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Abstract: Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various
critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3Kα, PI3Kβ,
PI3Kγ and PI3Kδ) mediate the phosphorylation of the inositol ring at position D3 leading to the
generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases,
of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class
(I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with
increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of
PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood
cell-selective PI3Kγ and PI3Kδ isoforms have an important role in regulating the immune-suppressive,
tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are
also critical for solid tumor growth. Moreover, PI3Kα is implicated in the direct regulation of tumor
angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to
cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor
microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors
may act as potent cancer immunotherapeutic and anti-angiogenic agents.
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1. Introduction

Phosphoinositide 3-kinases (PI3Ks) phosphorylate the 3-hydroxyl group of the inositol ring
leading to the generation of PtdIns(3)P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 [1]. These lipid messengers
have different spatio-temporal distributions within the cell and are involved in many biological
functions including survival, proliferation, metabolism, cytoskeletal rearrangement, migration and
vesicular trafficking [2]. In mammals, PI3Ks are subgrouped into three unique classes based on
structural and enzyme-kinetic differences [3]. The best known PI3Ks belong to the Class (I) PI3-kinase
family and are termed as PI3Kα, PI3Kβ, PI3Kγ or PI3Kδ [4]. PI3Kα and PI3Kβ are ubiquitously
expressed, while the PI3Kγ and PI3Kδ isoforms are enriched in hematopoietic cells, such as
leukocytes [5]. The main phosphoinositide product generated by the Class (I) PI3Ks under physiological
conditions is PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 is a second messenger, which can activate a number of
downstream molecules in the PI3K signaling pathway, including the 3-phosphoinositide dependent
protein kinase-1 (PDK1), the Ser/Thr kinase AKT and the mammalian target of rapamycin complex 1
(mTORC1) [4,6]. PtdIns(3,4,5)P3 can be dephosphorylated by phosphoinositide phosphatases,
such as the 3-phosphatase PTEN (phosphatase and tensin homolog) or the 5-phosphatase SHIP1
(SH2 domain-containing inositol phosphatase 1 or INPP5D).

Class (I) PI3Ks are frequently activated in human cancers where mutations are linked with
cellular transformation and tumor progression. Solid cancers often exhibit elevated PI3Kα activity [7].
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Abnormal activation and amplification of the PIK3CA oncogene—encoding the catalytic subunit of
PI3Kα—is one of the most commonly observed events associated with malignant transformation and
found to be present in multiple tumor types including breast, colon, and ovarian cancer [8]. The most
frequent alterations in PI3Kα occur at specific hotspots in the coding sequence, namely the H1047R
catalytic domain and the E545K and E542K helical domain mutations [9]. Oncogenic mutations have
commonly been found in PI3Kα, but rarely in PI3Kγ and PI3Kδ. In the last few years, activating
mutations in the gene encoding the catalytic subunit of PI3Kβ, PIK3CB, have also been described
and PI3Kβ signaling has been implicated in tumorigenesis (e.g., prostate and breast cancer) [10,11].
Moreover, the catalytic activity of PI3Kβ has been shown to sustain the proliferation of PTEN-deficient
cancer cells in certain tumors [12,13]. However, while PI3K signaling is often hyperactivated in solid
cancers, the clinically tested PI3K inhibitors in monotherapy have shown only limited effect on tumor
cells [14]. This may be due to intrinsic and acquired cancer cell resistance to PI3K inhibition, as well as
the fact that tumor cells can activate parallel signaling pathways controlling growth and survival [15].
Additionally, pan–Class (I) PI3K inhibitors can cause serious adverse effects, such as hyperglycaemia
and/or hyperinsulinemia in patients due to the central role of PI3Kα in glucose homeostasis, limiting
the maximal effective doses that can be tolerated [16]. Exploring the role of individual PI3K isoforms
in different cells of the tumor microenvironment may contribute to the design of more effective
combination therapies, because these inhibitors can be tolerated at doses leading to greater effective
inhibition of their targets. Further, the existence of natural isoform-selective PI3K inhibitors [17] as
well as the development of new isoform-selective agents by the pharmaceutical industry [7] raise the
possibility of using PI3K inhibitors as novel cancer therapeutics.

The role of PI3Ks in the tumor microenvironment however is less well understood. Solid
cancers (including those of epithelial origin) consist of two distinct compartments: the tumor
parenchyma—containing the neoplastic cells—and the surrounding stroma. The stroma includes
fibroblasts, connective tissue, blood vessels and immune cells, all of which are mainly produced
by the host and are critical for tumor growth and progression [18]. This review will focus on how
dysregulation of the PI3K signaling pathway in the tumor microenvironment (including immune cells,
blood vessels and fibroblasts) impacts on cancer cell growth and progression of solid tumors.

2. Role of PI3K in Immune Cells of the Tumor Microenvironment

Solid cancers are highly complex pathologic structures composed of the neoplastic cells and
a tumor-associated microenvironment [19]. While PI3Kγ and PI3Kδ are present at low levels in many
cells and tissues, they are very highly expressed in leukocytes. Under physiological conditions, PI3Kγ

is responsible for many critical leukocyte responses to G protein-coupled-receptors (GPCRs), perhaps
most clearly the chemotaxis and production of reactive oxygen species by neutrophils [4], while PI3Kδ is
required for several leukocyte responses to tyrosine kinase-coupled receptors, for example the antigen
receptors and their co-regulatory molecules which control the function and differentiation of T and B
lymphocytes [5,20]. Surprisingly, given their apparent importance for an effective innate and adaptive
immune response to pathogens, recent preclinical animal studies suggest that pharmacological
inhibition/genetic ablation of PI3Kγ and PI3Kδ isoforms in the host can actually suppress tumor
growth in a wide range of solid cancers and is not only limited to hematological malignancies [21–23].
Current evidence indicates that these effects are probably mediated by dominant roles for PI3Kγ

and PI3Kδ in the leukocyte signaling pathways which allow tumors to suppress immune system
attack. Further, considering the fact that the expression of PI3Kγ and PI3Kδ is mainly restricted to
hematopoietic cells, inhibitors specifically targeting these isoforms can avoid metabolic side effects
due to inhibition of PI3Kα.

2.1. The Role of PI3Kγ in Tumor-Associated Myeloid Cells

The sole Class IB isoform, PI3Kγ, is highly expressed in immune cells of myeloid origin, such as
neutrophils and macrophages, but not in the cancer cells themselves of most solid tumors. Tumor-
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associated myeloid cells (TAMCs)—including tumor-associated macrophages (TAMs), tumor-associated
neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs)—are major cell types found in the
tumor microenvironment clinically and in a wide range of preclinical tumor models [24,25]. Tumor
masses can contain as many CD11b+ TAMCs as cancer cells and those myeloid cells can secrete
anti-inflammatory cytokines which suppress immune responses [24]. PI3Kγ-deficient mice showed
significantly suppressed tumor growth and metastasis formation, as well as increased host survival in
a range of solid tumor models [21,26]. Moreover, pharmacological inhibition of PI3Kγ decreased cancer
progression and promoted anti-tumor T-cell immune responses [22,27,28]. The activation of PI3Kγ

was demonstrated to be necessary for the induction of an immunosuppressive transcriptional program
in TAMCs. Inhibition of PI3Kγ reprogrammed those myeloid cells from an immunosuppressive
to an immunostimulatory phenotype. This restored the numbers of functional CD8+ T cells in the
tumor, as well as synergized with checkpoint inhibitor therapies (anti-CTLA4 and anti-PD-1 antibodies;
treatments which directly interfere with additional, direct pathways by which cancer cells “switch off”
CD8+ T cells) to promote tumor regression in syngeneic mouse models [22]. These studies suggest that
targeting the PI3Kγ-dependent signaling pathways in tumor-associated myeloid cells may provide
novel approaches to increase the long-term survival of cancer patients [29]. Further, the importance of
PI3Kγ in the regulation of migration of neutrophil granulocytes [30], together with the identification of
the pro-tumorigenic function of neutrophils [31,32], suggests PI3Kγ may play a role in TANs as well.

2.2. The Role of PI3Kδ in Regulatory T Cells

PI3Kδ is abundant in both lymphocytes and myeloid cells and is activated by antigen, cytokine
and growth factor receptors [33]. Recent evidence has shown that genetic inactivation of PI3Kδ in
mice protects against hematological tumors and also a wide range of solid cancers [23]. In addition,
pharmacological inhibition of PI3Kδ significantly increased survival rates and decreased metastasis
formation in different solid tumor models [23]. This immunomodulatory effect was due to the
inactivation of PI3Kδ in the suppressive regulatory T cell subset, unleashing CD8+ cytotoxic T cells
which could then induce tumor regression [23]. These findings suggest that PI3Kδ inhibitors are not
only capable of blocking cancers of hematological origin but can also increase immune responses
against solid tumors. Despite having remarkable effects in certain solid cancers, the success of
immune checkpoint blockade therapies (anti-PD-1, anti-CTLA4 antibodies) in other tumors has been
limited by the development of additional immune resistance mechanisms, for example a block in
the infiltration and development of functional CD8+ T cells at the tumor site itself. Among these
additional mechanisms, myeloid cells and regulatory T lymphocytes are thought to play a major role
in limiting effective anti-tumor immunity. PI3Kγ/δ inhibitors may help overcome these problems by
inhibiting the immune suppressive leukocyte subsets, such as tumor-associated macrophages and
regulatory T cells.

2.3. The Role of PI3Ks in Other Immune Cells

Cancer cells can secrete soluble factors, which are able to shape the tumor microenvironment [32].
Macrophage differentiation is mainly driven by colony-stimulating factor-1 (CSF-1 or M-CSF) [34],
and in the CSF-1-null mice macrophages are nearly completely depleted in the peripheral
tissues, including the monocyte precursor-derived bone-resorbing osteoclasts (osteopetrotic, op/op
mice) [35,36]. Therefore, inhibiting CSF-1 signaling is in the focus of current macrophage-targeted
therapies [37]. It has been shown recently that combining PI3K inhibition with CSF-1 blockade
significantly prolongs survival in animal models of glioblastoma multiforme [38].

Immune cells are common components of the tumor microenvironment [39]. However, those
cells can exert both pro- and anti-tumor immune responses. Similar to regulatory T cells, dendritic
cells (DCs) are able to secrete IL-10 and TGF-β to attenuate immune responses, which can be reversed
by PI3Kγ inhibitor in preclinical mouse models of colon adenocarcinoma [26]. Moreover, the PI3Kδ

isoform might play a role in other TAMC subsets such as TAMs and MDSCs too. On the other
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hand, Class (I) PI3K isoforms can be involved in anti-tumor immune responses as well, depending
on the cellular context. For example, inactivation of PI3Kδ prevents the degranulation of NK cells,
impairing their role in immune surveillance [40]. Similarly, degranulation defects have been described
in CD8+ T cells derived from colon adenocarcinoma of PI3Kδ-deficient mice, dampening their cytotoxic
activity [41]. The loss of PI3Kδ activity may also cause a defect in the activation and antigen-induced
clonal expansion of CD8+ T cells [23,41]. PI3Kγ is a critical regulator of chemotaxis in innate immune
cells too and therefore crucial for the elimination of pathogens [42]. Hence, the cell-specific functions of
PI3Ks should be carefully considered when selecting the appropriate anti-cancer immunotherapy [43].

3. Role of PI3K in Angiogenesis in the Tumor Microenvironment

The ability of solid tumors to grow and progress essentially depends on new blood vessel
formation. Stroma-cancer cell interactions play a crucial role in tumor neovascularization [44].
Class (I) PI3Ks are activated to some extent in nearly all cellular components of the peritumoral
environment. However, recent findings have indicated that the PI3K signaling pathway is particularly
important in the pathogenesis of tumor angiogenesis [44]. PI3K signaling can regulate solid tumor
neovascularization either directly (through the endothelial cells) or indirectly (by cancer cells and via
TAMCs). PI3Kα was documented to be the most important Class (I) PI3K isoform involved in the
regulation of endothelial cells [45].

3.1. The Direct Role of PI3Kα in Angiogenesis

Endothelial cell proliferation, survival and maturation can be triggered by many stimuli, including
vascular endothelial growth factor (VEGF) binding to the VEGF receptor (VEGFR) and angiopoietin
(ANG) binding to TIE receptors. Although endothelial cells express all Class (I) PI3K isoforms, only
PI3Kα is essential for vessel sprouting (45). PI3Kα is activated in the signaling pathway downstream
of tyrosine kinase receptors (e.g., VEGFR) and accounts for most of the PtdIns(3,4,5)P3 generated in
endothelial cells [45]. In mice with venous malformations, a PI3Kα-selective inhibitor significantly
decreased pathological vessel formation by inhibiting endothelial cell proliferation [46]. PI3Kα has
also been shown to be crucial for lymphatic vessel formation [47].

3.2. Indirect Role of PI3Ks in Angiogenesis

Besides endothelial cells, a lot of other cell types are capable of producing angiogenic factors,
including cancer cells and tumor-associated myeloid cells. Class (I) PI3K isoforms play a role in
these cells. In the last few years it has emerged that immune cell-mediated processes occurring
at different stages of tumorigenesis are central to the development and progression of solid
tumors [48]. As demonstrated earlier, the PI3Kγ isoform plays an important role in regulating the
immune-suppressive TAM subset, which is a major source of VEGFα [49]. Moreover, pharmacological
inhibition of PI3Kγ and PI3Kδ was described to further enhance the effect of anti-VEGF/VEGFR
therapy in mouse models of pancreatic neuroendocrine and mammary tumors [50]. These findings are
supported by the notion that pan-PI3K inhibitors targeting cancer, endothelial and myeloid cells have
potent anti-angiogenic activity [51]. PI3Kβ has been shown to be the dominant isoform in platelets and
plays a critical role in platelet activation and thrombus formation [52]. The activation of platelets and
the coagulation system have an important function in cancer progression. The contribution of platelets
to tumor cell survival in the blood highlights their key role in the development of metastases [53].
PI3Kβ inhibitors may possibly be able to shape the tumor microenvironment within the bloodstream by
inhibiting the tumor cell-protective function of platelets and limit the establishment of new secondary
lesions [53].

4. Role of PI3K in Stromal Fibroblasts of the Tumor Microenvironment

Fibroblasts constitute a major cellular component of the tumor microenvironment, and are
important regulators of normal tissue homeostasis under physiological conditions by secreting various
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cytokines and growth factors. Cancer-associated fibroblasts (CAFs) can produce a number of paracrine
factors which influence cell proliferation and survival via altering the composition of the extracellular
matrix (ECM), and by changing the tumor microenvironment [54]. CAFs promote tumor progression,
but the role of PI3Ks in the regulation of CAF-tumor cell interactions is less well understood. It was
shown that an indirect action of a PI3Kγ inhibitor (through TAMs) decreased collagen production
from CAFs [55] and accumulating evidence indicates that PI3Ks control the secretion of matrix
metalloproteinases (MMP) by fibroblasts, which is crucial for tumor cell migration [56]. Further,
inactivation of PTEN in stromal fibroblasts has been shown to promote mammary epithelial tumor
development and progression [57]. ECM remodeling and metastasis are connected processes which
contribute to cancer dissemination and PI3K signaling seems to be important for both. However, further
studies are required to fully evaluate the role of Class (I) PI3K isoforms in cancer-associated fibroblasts.

5. Conclusions and Perspectives

The PI3K signaling pathway is both active in cancer cells and the tumor microenvironment and
regulates not only cancer growth but also tumor protective immune responses, neovascularization
and cancer-induced matrix-reorganization [58]. Class (I) PI3K isoforms are expressed in all of the
different cell types in the peritumoral environment and are critical regulators of both physiological
and pathophysiological cellular responses (Figure 1). However, clinical trials with PI3K inhibitors
used as a monotherapy have shown only limited potential to directly arrest tumor growth, possibly as
a consequence of cancer cell resistance mechanisms and drug tolerability in patients due to narrow
therapeutic index [15].
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Figure 1. Cellular composition of the tumor microenvironment and the role of Class (I)
phosphoinositide 3-kinase (PI3K) isoforms in the stromal cells which support cancer growth and
progression. TAM: tumor-associated macrophage, MDSC: myeloid-derived suppressor cell, Treg:
regulatory T lymphocyte, CAF: cancer-associated fibroblast, EC: endothelial cell, CTL: cytotoxic T
lymphocyte, GPCR: G protein-coupled receptor, RTK: receptor tyrosine kinase.



Cancers 2017, 9, 24 6 of 10

In the past few years, the identification of specific and non-redundant roles for Class (I) PI3K
isoforms in the tumor-protective microenvironment has raised the possibility of using isoform-selective
PI3K inhibitors to downregulate the supportive stimuli derived from the stroma. This effect is
exemplified by the PI3Kδ inhibitor, idelalisib, which has been approved by the FDA for the treatment of
hematological malignancies. In chronic lymphocytic leukemia (CLL), PI3Kδ-inhibition interferes with
the survival signals provided by stromal cells for the transformed B lymphocytes [33]. This principle
may be further extended to solid tumors, where inhibition of the leukocyte-specific PI3Kγ and
PI3Kδ isoforms may block immune-suppressive tumor-associated myeloid and regulatory T cells,
respectively [21–23]. In this context, inhibition of PI3Kγ and PI3Kδ in preclinical animal models has
been shown to reshape the immune response to cancer and enhance cytotoxic T lymphocyte-mediated
tumor elimination, without targeting the cancer cells directly. However, the ability of PI3Kδ inhibition
to modulate immune responses is probably not limited to the dysfunction of the regulatory T cell subset
but may also cause a defect in CD8+ lymphocyte responses [23,41]. As a consequence, the level of the
dependence of the tumor on key immune suppressive cells as well as the degree of the impairment of
the effector T cell response must be considered together to estimate the effect of PI3Kδ inhibition on
cancer growth and progression. Moreover, there are a number of documented cases where patients
treated with idelalisib developed acute toxicities [59–61]. PI3Kδ inhibition caused several adverse
effects, among which the risks of pneumonitis, diarrhea, colitis, rash, liver inflammation, neutropenia,
and opportunistic infections were associated with idelalisib treatment—critically, a number of
deaths among participants put new trials on hold [62]. In at least some of these cases, these adverse
effects may be due to on-target effects and the development of a “hyper-active” immune response.
To be able to overcome such complications, the administration of PI3K isoform-selective drugs
below their maximum-tolerated dose, most likely in combination with other treatments that act
on parallel pathways (e.g., “checkpoint” inhibitors or CSF-1 blockade), might help to avoid complete
immune system deregulation. These strategies may also minimize the risk of the development of
tumor-intrinsic resistance.

PI3K signaling also has pleiotropic roles in angiogenesis, which can provide a rationale for
using PI3K inhibitors as anti-angiogenic agents [44]. Evidence from the literature suggests that PI3K
inhibition has a modulatory effect on the tumor vasculature [52]. Moreover, the PI3Kα isoform has
been implicated in the regulation of critical endothelial cell functions [45]. However, the underlying
mechanisms are not fully understood and there is a concern that PI3Kα inhibitors will cause toxicity
through interfering with insulin signaling. Additional preclinical studies are required to evaluate the
potential for inhibiting different PI3K isoforms in cancer-associated fibroblasts.

In summary, Class (I) PI3K isoforms play critical, but cell-specific roles both in cancer cells and
in the tumor microenvironment. As a consequence, a precision medicine based approach should be
considered when designing the appropriate therapy and drug combinations where tumor-stromal cell
interactions are taken into account as well [63,64]. This approach which would rely on defining the
most useful biomarkers to direct the pre-clinical studies and stratify patients.
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