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Comparison of 
electroencephalogram between 
propofol- and thiopental-induced 
anesthesia for awareness risk in 
pregnant women
Hee-Sun Park1,3, Yeon-Su Kim2,3, Sung-Hoon Kim1, A-Rom Jeon1, Seong-Eun Kim2* &  
Woo-Jong Choi1*

There have been few comparative studies using electroencephalogram (EEG) spectral characteristics 
during the induction of general anesthesia for cesarean section. This retrospective study investigated 
the differences in the depth of anesthesia through EEG analysis between propofol- and thiopental-
induced anesthesia. We reviewed data of 42 patients undergoing cesarean section who received either 
thiopental (5 mg/kg) or propofol (2 mg/kg). EEG data were extracted from the bispectral index (BIS) 
monitor, and 10-second segments were selected from the following sections: 1) Stage I, BIS below 60 
after induction; 2) Stage II, after intubation completion; 3) Stage III, end-tidal sevoflurane above 0 vol%. 
The risk of awareness was represented by the BIS and entropy measures. In Stage III, the thiopental 
group (n = 20) showed significantly higher BIS value than the propofol group (n = 22) (67.9 [18.66] 
vs 44.5 [20.63], respectively, p = 0.002). The thiopental group had decreased slow-delta oscillations 
and increased beta-oscillations as compared to the propofol group in Stages II and III (p < 0.05). BIS, 
spectral entropy, and Renyi permutation entropy were also higher in the thiopental group at Stages 
II and III (p < 0.05). In conclusion, frontal spectral EEG analysis demonstrated that propofol induction 
maintained a deeper anesthesia than thiopental in pregnant women.

Neuraxial anesthesia is a preferred form of anesthesia for cesarean section1. The rate of general anesthesia for 
cesarean section has been relatively low and has been declining in tertiary care hospitals2. However, general anes-
thesia is still required in emergencies or when regional anesthesia is contraindicated, such as in the presence of a 
coagulation abnormality or patient refusal. Cesarean section under general anesthesia is associated with a high 
risk of maternal intraoperative awareness. The fifth National Audit Project (NAP5) reported the incidence of acci-
dental awareness during the cesarean section under general anesthesia to be approximately 1:670 (1:380–1300)3. 
General anesthesia for cesarean section is traditionally induced with thiopental and succinylcholine using a rapid 
sequence induction (RSI) method. Although propofol has most commonly been used in cesarean section as an 
induction agent, still some anesthesiologists continue to prefer thiopental for obstetric anesthesia for historical 
and traditional reasons4,5.

The bispectral index (BIS) monitor, which processes the frontal electroencephalogram (EEG) signal to gen-
erate a number between 0 (deep anesthesia) and 100 (awake), is used to measure the hypnotic component of 
anesthesia. A range of 40–60 is considered to be suitable for general anesthesia. When BIS is over 60, there is the 
possibility of awareness risk during general anesthesia. BIS monitoring has been reported to reduce the risk of 
intraoperative awareness in populations at high risk6,7. A previous study reported that for patients receiving 4 mg/
kg of thiopental, the BIS value is >60 at the time of incision8. Parturients receiving 2–2.5 mg/kg of propofol pres-
ent with a lower BIS after endotracheal intubation and skin incision as compared to those receiving thiopental9,10.
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Some studies have suggested that EEG oscillations are related to altered states of consciousness produced by 
anesthetics11–15. However, there is a lack of detailed characterization of oscillatory EEG activity regarding thio-
pental and propofol administration in pregnant women. Therefore, characterizing EEG spectral dynamics should 
help to establish the risk of awareness during general anesthesia. We aimed to investigate whether there are any 
differences in frontal brain oscillations between propofol- and thiopental-induced general anesthesia for cesarean 
section. Further, BIS and entropy analyses were also conducted to evaluate awareness risk in each group.

Methods
Patient population.  This study was approved by the Asan Medical Centre institutional review board (IRB 
number 2019–0737). The need for informed consent was waived, considering the retrospective nature of this 
analysis. The study conformed to the tenets of the Declaration of Helsinki.

A retrospective analysis of EEG data recorded during elective cesarean section was conducted between 
September 2017 and May 2019. Our institute has traditionally used only thiopental (Pentothal sodium, 
JW Pharmaceutical, Seoul, Korea) for cesarean section, but there was a temporary supply interruption from 
November 2017 until March 2018. Propofol was then used as an alternative induction agent for cesarean section. 
After the re-supply of thiopental, agent selection was decided by the attending anesthesiologist.

We identified all parturient women who received general anesthesia. Through chart review, parturients were 
divided into two groups according to the anesthetic agent: the thiopental and propofol groups. Inclusion criteria 
were between 20 and 44 years old, American Society of Anesthesiologist grade 1 or 2, and elective operation. 
Patients with the following conditions were excluded from the study: (1) cases where regional anesthesia was con-
verted to general anesthesia; (2) exposure to sevoflurane before the induction of general anesthesia; (3) missing 
Vital Recorder data; (4) difficult airway management cases.

Anesthetic management.  Our institutional standardized anesthesia protocols were used for cesarean section. 
All parturient women received at least 3 min of pre-oxygenation using 100% oxygen, followed by RSI with cri-
coid pressure. Thiopental 5 mg/kg or propofol 2 mg/kg was administered, followed by succinylcholine 1.5 mg/kg  
to facilitate intubation. After disappearance of fasciculation and of the electromyography (EMG) activity bar 
on the BIS monitor, all patients were intubated with a 6.5-cuffed tracheal tube using a video-scope. After con-
firming successful intubation, rocuronium 0.5 mg/kg was immediately administered to achieve further muscle 
relaxation. Anesthesia was maintained with 50% nitrous oxide (N2O) in oxygen (6 L/min) and sevoflurane. The 
initially inspired concentration of sevoflurane was set at 2.0 vol% on the vaporizer until the end-tidal sevoflu-
rane (Et-Sevo) reached 1.3 vol%. A skin incision was made after the anesthesiologist confirmed intubation. After 
delivery, intravenous midazolam 0.03–0.05 mg/kg and fentanyl 100 μg were administered. The concentration of 
sevoflurane was reduced to 1.0 vol% with a flow of 2 L/min. Additive intravenous midazolam was injected to 
maintain the BIS value at <60. Intravenous patient-controlled analgesia (IV-PCA) was initiated during surgery. 
Sevoflurane and N2O were discontinued after skin closure, and any residual neuromuscular block was reversed 
using glycopyrrolate 0.4 mg and pyridostigmine 15 mg. Neonatal Apgar scores at 1 and 5 min were assessed by 
the pediatrician and nurse in charge of each neonate. A clinical nurse specialist, who was responsible for the 
postoperative pain control, evaluated dreaming, nightmares and any other experiences related to awareness in 
parturients after the operation and notified the anesthesiologists of any issue.

Data acquisition.  BIS was measured continuously using a BIS monitor (VISTA, Aspect Medical Systems, 
Norwood, MA, USA). A BIS Quatro (Medtronic, Minneapolis, MN, USA) four-electrode sensor was placed on 
the patient’s forehead. The vital signs, ventilator values, patient monitor values, and BIS and raw EEG data were 
recorded in the automatic recording program, Vital Recorder16. Our institute has recorded certain events during 
surgery such as intravenous agent administration, and birth on Vital Recorder since 2017. BIS and EEG data were 
stored at a rate of 125 Hz. Et-Sevo, N2O and end-tidal carbon dioxide (EtCO2) were continuously monitored on 
the ventilator using the gas analyzer on the patient monitor. We defined the following segments by examining 
the Vital Recorder data: (1) Awake, (pre-anesthesia); (2) Stage I, the first time period where BIS was below 60 
after the agent administration; (3) Stage II, immediately after intubation completion when the first EtCO2 flow 
appeared on the ventilator monitor (4) Stage III, the first period when Et-Sevo was above 0 vol% after intubation 
completion. The following data were also reviewed: maternal demographic data, indication for general anesthesia, 
and the induction agent dosage.

EEG analysis.  Data pre-processing.  Pre-processing of the data was completed using MATLAB (MathWorks, 
Natick, MA, USA). We applied a low-pass filter designed with a low cut-off frequency of 0.5 Hz and a high cut-off 
frequency of 50 Hz. EEG dynamics were analyzed at four distinct periods: (1) Awake, (2) Stage I, (3) Stage II, and 
(4) Stage III. For each subject, a 10-s EEG segment was selected from the artifact-free EEG data, where motion or 
electrocautery artifacts were not present.

Time-frequency analysis.  The power spectral density measures the frequency distribution of power within a 
signal, where power is the 10 * log10 of the EEG signal amplitude squared. The EEG power spectrum quantifies 
the energy in the EEG signal at each frequency, and the EEG spectrogram displays the EEG power spectrum as 
a function of time. In these spectrograms, frequencies were arranged along the y-axis and time along the x-axis. 
Power is indicated using color on the decibel scale. Spectral analysis of activity was performed with multitaper 
methods and implemented in the Chronux toolbox15. The multitaper parameters were selected as follows: window 
lengths of T = 2 s with a 1.9 s overlap, time-bandwidth product TW = 2, and the number of tapers K = 3.

We set up three groups: Stage I, II and III. We computed group-averaged spectrograms by taking the median 
power across all subjects at each time and frequency of each stage. The group-averaged spectra were calculated 

https://doi.org/10.1038/s41598-020-62999-5


3Scientific Reports |         (2020) 10:6192  | https://doi.org/10.1038/s41598-020-62999-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

by taking the median power of individual spectrograms at each frequency across the entire 10-second epoch, and 
median power at each frequency was calculated across subjects for each group. The interquartile range (IQR) was 
displayed as a shaded area on the averaged spectra.

Awareness analysis.  We assessed the risk of awareness during general anesthesia using BIS, spectral entropy, and 
Renyi permutation entropy (RPE). Spectral entropy and RPE were computed using raw EEG data extracted from 
the BIS monitor. The spectral entropy is a measure of the signal’s spectral power distribution based on Shannon 
entropy. The greater the spectral entropy is, the more uniform is the power spectral distribution. In this way, spec-
tral entropy can quantify the regularity of the power spectrum and has been used to assess anesthetic drug effects17.

The RPE has been suggested as the best index to measure the depth of anesthesia18, so we applied this to our 
EEG data. The RPE is a type of permutation entropy based on Renyi entropy and is given by
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mutation occurs. The embedding dimensions = …m 3, 4, , 7 have been suggested, and we selected m = 6 to 
extract most of the information.

Statistical analysis.  Based on a previous study9, the sample size was calculated using power analysis to 
detect a mean difference of 19 in the BIS value and a standard deviation of 20. Eighteen patients in each group 
were estimated to provide 80% power and a Type I error of 0.05.

Clinical characteristics were described as mean (standard deviation) or median [IQR] as appropriate. All 
variables were tested for normality using the Kolmogorov-Smirnov test. Continuous variables were compared 
using the Student’s t-test or Mann-Whitney test. For categorical variables, Fisher’s exact test and chi-square test 
were used. Repeated measures analysis of variance was used to evaluate the interaction of time and mean arterial 
pressure (MAP) and heart rate (HR) between the propofol and thiopental groups.

Analyses for spectral data were performed using a custom-written MATLAB code. We used a Wilcoxon 
rank-sum test to compare spectral estimates between different stages (Stage I vs Stage II vs Stage III) and between 
the two groups. A p-value < 0.05 was considered significant. For comparisons with awake data, we computed 95% 
confidence intervals (CI) using a bootstrapping algorithm included in the Chronux toolbox19. As the number of 
awake samples was small (n = 8), we drew bootstrap samples from the spectra with replacement across frequen-
cies. We then calculated the difference between the spectra. We repeated this process 10,000 times and calculated 
the 95% CI for the median difference between the two groups at each frequency.

Results
Study population.  There were 127 cases of elective cesarean section under general anesthesia between 
September 2017 and May 2019 at our institute. The propofol and thiopental groups included 68 (53.5%) and 
59 patients (46.5%), respectively. A total of 85 cases were excluded because there had been a failure of regional 
anesthesia (n = 26), missing Vital Recorder data (n = 31), or there was pre-exposure to sevoflurane at the pre-ox-
ygenation stage (n = 28). The flow chart of the study population is shown in Fig. 1. We analyzed 42 patients who 
had an elective cesarean section under general anesthesia, 22 in the propofol and 20 in the thiopental group. 
There were no significant demographic differences between the two groups except in their respective body mass 
indexes. (Table 1). There were no intubation difficulties reported. No events were recorded for intraoperative 
awareness after the surgery in the study population.

BIS and EEG analysis.  Figure 2 shows continuous BIS values (median [IQR]) from anesthesia induction 
until neonate delivery in each group. After Stage II, the median BIS value in the thiopental group increased above 

Figure 1.  Patients flow diagram.
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60 and remained high, while the propofol group maintained a median BIS value lower than 60 through Stages II 
and III. In Stage III, there was a significant difference in the median BIS values between the thiopental and the 
propofol groups (67.9 [18.66] vs. 44.5 [20.63], respectively, p = 0.002).

Group-median spectrograms were computed (Fig. 3A–H), and group level median spectra with IQR interval 
are presented in Fig. 3C,F,I–K. We found that the spectrogram of the thiopental group had decreased slow-delta 
(0.1–4 Hz) oscillations in Stage II and III compared to the propofol group. For a detailed comparison, we evaluated 
the power spectrum differences between the propofol- and thiopental-induced brain states across all stages. In 
Stage I, the thiopental group showed increased theta (4–6.5 Hz) and beta oscillations (19–30.5 Hz, 31.5–32.5 Hz)  
compared to the propofol group (Fig. 3C, p < 0.05). We noticed that slow-delta (0.1–3.5 Hz) oscillations were not 
significantly different in the two groups (p > 0.05). Stage II showed a dramatic decrease in slow-delta (0.1–3.5 Hz) 
power and an increase in theta-alpha (6–10 Hz) and beta (14–40 Hz) power in the thiopental group compared to 
the propofol group (Fig. 3D–F, p < 0.05). In Stage III, the thiopental group still had lower slow-delta (0.5–4 Hz) 
oscillations and larger beta (16–35 Hz) oscillations than the propofol group (Fig. 3G–I). In the propofol group, 
the median slow-delta (0.1–4 Hz) peak power decreased by 3.59 dB and 1.73 dB from Stage I to Stage II and from 
Stage II to Stage III, respectively (p < 0.05, Fig. 3J), while the thiopental group showed a more significant decrease 
in the slow-delta peak power from Stage I to Stage II (8.29 dB, p < 0.05, Fig. 3K).

For this retrospective study, it was difficult to find clean EEG segments recorded when the patients were 
awake. The eight patients with artifact-free EEGs in their awake states were selected by visual inspection. We com-
puted a group-median spectrogram for the awake state (n = 8) (Fig. 4A). We then evaluated the power spectra 
differences between Stage III and the awake state in both the propofol and thiopental groups. Compared to the 

Thiopental (n = 20) Propofol (n = 22)

Age (yr) 36.0 ± 5.1 34.8 ± 3.7

Height (cm) 162.0 [159.0; 163.3] 162.4 [157.0; 166.0]

Weight (kg) 68.2 ± 11.0 72.4 ± 11.8

BMI (kg/m2)* 25.9 ± 4.1 28.7 ± 4.6

Gestational age (weeks) 38 [37.0; 38.0] 37.0 [36.0; 37.0]

Indications for general anesthesia

Placenta previa totalis 11 (55) 14 (63.6)

Others 9 (45) 8 (36.4)

    Patients wanted 3 4

    Spinal surgery 3 3

    Previous open abdominal 
surgery 3 1

Induction agent dose (mg) 337.5 [300; 350] 140.0 [130.0; 160.0]

Time from induction to Stage II (s) 114.6 ± 19.8 118.9 ± 29.3

Time from induction to delivery (s) 457.0 ± 79.0 387.8 ± 97.2

Table 1.  Demographic data of thiopental and propofol groups. Data are expressed as mean ± standard 
deviation or median with IQR or number (%). BMI, body mass index. Stage II, intubation completion.  
*p < 0.05 between two groups.

Figure 2.  Experiment timeline: the time course of continuous BIS value and end-tidal sevoflurane 
concentration during the induction phase of general anesthesia in the thiopental and propofol groups. The 
solid line represents the median BIS value, and the shaded area represents its interquartile range. The vertical 
line shows each Stage analyzed segments: Awake, the first period with BIS below 60 (Stage I), the completion of 
intubation (Stage II), and the first period with end-tidal (Et) - Sevoflurane above 0 vol% (Stage III).
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awake state, the thiopental group at Stage III had no significant difference in slow-delta (0.1–4 Hz) oscillations 
(Fig. 4C) while the propofol group had significantly larger slow-delta, theta, alpha and lower beta (0.1–22 Hz) 
oscillations (p < 0.05, Fig. 4B).

To assess the risk of awareness, we compared BIS, spectral entropy, and RPE in the propofol and thiopental 
groups across all stages (Fig. 5A–C). Spectral entropy and RPE were calculated using raw EEG extracted from the 
BIS monitor. In the thiopental group, BIS, spectral entropy, and RPE significantly increased when shifting from 

Figure 3.  Representative group-median frontal spectrograms across 0.1 to 30 Hz at (A,B) Stage I, (D,E) II, and 
(G,H) III in the propofol and thiopental groups, respectively. The comparisons of group-median power spectra 
with an interquartile range interval (solid line, median) between the groups at (C) Stage I, (F) II, and (I) III. The 
blue overlay of the frequency axis represents frequencies with significant differences between the two spectra 
(p < 0.05). The comparisons of group-median power spectra with an interquartile range interval (solid line, 
median) over stages in the (J) propofol and (K) thiopental groups.
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Stage I to II, and Stage II and III (p < 0.05, Fig. 5A–C). The propofol group did not have significant increases in 
BIS or RPE when moving between stages, but the spectral entropy was significantly different in Stage I and III 
(p < 0.05, Fig. 5B). The median spectral entropy in the propofol group (0.60) was much smaller than that in the 
thiopental group (0.83) in Stage III.

Comparing hemodynamic variables between the propofol and thiopental groups.  All maternal 
MAP and HR were compared at each event time-point (awake, Stage I, II and neonate delivery, Fig. 6). Although 
the change of MAP and HR within each group was significant between each event time-point, there was no sig-
nificant interaction between the group and event time-point in MAP and HR (p = 0.190 and 0.756, respectively).

Discussion
This EEG spectral analysis demonstrates that the thiopental group was associated with lighter anesthesia when 
RSI was used during cesarean section. The thiopental group experienced a more significant decrease in slow-delta 
wave activity and an increase of beta activity after intubation before neonatal delivery compared to the propofol 
group. This was similar to awake-state EEG oscillations. Spectral entropy and RPE also significantly increased 
after intubation in the thiopental group. Our findings suggest that the possibility of intraoperative awareness may 
be higher with thiopental-induced general anesthesia in pregnant women. It was in line with the results of the 
NAP5 study, which showed that the use of thiopental for RSI was a risk factor of awareness during anesthesia3.

Intravenous induction agents are important for maintaining an adequate depth of general anesthesia for cesar-
ean section until volatile anesthetics reach a sufficient concentration in the brain3, since the use of supplementary 
opioids and other sedatives are avoided before neonatal deliveries20. During this interval, the risk of maternal 
awareness may be increased. After the injection of an intravenous agent, anesthetic depth rapidly declines until 
the brain concentration of the inhalation agents increases. This is supported in our study by showing that the 
median slow-delta peak power in both groups is lower in Stage II and III compared to than in Stage I. In Stage 
II and III, the thiopental group had a more significant reduction in median slow-delta power than the propofol 
group. If the dose of thiopental was increased, stable anesthetic depth during the general anesthesia induction 
period might be achieved. However, it is difficult to increase the dose of the induction agent due to concerns for 
the neonate’s safety. Propofol can maintain a stable BIS level and spectral analysis power in most patients, which 
means 2 mg/kg of propofol may supply adequate anesthetic depth during general anesthesia induction for cesar-
ean section.

Figure 4.  Awake analysis. (A) Group-median spectrogram while awake (n = 8). Group-median spectral power 
comparisons with interquartile range interval (solid line, median) between awake and Stage III in the (B) 
propofol group and (C) thiopental group. The blue overlay of the frequency axis represents frequencies with 
significant differences between the two spectra (p < 0.05).

Figure 5.  Entropy analysis. The comparisons of (A) BIS, (B) spectral entropy and (C) Renyi permutation 
entropy (RPE) between the propofol and thiopental groups at each stage. *p < 0.05, + and ‡ outlier value.
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We analyzed awareness risk using the spectral entropy and RPE indexes, which were computed using raw EEG 
data extracted from the BIS monitor. The exact algorithm for BIS has not been released, but it is known that BIS is 
calculated from three factors: (1) degree to which EEG oscillations are in phase (bicoherence); (2) amount of EEG 
power in the delta (1–4 Hz) versus beta (13–30 Hz) range (power spectrum); and (3) proportion of the EEG that is 
isoelectric21. Using the combination of factors, the BIS monitor compares the recorded EEG signal with a previous 
database to produce a number that reflects the level of hypnosis. However, entropy reflects the irregularities in the 
EEG signal, which is independent of the amplitude scales of the EEG signal that are patient dependent. The main 
idea is that increasing depth of anesthesia causes an increase in regularity of the EEG signal and consequently, the 
decrease in entropy. In this regard, BIS and entropies may have different trends for the depth of general anesthe-
sia22. Therefore, showing entropy indexes and BIS together could aid in the monitoring of intraoperative aware-
ness during cesarean section. In our results, BIS, spectral entropy and RPE have the same trend over Stages I, II, 
and III, which indicates clearly that thiopental-induced general anesthesia has higher awareness risk compared 
to propofol-induced anesthesia.

In a study of non-parturients, a bolus of thiopental 4 mg/kg and propofol 2 mg/kg was administered, the 
BIS value was monitored, and the isolated forearm technique was employed23. The results of the study showed 
that the recovery time to consciousness was faster for thiopental than for propofol, which was due to the differ-
ences in the pharmacodynamic and pharmacokinetic properties of the two drugs. Though thiopental (a barbi-
turate) and propofol (an alkylphenol) have different chemical structures, they have the same site of action, the 
gamma-aminobutyric acid (GABAA) receptors. When given a single intravenous dose of these agents, they are 
rapidly redistributed from the central to maternal peripheral tissue as well as to the placenta24. While both drugs 
cause changes to the regional cerebral blood flow (rCBF), they do so at different locations in the brain. Thiopental 
decreases the rCBF in the cerebellar and posterior brain areas, whereas propofol affects the frontal area25. Recent 
studies have reported that the continuous infusion of propofol disrupts functional relationships between the fron-
tal cortex and the thalamus26,27. The pharmacokinetic differences may also have been influenced by the effects of 
pregnancy on the phramacokinetic actions of drugs. In the case of thiopental, pregnant women have an increased 
volume of distribution and more rapid clearance because of decreases in the elimination half-life. However, it 
does not require a dose increase28. Although propofol pharmacokinetics have been well characterized in adult 
populations, little is known about it during pregnancy29. The effect-site concentration of both induction agents 
in our study may play an important role, but there are relatively few studies comparing thiopental and propofol 
pharmacokinetics during pregnancy. The detailed differences need to be further investigated.

Currently, there is no optimal anesthetic management for cesarean section. Our management for general anes-
thesia for pregnant women may be outdated. Recently, several recommendations and evidences to avoid maternal 
intraoperative awareness during general anesthesia have been presented. An additional dose of an induction 
agent given immediately before endotracheal intubation or opioid-based anesthesia could help maintain a stable 
depth of anesthesia30. Increasing evidence indicates that remifentanil administration at the induction of gen-
eral anesthesia is safe for both the mother and the baby31–33. Pre-exposure of sevoflurane would reduce the BIS 
index during the interval before delivery8. An end-tidal concentration of sevoflurane 1.2–1.5 vol% with 50% N2O 
would be required to maintain BIS values less than 6034, which is known to suppress uterine contraction by about 
only 30%35. Ueyama et al.36 reported that pregnant women does not have a lower minimal alveolar concentra-
tion (MAC) compared to non-pregnant women. Although these results would need to be further investigated, it 
implies the need for modifying conventional general anesthesia management for cesarean section. The updated 
method should guarantee the safety of the parturient as well as of the neonate.

One of the main limitations of this study is that it was retrospective, and patients could not be randomized to 
receive each induction agent. Prospective studies using pregnant women generally require considerable effort due 
to many safety and ethical issues in studying this population. Further prospective studies would need to evaluate 
whether a specific agent reduces the risk of intraoperative awareness. Secondly, the reliability of BIS monitoring, 
especially during RSI, might be low. Time delays have been observed to calculate the BIS index at the transition 

Figure 6.  Mean arterial pressure and heart rate graph in propofol and thiopental group at each event point. 
*p < 0.05 vs thiopental group.
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of different anesthetic states37. After a bolus injection of propofol or thiopental for RSI, BIS values become unu-
sually low when large delta wave was transiently emerging regardless of hypnotic level38. Zand et al.39 reported 
that isolated forearm test responses were seen in 46% of the parturients at intubation, and even mean BIS values 
were lower than 60. If adequate analgesic drugs were used during RSI, it might be influenced EEG parameters40. 
Further, the BIS responds to neuromuscular blocking drugs (NMBD)41,42, and there is a possibility that the patient 
recovers from consciousness during the RSI period even when the BIS value is low, since NMBD would be effec-
tive during that time. Succinylcholine may also interfere with interpretations. Succinylcholine causes fasciculation 
and leads to raised EMG, which may influence the EEG signal and BIS values. However, we intubated after the 
EMG in the BIS monitor fell to zero and immediately injected rocuronium following intubation. We therefore 
believe that the EEG differences between groups were unaffected. In addition, the BIS sensor is affected by mul-
tiple factors that may interfere with EEG interpretation. Our raw EEG data included segments with artefacts and 
noise caused by the physical stimulation of patients such as intubation, electrocautery, and traction of the abdom-
inal wall by the surgeon. Therefore, we analyzed the 10 second artifact-free EEG segments. Thirdly, the depth of 
anesthesia during cesarean section was the result of different combinations of drugs, including intravenous hyp-
notics, volatile anesthetics and N2O. There is a possibility that N2O may influence EEG dynamics. It suppresses 
low-frequency (delta and theta) EEG power and consequently pronounces high-frequency oscillations43, which 
may affect BIS monitoring. Both groups were given N2O in Stage III, but the intervals included in our EEG anal-
ysis were short. Thus, we feel assured that the effect of N2O on the results is minimal. Fourthly, if bilateral and 
multiple-channel EEG monitors could be used for this type of study, we may acquire more detailed information 
such as a coherence analysis. Finally, this study briefly assessed the patient’s unpleasant dreaming and any other 
experiences related to awareness after cesarean section, and there were no complaints nor other specific reports 
from patients related to intraoperative awareness. This assessment which dependent on the patient’s memory and 
experiences, cannot detect the exact occurrence of intraoperative awareness. Due to the administration of mida-
zolam and opioid after neonate delivery, current parturients seemed to have no experience related to awareness. 
Therefore, it may imply that a need for structural questionnaires for patients who are at high risk for intraopera-
tive awareness during general anesthesia.

In conclusion, this frontal spectral EEG analysis demonstrates that propofol for RSI in cesarean section main-
tained a more adequate anesthetic depth than the thiopental. Thiopental induction may increase intraoperative 
awareness risk in entropy analysis.
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