITGB2 [75]

NO2-dependent IL12 pathway in NK cells CD247 CD2 CD4 JAK2 CCR5 CXCR3 IFNG IL12RB1 IL12RB2 IL12A IL12B NOS2 STAT4 TYK2 [74]

Macrophages CD14 MRC1 CPM ITGAM NOS2 HLA.DRA HLA.DMA HLA.DOA HLA.DPA1 HLA.DQA1 HLA.DQA2 ––

Tumor Associated Macrophages

M1 IDO1 IL23A IL12B CCL17 IL1B [29]

M2 ARG1 TIMP2 LYVE1 KLF4 CD163 STAB1 [29]

IL12 Family of Cytokines IL12A IL12B IL23A EBI3 –

Additional Immunosuppressive
Mechanisms

CD274 PDCD1; CTNNB1 WISP1; HMGB1; HIF1A; BTLA; HAVCR2 (TIM-3); LAG3; TGFB1; MICA
MICB; VTCN1 (B7-H4)

(see Figure S5)

Cell Proliferation MKI67 –

doi:10.1371/journal.pcbi.1003409.t001

WISP1 Inversely Correlates with Type 1 Immunity

PLOS Computational Biology | www.ploscompbiol.org 3 January 2014 | Volume 10 | Issue 1 | e1003409



WISP1 Inversely Correlates with Type 1 Immunity

PLOS Computational Biology | www.ploscompbiol.org 4 January 2014 | Volume 10 | Issue 1 | e1003409



this continuous property into two discrete cohorts. In contrast to

PC1, PC2 separated samples derived from invasive breast cancer

from normal breast tissue and, based upon the loading coefficients

for PC2, suggests that an increase in WISP1 expression correlates

with oncogenic transformation (Figure 3C - p{valuev1|

10{15). The average intensity of WISP1 antibody staining in an

independent tissue microarray that contained samples from

normal (n = 3) and breast carcinoma tissue (n = 9) were used to

validate that an increase in WISP1 correlates with oncogenic

transformation (Figure 4, panels A–C). The tissue microarrays

were consistent with the gene expression data such that WISP1

was increased in invasive breast cancer compared to normal breast

tissue (p{valuev0:001).

An increase in WISP1 correlates with a shift in immune
bias from Type 1 towards Type 2 immunity

T cell polarization is driven by competition among lineage-

defining transcription factors that are induced by the exogenous

action of polarizing cytokines [30]. By inducing T-bet, Interleu-

kin-12 (IL12) acts, in part, upon CD4+ T helper cells to organize

an effective type 1 cell-mediated immune response [18]. As a

potential inhibitor of a type 1 cell-mediated immune response, in

vitro co-culture assays identified WISP1 as a paracrine regulator

of immune cells by inhibiting response to IL12 [27]. Here, we

found that the loading coefficients associated with PC2 suggest

that the variation in WISP1 was also associated with two T cell

lineage-defining transcription factors: GATA3 and PPARG.

Specifically, WISP1 expression was correlated with GATA3

expression (Figure 3C - p{valuev1|10{9) and exhibited a

negative correlation with PPARG expression (see Figure S4A -

p{valuev1|10{15). The functional connection between

WISP1 and immune polarization is strengthened by the

observations that GATA3 expression also correlates with GATA3

protein abundance (Figure 4D - p{valuev1|10{15) and that

GATA3 expression does not correlate with changes in genome

copy numbers of GATA3 (Figure S4B - p{value~1). In addition,

Figure 1. Expression patterns of genes associated with cell-mediated immunity clustered into two main groups. mRNA expression
obtained from normal breast and invasive breast carcinoma tissue samples (columns) acquired as part of the Cancer Genome Atlas study [14] were
hierarchically clustered into two groups based upon the log2 median-normalized expression ratio for genes (rows) related to cell-mediated cytotoxic
immunity and tumor immunosuppression, as listed in Table 1. Tissue samples were characterized by morphology (i.e., normal, ductal, lobular, or
other) and molecular histology (i.e., expression of the estrogen receptor (ER+), progesterone receptor (PR+), or HER2 (HER2+)), as highlighted by the
blue bars on top. Gene expression is shown as a row-normalized heatmap. Red denotes under-expressed and violet denotes over-expressed relative
to the population mean. Dendrogram indicates the degree of similarity among genes (rows) or samples (columns) using the Ward’s minimum
distance method in R.
doi:10.1371/journal.pcbi.1003409.g001

Table 2. Characteristics of the patient population stratified by group membership.

Category Group 1 Group 2
Tumor
Stage` Group 1 Group 2 LN Status` Group 1 Group 2

Count 370 150 O 1 0 N0 89 49

Age (years){ 58.2 57.3 I 32 10 N0(i2) 65 32

95% CI 34–82 35–83 IA 28 13 N0(i+) 13 3

IB 5 1 N1 44 15

Molecular Pathology* IIA 117 65 N1a 60 18

ER+/PR+ 300 75 IIB 83 26 N1b 16 2

HER2+ 48 27 IIIA 59 17 N1c 1 1

TN 26 60 IIIB 12 3 N1mi 11 1

Odds Ratio* 0.38 3.48 IIIC 11 8 N2 21 11

95% CI 0.23–0.61 2.26–5.37 IV 11 3 N2a 20 9

X 11 4 N2b 0 0

PAM50 Intrinsic Subtypes* N3 9 1

Basal 30 65 N3a 12 6

HER2-like 30 27 N3b 0 0

Luminal A 203 24 N3c 0 1

Luminal B 99 27 NX 9 1

Normal-like 4 4

Menopausal status`

Pre 78 34

Peri 14 3

Post 180 73

Unknown 98 40

Statistical significance between group summary statistics was estimated using a two-sided unmatched Student’s t test ({ indicates p-value = 0.48). A Fisher’s Exact test
was used to test whether categorical data for group is different than population (` indicates p-value greater than 0.5, * indicates p-value less than 1|10{4). Age
summarized as mean and range that encloses 95% of the population. Odds ratio calculated based upon diagnosis of TN breast cancer within each cohort group.
LN = Lymph node.
doi:10.1371/journal.pcbi.1003409.t002
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GATA3 expression exhibited a negative correlation with IL12

receptor b 2 (Figure S4C - p{valuev1|10{15). Compared to

other putative immunosuppressive mechanisms present in the

tumor microenvironment, the WISP1-GATA3 signature was the

only mechanism that was higher in the group 1 cohort relative to

the group 2 cohort (see Figure S5).

Peroxisome proliferator-activated receptor c (PPARG) is a

ligand-activated transcription factor that plays an important role in

regulating immunity and oncogenesis [35]. For instance, Th2

polarization is associated, in part, with increases in GATA3, IL6,

and PPARG gene expression [31]. In contrast, Chung et al. report

that PPARG can form an inhibitory complex with nuclear factor

of activated T cells (NF-AT) that inhibits the transcription of IL4

in T helper cells [36]. In a mouse model of atopic asthma,

pharmacologic activation of PPARG reduces the canonical Th2

cytokines IL4 and IL13 and GATA3 protein in lung extracts [37].

Collectively, these results suggest that the gene set - CD4, IL4, IL5,

IL10, and GATA3 - is a better signature for a type 2 bias of T

helper cells as an increase in PPARG expression may sensitize Th2

effector cells to negative regulation by PPARG ligands and that

GATA3 and PPARG may be regulated independently. Using this

revised Th2 cell gene signature, the group 1 cohort is associated

with an increase in type 2 bias relative to the group 2 cohort and

normal breast tissue (Figure S6 - p{valuev0:001). The group 2

cohort exhibited a strong type 1 bias while a Th17 bias was

observed in samples from normal breast tissue. An expression

signature consistent with inducible T regulatory cells was not

observed in any of the cohorts (p{valuev0:001). Using a Cox

proportional hazards regression model, we also found that

polarization towards a T helper type 1 phenotype was a predictor

of survival independent of the molecular pathology (see Table S1).

Using bootstrap resampling of the genes listed in Table 1, the

model-based inference of type 1 polarization is a better predictor

of improved survival than 95% (i.e., p{valuev0:05) of the

random immune signatures for the 1 Yr, 3 Yr, and 6 Yr outcomes

and than 93% of the random signatures for 5 Yr outcome (see

Figure S7).

Alterations in IL12 receptor expression and MHC class I
abundance between groups are retained in
representative breast cancer cell lines

In addition to secreting WISP1, B16 model for melanoma also

overexpresses one component of the IL12 receptor, IL12Rb2,

that, in vitro, creates a local cytokine sink for IL12 [27]. We

have also found that STAT4 is phosphorylated irreversibly,

creating a short term memory to IL12 signaling that is limited

by cell proliferation [38]. Local delivery of IL12 to the tumor

microenvironment promotes tumor regression in the B16

melanoma model [24] and in the EL4 thymoma model [25].

Collectively, these studies imply that signaling by endogenous

IL12 within the tumor microenvironment helps to maintain T

cell polarization when cognate tumor antigens induce T cell

proliferation [39] and that manipulating this extracellular

control mechanism may impart a survival advantage to the

collective tumor population. Finally, we wanted to determine

whether IL12 receptor b2 was increased relative to IL12

receptor b1 in samples derived from tumors with active type 1

cell-mediated immune response. In invasive breast cancer, the

ratio of IL12RB2 to IL12RB1 expression was increased in the

group 2 cohort relative to the group 1 cohort (Figure 3D -

p{valuev1|10{15). As we had previously observed an

imbalance in copy numbers of the components of the IL12

receptor in malignant melanocytes, we measured IL12 receptor

b1 and IL12 receptor b2 copy numbers in the 184A1, BT474,

SKBR3, and MDA-MB-231 cell lines by flow cytometry

(Figure 5, panels A–B). While the copy numbers in these cell

lines were lower than what we had observed in the B16F0 and

B16F10 cell lines, the ratio of IL12 receptor b2 to IL12 receptor

b1 was increased in the triple-negative breast cancer model,

MDA-MB-231, relative to the other three cell lines (see

Figure 5C - p{valuev0:05).

We also observed that abundance of major histocompatibility

complex (MHC) class I molecules varied among these cell lines in

a pattern consistent with differences in type 1 cell-mediated

immunity (Figure 5D). Specificity in directing T cell-mediated

cytotoxic immunity depends on the presentation of peptides bound

to MHC class I molecules. A reduction in MHC class I expression

may reduce the efficacy of type 1 cell-mediated immunity in

controlling tumor growth. Given that the gene expression

signature associated with type 1 cell-mediated immunity varied

among the invasive breast cancer samples, we ascertained whether

there were any basal differences in copy numbers of MHC class

I among cell lines derived from the different cohorts. The

BT474 and SKBR3 cell lines are cell models of HER2+ breast

Figure 2. Triple negative breast cancer patients with enhanced
type-1 cell-mediated immunity exhibit an improved 6-year
survival. Adjuvant treatment of breast cancer is stratified based upon
the molecular histology, as summarized by a Venn diagram for this
cohort (A). While treatments were documented for 224 of the 520
patients in the cohort, the distribution of known adjuvant therapies are
indicated by the color circles (Hormone therapy - blue circle,
chemotherapy - green circle, and Herceptin immunotherapy - red
circle). Kaplan-Meier survival curves were obtained for invasive breast
cancer patients that were stratified by group membership (group 1 -
blue curves, group 2 - red curves) within a common adjuvant treatment
group. The treatment groups included triple negative breast cancer (B),
patients treated with adjuvant Herceptin plus HER2+ patients with
unknown treatment (C), and patients treated with adjuvant hormone
therapy plus other HER2- patients (D). Dotted lines indicate 95%
confidence bounds. The number of patients at risk as a function of time
are shown below the x-axis for each Kaplan-Meier curve. A p-value of
less than 0.05 was considered statistically significant.
doi:10.1371/journal.pcbi.1003409.g002
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cancer, a subset that exhibited a gene expression signature

associated with a low type 1 cell-mediated response. The 184A1

cell line is a cell model of normal breast tissue, which had an

intermediate type 1 cell-mediated response signature. The

MDA-MB-231 cell line is a cell model of triple negative breast

cancer, which exhibited a high type 1 cell-mediated response

signature. Copy numbers of MHC class I molecules were

assayed by flow cytometry (Figure 5D). Collectively, the copy

numbers of MHC class I molecules varied among the cell lines:

184A1 expressed 307K copies while BT474 and SKBR3

expressed lower copies (16K and 10K, respectively) and MDA-

MB-231 expressed higher copies (916K). The lower copies in the

BT474 and SKBR3 cell lines is consistent with previous studies

that report that over-expression of HER2/Neu reduces MHC

class I expression [40,41]. In summary, basal differences in

MHC class I and IL12 receptor copy numbers among the

184A1, BT474, SKBR3, and MDA-MB-231 cells lines are

consistent with a model of invasive breast cancer where the

molecular subtypes are distinguished by differences in type 1

cell-mediated immunity.

Existing genetically engineered mouse models for
spontaneous breast cancer do not reproduce immune
cell gene signature observed in TCGA data

Modeling breast cancer in mice inevitably involves some degree

of abstraction - one must determine key elements associated with

the human disease and select model systems that incorporate those

elements. Historically, transplantable models for cancer, like the

B16 melanoma and 4T1 breast cancer models, have been used to

study anti-tumor immunity in vivo. Cell lines that were derived

from spontaneous tumors can be manipulated in vitro to express

defined tumor antigens and re-introduced into a syngeneic host.

However, transplantable models have been criticized as they do

not resemble established spontaneous tumors (e.g., [42,43]). One

of the advances associated with pre-clinical drug discovery and

development has been the development of genetically engineered

mouse models (GEMM) for cancer that incorporate alterations in

known oncogenes and tumor suppressors. Breast cancer GEMMs

spontaneously develop lesions in mammary tissue that histologi-

cally resemble the human equivalent [44]. Yet GEMMs are not

without criticism, as Jacks and coworkers suggest that genetically

Figure 3. Gene expression clusters associated with invasive breast cancer exhibited differential cell-mediated immune response
relative to normal breast tissue. Relative immune cell infiltrate was estimated based upon the average expression of genes associated with NK
cells, T cells, and macrophages, as listed in Table 1 (A). Mean posterior probability associated with T helper cell and macrophage polarization in each
group (Group 1 - blue line, Group 2 - red line, Normal - black dotted line, random gene expression (null hypothesis) - gray shaded density distribution)
were estimated based upon mutually exclusive gene expression patterns that are associated with each cell subset, as also listed in Table 1 (B). WISP1
expression was increased in breast cancer relative to normal tissue samples and WISP1 expression correlated with GATA3 expression (C). The ratio of
IL12RB2 to IL12RB1 was increased in Group 2 patients relative to Group 1 patients and normal breast tissue samples (D). A 1:1 ratio between IL12RB2
and IL12RB1 gene expression is indicated by the gray dotted line in the scatter plot. In panels A, C, and D, bivariate scatter plots are shown below the
diagonal, marginalized histograms stratified by the three groups are shown on the diagonal, and correlation coefficients are shown above the
diagonal. Results are colored by group (Breast Cancer Group 1: blue, Breast Cancer Group 2: red, Normal breast tissue: black).
doi:10.1371/journal.pcbi.1003409.g003
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engineered mouse models of cancer may underestimate the

mutational and antigenic load of most human cancers [45]. Given

the observed immune gene expression signature observed in

human breast cancer tissue, we also wanted to determine whether

most common breast cancer GEMMs exhibit similar immune

gene signatures as the human disease.

Similar to the TCGA analysis presented in Figure 1, mRNA

expression results from 122 breast cancer tumor and normal breast

tissue samples obtained from a variety of genetically engineered

mouse models (GEMM) for breast cancer (see Figure 6 -

[GEO:GSE3165]) [46]. Within this GEMM data set, four gene

expression clusters were identified based upon a subset of genes

associated with anti-tumor immunity and immunosuppressive

mechanisms: a normal group and three breast cancer groups. In

contrast to the TCGA data, WISP1 was up-regulated in only a

small subset of 7,12-dimethylbenz[a]anthrazene (DMBA)-induced

breast cancer models. Moreover, the immune gene expression

signatures in the breast cancer GEMMs suggested that NK cell

infiltrate is unchanged, T cell infiltrate is suppressed, and that

macrophages are elevated relative to normal breast tissue (see

Figure 7A). This signature is different from the immune cell gene

signatures observed in the TCGA data set that suggest that NK

cells, T cells, and macrophages were either collective decreased in

group 1 or collectively increased in group 2 relative to normal

tissues. In terms of immune polarization, macrophages exhibit a

similar pattern in the GEMMs compared to the human samples,

where macrophages in normal tissue are skewed towards an M2

and macrophages in tumor tissue are skewed towards M1

phenotypes (see Figure 7B). In contrast, the inferred T cell

polarization states in GEMMs are different from human samples.

A regulatory T cell signature is highest in normal mammary tissue

and the different tumor models exhibit mixed immune polariza-

tion signatures that overlap with the null hypothesis signature. The

GEMM results also suggest that reduced T cell recruitment to

Figure 5. Basal copy numbers of IL12RB1, IL12RB2, and MHC class I in breast cancer cell lines were consistent with cohort group
assignment based upon molecular pathology. Copy numbers of membrane proteins IL12RB1 (A), IL12RB2 (B) and HLA-ABC (D) were quantified
using flow cytometry for four breast cell lines: 184A1 HMECs (blue), BT474 (HER2+/ER+/PR+) cells (red), SKBR3 (HER2+/ER2/PR2) cells (green), and
MDA-MD-231 (HER22/ER2/PR2) cells (black). Unstained cells are shaded in gray. Results are representative of three independent replicates. (C) The
ratio of IL12RB2/IL12RB1 was increased in MDA-MB-231 cells relative to the other three cell lines (* indicates a p-value,0.05, as estimated using an
unpaired two-tailed Student’s t-test).
doi:10.1371/journal.pcbi.1003409.g005

Figure 4. WISP1 and GATA3 gene expression correlate with protein expression. Representative deconvoluted color images derived from a
breast cancer tissue microarray probed using a WISP1 antibody and imaged using 3,39 diaminobenzidine and stained using hematoxylin for three
invasive breast cancer (A - top) and three normal breast (B - bottom) tissue samples (original tissue microarray images were obtained from www.
proteinatlas.org [64]). Deconvoluted intensity of WISP1 staining is shown in red while cellular structures stained using hematoxylin are shown in blue.
(C) The average intensity of WISP1 staining, as determined by color deconvolution of the RGB tissue microarray images, was increased in breast
carcinoma (** indicates a p-value,0.001, as estimated using an unpaired two-tailed Student’s t-test). Summary statistics are shown as mean +/2 SD.
The number of replicates included in the analysis is indicated by n. (D) GATA3 gene expression as quantified by Affymetrix microarray correlated with
GATA3 protein expression as quantified by reverse phase protein array. In panel D, a bivariate scatter plot for the 340 joint measurements is shown
below the diagonal, marginalized histograms stratified by the two breast cancer groups are shown on the diagonal, and a correlation coefficient is
shown above the diagonal.
doi:10.1371/journal.pcbi.1003409.g004
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Figure 6. Immune gene expression signatures in genetically engineered mouse models for breast cancer clusters into three groups.
mRNA expression obtained from normal and breast cancer carcinoma tissue samples derived from different genetically engineered mouse models
(columns) were hierarchically clustered into four groups based upon the log2 median normalized expression ratio for genes (rows) related to cell-
mediated cytotoxic immunity and tumor immunosuppression. The color-coded bar at the top of the heatmap indicates the four groups (Normals -
black, Group 1 - blue, Group 2 - red, and Group 3 - orange). Gene expression is shown as a row-normalized heatmap, where red denotes under-
expressed and violet denotes overexpressed relative to the population mean. Dendrogram indicates the degree of similarity among genes (rows) or
samples (columns) using the Ward’s minimum distance method in R.
doi:10.1371/journal.pcbi.1003409.g006
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mammary tumors in the GEMMs reduces the signal associated

with T cell polarization, which in turn makes identifying the T cell

polarization state from homogenized tissue samples difficult.

Similar discordance has been reported between human

inflammatory diseases and their corresponding mouse models

[47]. Collectively, the immune signatures in the set of GEMMs are

unlike that observed in the TCGA samples and motivate

developing pre-clinical mouse models that better reflect the

immune signature associated with invasive breast cancer in

humans. Given the discordance between GEMMs and humans,

the likelihood for a type 2 error in testing immunotherapies using

spontaneous mouse models for breast cancer seems high.

Unfortunately, developing GEMMs that better mimic human

anti-tumor immunity is a recommendation that has persisted for

over three decades [48]. In contrast to the 1980s, this work

illustrates how data obtained from large-scale studies, like the

Cancer Genome Atlas, coupled with in silico model-based inference

methods can be used to identify appropriate immune signatures.

These immune signatures can be used as design constraints in

genetically engineering better pre-clinical mouse models of cancer.

Discussion

In this retrospective study of the invasive breast cancer arm of

the Cancer Genome Atlas study, we made three main observa-

tions. First, type 1 cell-mediated cytotoxic immunity was

correlated with increased survival in patients with invasive TN

breast cancer and was predictor of survival independent of

molecular pathology. In the absence of a molecular targeted

therapy, an increase NK and T cell infiltrate and a shift from type

2 towards type 1 cell-mediated immunity correlated with a survival

advantage in patients with invasive TN breast cancer. These

correlates were also identified independent of tumor staging and

lymph node involvement. This observation is consistent with a

significant body of literature that correlate various molecular

characteristics of anti-tumor immunity with overall survival in

breast cancer, as reviewed by Andre et al. [49]. While many

studies focus on particular immune-related molecules, gene

expression profiling provides a less biased view of the immunologic

properties of anti-tumor immunity. As one of the most extensively

studied cancers, gene expression profiling of primary tumors (e.g.,

[50–54]) and tumor stroma [55] have identified immune classifiers

of clinical outcome in breast cancer. In contrast to a focus on

primary tumors, samples from age-matched normal breast tissue

were included in the analysis to gain insight into the immunologic

changes associated with oncogenic transformation, which led to

the second observation.

Second, oncogenic transformation in invasive breast cancer

was associated with an increase in WISP1 gene expression

(p{valuev1|10{15) and protein abundance (p{valuev
0:001). Prior studies of WISP1 in breast cancer have been mixed.

Xie and coworkers observed higher WISP1 gene expression in 20

of 44 breast cancer samples while the remaining samples exhibited

levels of expression similar to normal breast tissue [56]. In

contrast, Davies and coworkers found that WISP1 was reduced in

samples obtained from breast tumors compared to normal breast

tissue [57]. Here, the focus on invasive breast cancer and larger

sample size may explain some of the observed differences. WISP1

is a member of the family of connective tissue growth factors that is

induced by nuclear localization of beta-catenin [26] and partic-

ipates in stem cell differentiation and tumorigenesis [58]. While

the details remain to be fully elucidated, on-going work suggests

that proteolytic cleavage of E-cadherin enables membrane-bound

beta-catenin to localize to the nucleus and induce WISP1

expression [27]. In vivo, loss of E-cadherin plays an important

role in the metastatic potential of cancers [59]. While WISP1 has

been reported to influence neurodegeneration and osteogenesis

[60], a signaling mechanism has yet to be identified despite a

report suggesting that WISP1 binds the a5b1 integrin [61].

Third, the gene expression signature in invasive breast cancer

was consistent with WISP1 as a paracrine inhibitor of type 1 cell-

mediated immunity through inhibiting IL12 signaling and

promoting type 2 immunity. In particular, we found a highly

significant correlation between WISP1 and GATA3 (p{valuev

1|10{9) and a highly significant negative correlation between

WISP1 and PPARG (p{valuev1|10{15). While the increase in

Figure 7. Hierarchical clusters of GEMM gene expression exhibit different immune cell signatures. (A) Relative immune cell infiltrate was
estimated based upon the average expression of genes associated with NK cells (KLRD1, KLRC2, KLRC3), T cells (CD247, CD3G, CD3D, CD3E), and
macrophages (CD14, CPM, MRC1, ITGAM) in the breast cancer GEMM data set [46]. (B) Using model-based inference, the mean posterior probabilities
associated with T helper cell and macrophage polarization in each GEMM group were estimated based upon mutually exclusive gene expression
patterns that are associated with each cell polarization subset, as listed in Table 1. The immune polarization signature was compared to a signature
assembled from a bootstrapped ensemble of random sets of gene expression (i.e., a null hypothesis), as summarized by the gray shaded density
distribution. In both panels, results are colored by group indicated at the top of the GEMM heatmap shown in Figure 6 (Normals - black, Group 1 -
red, Group 2 - blue, and Group 3 - orange). In panel A, bivariate scatter plots are shown below the diagonal, marginalized histograms stratified by the
three groups are shown on the diagonal, and correlation coefficients are shown above the diagonal.
doi:10.1371/journal.pcbi.1003409.g007
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GATA3 is consistent with WISP1 as an inhibitor of IL12 signaling,

the negative correlation between WISP1 and PPARG was

unexpected and suggests that the reduction in PPARG may

relieve transcriptional repression of type 2 cytokine production by

T cells. Conventionally, exploratory data analysis is used to

identify genes or clusters of genes that correlate with clinical

outcome (e.g., [50–55]). To identify gene set classifiers, the gene

expression data set is subdivided into a training set - to discover

significant gene clusters - and a validation set - to confirm that the

gene cluster correlates with outcome. Here a more targeted

approach was used. Previously, we used a phenotypic assay that

incorporated in vitro, in silico, and unbiased proteomics methods to

discover a paracrine mechanism by which a mouse model for

melanoma regulates immune response to IL12 [27]. To validate

this mechanism, a retrospective analysis was used to identify

whether a gene expression signature that is consistent with WISP1

as a paracrine regulator of anti-tumor immunity exists in invasive

human breast cancer. This gene signature was embodied in PC2

and corresponded to oncogenic transformation. Inverse relation-

ships between type 1 cell-mediated cytotoxic immunity and

GATA3 and between IL12RB2 and GATA3 were also captured in

PC1 and PC3, respectively. Collectively, the first three PCs

captured 49% of the overall variance in gene expression.

The limitations of the analysis are such that the TCGA data

reflect homogenized tumor tissue and the genes that are associated

with the immune polarization signatures have pleiotropic biolog-

ical roles. For instance, GATA3 plays a role in both mammary

epithelial [62] and immune cell biology [63]. In terms of

mammary epithelial cell biology, GATA3 is thought to inhibit

breast cancer metastasis. GATA3 is up-regulated in luminal

epithelial cells and down-regulated in basal epithelial cells, which

have a higher propensity for invasion and metastasis. In this

TCGA study, mutations in GATA3 have a higher prevalence [14].

However, less than 2% of samples that exhibited basal-like and

HER2-enriched intrinsic subtype characteristics had mutations in

GATA3, specifically truncation mutations. TN breast cancer

samples were predominantly the basal-like subtype while

HER2+ samples corresponded to the HER2-enriched subtype.

In terms of immune cell biology, GATA3 promotes type 2 and

counter regulates type 1 T cell polarization, as captured in the

analysis by the negative loading coefficient for GATA3 in PC1 and

the reciprocal relationship between GATA3 and IL12RB2 in PC3.

Collectively, the data suggest that changes in GATA3 may reflect a

signature derived from immune cell biology rather than mammary

epithelial cell biology. We found that GATA3 expression was

correlated with WISP1 and that GATA3 was up-regulated in

invasive breast cancer compared to normal tissue. The increase

over normal in GATA3 was especially prevalent in patient samples

associated with the group 1 cohort, a cohort with reduced overall

survival for patients with TN breast cancer. In contrast, GATA3

expression was lower relative to normal tissue in a subset of the

group 2 cohort, a cohort with improved overall survival for

patients with TN breast cancer. Despite the increase in WISP1

associated with oncogenesis, the differences in immune bias

between the patient cohorts may reflect intrinsic differences in

sensitivity to local reprogramming of tumor-infiltrating lympho-

cytes. While this cross-sectional tumor biopsy study can not rule

out the possibility that the observed signatures are due to systemic

alterations in immune response, identifying local factors could help

improve the efficacy of many of the immunotherapies currently in

clinical trials, such as adoptive T cell transfer or immune

checkpoint inhibitors that increase systemic T cell numbers.

In summary, effective anti-tumor immunity is proportional to

the number and to the cytotoxic activity of immune cells that enter

the tumor microenvironment. Recent advances in cancer immu-

notherapy stem from increasing the number of tumor-infiltrating

immune cells by inhibiting immune checkpoints or adoptive T cell

therapy. Mirroring the clinical results of these therapies, we found

that a gene signature consistent with enhanced type 1 cell-

mediated cytotoxic immunity is a predictor of overall survival in

invasive breast cancer independent of molecular pathology. In

addition, this study also supports a link between epithelial-to-

mesenchymal transition - through secretion of WISP1 - and

repression of type 1 cell-mediated cytotoxic immunity - through

inhibition of IL12 signaling. From an evolutionary perspective, the

results also suggest that oncogenic transformation in invasive

breast cancer alters the selective fitness landscape through

reducing the efficacy of innate and adaptive immunity, which

function as important extracellular control mechanisms. Restoring

these extracellular control mechanisms will require a better

understanding of the dynamics associated with the shift in

polarization from type 1 to type 2 within tumor-infiltrating

lymphocytes and the sensitivity of this axis, in terms of both

quantity and quality, to pharmacological action. From a transla-

tional science perspective, these findings motivate a directed effort

to demonstrate - using pre-clinical mouse models of
invasive breast cancer that more accurately represent
the immune signature in human disease - that inhibiting

these paracrine immunosuppressive cues will improve the overall

response of current cancer immunotherapies. Moreover, model-

based inference helped identify the immune signatures that can be

used as design constraints in genetically engineering better pre-

clinical mouse models of cancer. This knowledge may be of

particular importance to patients with TN breast cancer, a patient

group that is underserved by the current generation of molecular

targeted therapies.

Materials and Methods

Breast tissue gene expression
Expression of genes associated with type 1 cell-mediated

immunity, as summarized in Table 1, in normal breast tissue

and invasive breast cancer were obtained from the breast cancer

arm of The Cancer Gene Atlas (TCGA) study [14]. In brief,

homogenized samples obtained from primary tumor (n = 520) and

matched normal breast tissue (n = 61) were obtained from patients

that were newly diagnosed with invasive breast adenocarcinoma

following surgical resection and that received no prior treatment

for their disease (chemotherapy or radiotherapy). Subsequent

treatments, clinical characteristics and biomarkers, and overall

outcome for all of the 520 tumor tissue samples and reverse-phase

protein array (RPPA) data for only 340 of the tumor tissue samples

were downloaded from the TCGA website (https://tcga-data.nci.

nih.gov/tcga/). The median age at diagnosis was 59 years of age

and the median follow-up time for overall survival was 22 months.

Tumor and normal breast tissue gene expression for this cohort

was obtained following array normalization by processing through

the Oncomine database (www.oncomine.org). In brief, Level 2

data obtained using Agilent mRNA expression microarrays were

downloaded from the TCGA website (https://tcga-data.nci.nih.

gov/tcga/) and the intensity of a given gene probe was normalized

to the median of the probe intensities across the entire array

sample. Expression of a given gene is expressed in terms of a log2

median-centered ratio, where genes that have a value less than

zero are expressed at a level less than the median and genes with a

value greater than zero are expressed at levels higher than the

median.
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Immunohistochemical analysis
The abundance of WISP1 in invasive breast cancer and normal

breast tissue was quantified by immunohistochemical analysis

using a tissue microarray derived from de-identified human breast

tissue samples, as provided by the Human Protein Atlas (www.

proteinatlas.org, Stockholm, Sweden [64]) and in accordance with

approval from the Uppsala University Hospital Ethics Committee.

The tissue microarray analysis included samples from 9 breast

adenocarcinomas (6 ductal and 3 lobular) and 3 normal breast

tissues from women that ranged in age from 23 to 87 years. The

tissue microarrays were processed as described by Uhlen et al. [65]

and probed using a rabbit polyclonal antibody against WISP1

(ab10737 - Abcam, Cambridge, MA) that was validated by

providing partly consistent staining patterns with another antibody

and gene/protein characterization data. WISP1 staining was

visualized using diaminogenzidine and microscopic tissue features

were visualized by counterstaining with Harris hematoxylin.

Immunohistochemically stained tissue microarrays were scanned

at 206 resolution (1 mm diameter) and provided as an 8-bit RGB

JPEG image. Pathological assessments of the images were

annotated manually. The average intensity of WISP1 staining

per tissue sample was quantified by deconvoluting the intensity of

WISP1 staining from nonspecific hematoxylin tissue staining in R

using the EBImage package and deconvolution approach described

by Ruifrok and Johnston [66].

Model-based inference and statistical analysis
Polarization of T helper cells and macrophages into different

subtypes are defined by differences in gene expression [29,31].

The genes associated with each subset are summarized in Table 1.

The log2 median-centered ratios of subset-defining genes were

normalized to the standard deviation of the observed values across

the entire cohort, that is a z-score. Immune cell polarization

among alternative subsets is assumed to be a mutually exclusive

process. Using Bayes theorem, the conditional probability that

cells contained within a homogenized tissue sample exhibit a

polarization bias, as represented by a model (Mi), given the

observed multi-gene expression signature, Y , can be express as:

P(Mi DY )~
P(Y DMi):P(Mi)Pn

i~1 P(Y DMi):P(Mi)
: ð1Þ

where P(Y DMi) is the likelihood of observing data Y given the

polarization model Mi, P(Mi) is the prior for the model, and n is

the number of polarization subsets. As we have equal ignorance a

priori as to how well the competing polarization models describe

the data, the priors for each model are set equal to 1=n. The

likelihood of observing increased expression of a defined multi-

gene signature (Mi) is the product of the likelihood of observing

increased expression of each gene (Vy : y[Mi) within the signature.

The likelihood can be defined using a simple Euclidian metric

based upon the z-score [67,68]:

P(Y DMi)~ P
Vy:y[Mi

1

(y{3)2
: P
Vy:y[Mi

1

(yz3)2
, ð2Þ

such that a higher z-score for genes (yj ) associated with a subset

(Mi) and a lower z-score for genes associated with a different

subset (Mi) corresponds to a higher likelihood. Bootstrap

resampling is an effective computational method for estimating

the uncertainty associated with a calculated value [69]. Bootstrap

resampling with replacement (nBootstrap = 1000) from the set of all

observed gene expression values was used to establish a predicted

polarization bias for an equivalent size patient cohort

(nPatients = 200) that is consistent with a null hypothesis, that is

the gene expression values are random samples and contain no

information regarding immune cell polarization. The distribution

in posterior probability of immune bias for a given cohort was

obtained using kernel density estimation. Statistical significance

associated with the mean posterior probability of immune bias for

a given cohort was compared to the null hypothesis. A p-value

corresponds to the likelihood that the observed posterior

probability (or a more extreme value) of immune bias for a cohort

is due to random chance. A p-value,0.05 was considered

significant.

The variation and correlation among the gene expression

measurements were characterized using principal component

analysis (PCA), which is described in more detail in the

Supplemental Text S1. The scoring coefficients for each of the

top 10 principal components are listed in Dataset S1. Statistical

differences between means were assessed using unpaired Student’s

t-tests. All Student’s t-tests were two-sided. Statistical significance

associated with a correlation between gene expression values

within a sample was assessed using a Pearson product-moment

correlation coefficient. A one-sided test of the Pearson’s correlation

coefficient was used to determine whether a correlation coefficient

was positive or negative. A p-value,0.05 was considered

significant. Overall survival time was used as a clinical outcome

metric. To estimate cumulative survival probability, Kaplan-Meier

survival curves were estimated from the cohort overall survival

data. Statistical significance associated with a difference in survival

between two groups was estimated using the Peto & Peto

modification of the Gehan-Wilcoxon test and the Cox propor-

tional hazards regression model, as implemented in the R survival

package. Based upon criticism of other gene signatures associated

with cancer survival [70], the significance of the hazard ratio

associated with a type 1 immune polarization bias was estimated

by comparing the hazard ratio predicted by type 1 immune

polarization model against a distribution in hazard ratios predicted

from an ensemble of random models that were created by

bootstrap resampling (nBootstrap = 1000). Each random model was

created by randomly assigning a small subset of genes selected

from the genes shown in Table 1 to one of four polarization states.

The number of genes associated with each of the four polarization

states was the same as listed in Table 1. A p-value corresponds to

the likelihood that the observed hazard ratio (or a more extreme

value) associated with type 1 immune polarization is due to

random chance, where a p-value,0.05 was considered significant.

All analyses were performed using R software version 2.14.1

(http://www.r-project.org). Overall, the study was performed in

concordance with the REMARK guidelines [71].

Cell lines, antibodies, and reagents
The nontumorigenic human breast epithelial cell line 184A1

was obtained from ATCC (Manassas, VA), the human HER2+
breast cancer cell lines (BT474 and SKBR3) were kindly provided

by Dr. Jia Luo (University of Kentucky; Lexington, KY), and a cell

model of triple negative breast cancer (MDA-MB-231) was a gift

from Dr. J. M. Ruppert (West Virginia University). The 184A1,

BT474, and SKBR3 cell cultures were maintained at 37oC in 5%

CO2 in media supplemented as described previously [72].

Similarly, the MDA-MB-231 cell line was maintained in

Dulbecco’s Modification of Eagle’s Medium (DMEM) supple-

mented with 10% (v/v) heat inactivated fetal bovine serum (FBS)

(Hyclone, Inc., Logan, UT), L-glutamine, and penicillin/strepto-

mycin (BioWhittaker, Walkersville, MD). Allophycocyanin (APC)-

conjugated mouse anti-human CD212 (IL12Rb1 - Clone 2.4E6)
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and APC-conjugated mouse anti-human HLA-A,B,C (Clone G46-

2.6) were purchased from BD Biosciences (San Diego, CA,

U.S.A.). Phycoerythrin (PE)-conjugated mouse anti-human IL-12

receptor b2 (IL12Rb2 - Clone 305719) was purchased from RnD

Systems (Minneapolis, MN). ChromPure human IgG (whole

molecule) were purchased from Jackson Immuno Research (West

Grove, PA, U.S.A.). Quantum Simply Cellular uniform micro-

spheres conjugated to anti-mouse IgG were purchased from Bangs

Laboratories (Fishers, IN).

Quantification of protein copy number
Fluorescence-activated cytometry was performed as described

[27,38]. Quantum Simply Cellular calibration beads that contain

four Quantum Simply Cellular microsphere populations with

different mouse IgG antibody binding capacities were stained with

fluorophore-conjugated monoclonal antibodies specific for

IL12Rb1, IL12Rb2, or HLA-ABC. The cells were analyzed using

a FACSAria flow cytometer and FACSDiva Version 6.1.1

software (BD Biosciences). No stain controls were used as negative

flow cytometry controls. Single stain controls were used to

establish fluorescent compensation parameters. Cellular events

were identified by forward and side scatter characteristics. On

average, 2|104 events were analyzed. Flow cytometry data was

exported as FCS3.0 files and analyzed using R/Bioconductor [73].

Supporting Information

Dataset S1 Data.xls. This Microsoft Excel file contains gene

expression values used and scoring coefficients for each of the top

10 principal components.

(XLS)

Figure S1 Tumor characteristics associated with hier-
archical clustering of patients. Molecular pathology (top),

PAM50 intrinsic tumor subtypes, posterior estimation of immune

cell bias, and immune cell recruitment signature aligned to

hierarchical clustering of the gene expression profiles. The

molecular pathology (Normal, Ductal, Lobular, Other, ER+,

PR+, HER2+) and PAM50 intrinsic tumor subtypes (Basal,

HER2-like, Luminal A, Luminal B, Normal-like) are indicated

by a blue vertical bar. Posterior estimation of immune cells bias is

indicated by black-white shaded bar (p(:) = 0: black, p(:) = 1: white).

The magnitude of the immune cell recruitment signature

(Macrophages (MW), T cells, and NK cells) is indicated by a

ROYGBIV color scheme, where red indicates a low average log2

median-centered value and violet indicates a high average log2

median-centered value. Dendrogram indicates the degree of

similarity in gene expression among samples (columns) using the

Wards minimum distance method in R. Dendrogram was

calculated based on gene expression shown in Figure 1.

(TIFF)

Figure S2 Principal component analysis of gene expres-
sion values projected onto patient cohorts. (A) Column

dendrogram was calculated based on gene expression shown in

Figure 1. Subtypes of invasive breast cancer cohort are indicated

by color bars: group 1a - black (Normal), group 1b - blue, group 1c

- green, and group 2 - red. (B) Variance captured by principal

components, expressed as a percentage. (C) Within the entire

population, the density distributions of subtypes, stratified by

molecular pathology, marginalized along PC1 are shown for triple

negative (TN - gray), HER2+ (yellow), and other subtypes (blue).

Below the density distributions, the projection of invasive breast

cancer cohort along PC1 and PC2 dimensions. Points are color

coded as shown in panel A. Triple negative breast cancer samples

in groups 1b, 1c, and 2 are filled circles. Samples derived from

normal breast tissue are filled black.

(TIF)

Figure S3 External validation of TCGA gene expression
signature. Projections along the first four principal component

directions of the invasive breast cancer samples (A) and normal

breast tissue samples (B) reported in four potential validation

studies (black - TCGA [14], orange - Karnoub et al. [76], blue -

Finak et al. [55], and red - Gluck et al. [34]). In panel B, the

colored contour lines indicate the PC values that enclose 95% of

the invasive breast cancer samples. Contours were estimated from

the data shown in panel A by kernel density estimation. (C and D)

Biplot projections of the genes along the first two principal

component directions (panel C - Gluck et al. [34], panel D -

TCGA [14]). Synthetic samples were generated by random

bootstrap resampling with replacement of the set of all gene

expression values reported for a study. The colored ovals indicate

different noise thresholds by enclosing different fractions of the

biplot projections of the synthetic samples (median +/21 s.d. (red),

+/22 s.d. (yellow), +/23 s.d. (green), +/25 s.d. (blue), and +/27

s.d. (violet)). (E) A biplot comparison of the covariation observed in

gene expression in the Gluck study [34](blue circles) to the TCGA

study [14](red circles). Projections for the same gene observed in

the two different studies are connected by a line. The top 10 genes

that exhibited the greatest differences between studies are

highlighted in bold.

(TIF)

Figure S4 Comparisons of gene expression using pair-
wise scatter plots. (A) Genes in PC2 with high loading

coefficients: WISP1, GATA3, PPARG, and IL6. (B) Comparison

among GATA3 gene expression, copy number, and protein

expression. Bivariate scatter plots of log2 median-centered ratios of

gene expression (GATA3), of copy number (cnGATA3), and of

protein abundance (peGATA3) as measured by reverse phase

protein array. (C) Comparison among GATA3, IL12RB1, and

IL12RB2 gene expression. In all panels, the scatter plots are shown

below the diagonal, marginalized histograms stratified by the two

invasive breast cancer groups are shown on the diagonal, and

Pearson covariation coefficients are shown above the diagonal.

Results are colored by group (Breast Cancer Group 1: blue, Breast

Cancer Group 2: red). All values were obtained from the TCGA

website (https://tcga-data.nci.nih.gov/tcga/).

(TIF)

Figure S5 Pairwise scatter plots for genes previously
associated with tumor immunosuppression. Genes shown

include FOXP3, RORC, GATA3, HMGB1 [77], TGFB1, PDCD1

[78–80], CD274 [78–80], IL10, IDO1, ARG1, HIF1A [81], BTLA,

HAVCR2 (TIM-3), LAG3, MICA/MICB, and VTCN1(B7-H4) [82].

Bivariate scatter plots of log2 median-centered ratios of gene

expression are shown below the diagonal, marginalized histograms

stratified by the three groups are shown on the diagonal, and

correlation coefficients are shown above the diagonal. Results are

colored by group (Breast Cancer Group 1: blue, Breast Cancer

Group 2: red, Normal breast tissue: black).

(TIFF)

Figure S6 Posterior estimation of immune bias using
revised T helper cell polarization signatures. Mean

posterior probability associated with T helper cell and macro-

phage polarization in each group (Group 1 - blue, Group 2 - red,

Normal - green) were estimated based upon a revised mutually

exclusive gene expression signature that are associated with each

WISP1 Inversely Correlates with Type 1 Immunity
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cell subset, as discussed in the main text. The mean values in

posterior distributions of the null hypothesis in immune bias were

estimated for each of the 1000 bootstrap resamples and shown as a

distribution (gray shaded density distribution).

(TIFF)

Figure S7 Model-based inference of type 1 immune
polarization is a better predictor of improved outcome
than a random model of identical size. The x-axis denotes

the hazard ratio of the clinical outcome associated with either a

model representing type 1 T cell polarization (red squares) or a

random model assembled from a random sample of the genes

listed in Table 1 (box and whisker plot) obtained using a Cox

proportional hazards model for the indicated time frames (1 Year,

3 Years, 5 Years, and 6 Years). The distribution in hazard ratio

associated with the random model was assembled from 1000

bootstrapped replicates (box and whisker plot), where the median

is represented by the vertical bar, the first through the third

quartile is indicated by the box, and the whiskers indicate 62.7

standard deviations. Outliers are indicated by the circles and

suggest that the distribution in hazard ratios are skewed towards

lower hazard ratios. This is not surprising as the genes listed in

Table 1 are resampled but genes involved in anti-tumor immunity

are overrepresented. An important point here is that we are not

regressing a random immune signature to clinical outcome within

essentially the same data set but used an immune signature derived

from independent studies that has strong mechanistic interpreta-

tion. Given the extensive literature describing gene signatures

associated with T cell polarization, the signature has a low a priori

likelihood for a Type 1 error, although for this bootstrap example

we assume equal a priori likelihood for this signature as a random

model. As suggested by the skewed tail, one could identify a better

signature based upon correlation between clinical outcome and a

model created from some permutation of the genes in Table 1.

However from a mechanistic perspective, this could be interpreted

as overfitting the data.

(TIF)

Table S1 Results for Cox proportional hazards regres-
sion model. The Cox model: (Survival,p(Th1 T cell)+Mole-

cular Pathology). The results suggest that the posterior estimate of

a Th1 immune cell polarization gene expression signature (i.e.,

p(Th1 T cell)) is a predictor of overall survival independent of the

molecular pathology. We also found that the other T helper cell

polarization states (i.e., p(Th2 T cell), p(Th17 T cell), and p(iTreg

T cell)) were not predictive.

(PDF)

Text S1 TextS1.pdf. This PDF file contains: 1. Principal

component analysis 2. External validation of the TCGA gene

expression signature References.

(PDF)
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