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Chiral domain walls of Mn3Sn and their memory
Xiaokang Li1,2, Clément Collignon2,3, Liangcai Xu1, Huakun Zuo1, Antonella Cavanna 4, Ulf Gennser 4,

Dominique Mailly4, Benoît Fauqué3, Leon Balents5, Zengwei Zhu 1 & Kamran Behnia2,6

Magnetic domain walls are topological solitons whose internal structure is set by competing

energies which sculpt them. In common ferromagnets, domain walls are known to be of

either Bloch or Néel types. Little is established in the case of Mn3Sn, a triangular antiferro-

magnet with a large room-temperature anomalous Hall effect, where domain nucleation is

triggered by a well-defined threshold magnetic field. Here, we show that the domain walls of

this system generate an additional contribution to the Hall conductivity tensor and a trans-

verse magnetization. The former is an electric field lying in the same plane with the magnetic

field and electric current and therefore a planar Hall effect. We demonstrate that in-plane

rotation of spins inside the domain wall would explain both observations and the clockwise or

anticlockwise chirality of the walls depends on the history of the field orientation and can be

controlled.
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A domain wall is the topological defect of a discrete sym-
metry. In ferromagnetic materials, these are narrow
boundaries separating magnetic domains with different

polarities. Their width and structure are set by the competition
between the exchange energy and the magneto-crystalline ani-
sotropy energy1. They are either of Bloch type, where the mag-
netization rotates in a plane parallel to the wall plane, or of Néel
type, whose magnetization vector rotates in a plane perpendicular
to the wall. Thanks to high-resolution scanning probes of local
magnetization, they can be visualized2. Theoretical proposals for
other more sophisticated spin textures have recently emerged3. In
addition to their fundamental interest, the attention to domain
walls is driven by the quest for new spintronic devices4. Much less
is known about antiferromagnetic domain walls.

A large anomalous Hall effect (AHE) was recently discovered5–7

in the Mn3X (X= Sn,Ge) family of noncollinear antiferro-
magnets8–11. The discovery followed theoretical predictions12,13

and preceded the observation of a variety of other anomalous
transverse responses by thermal and optical probes14–20. These
materials constitute new platforms for antiferromagnetic spin-
tronics21,22. The structure of domain walls have been a subject of
theoretical23 and experimental studies24. Evidence and arguments
for a nontrivial spin texture in domain walls are available, but no
direct image of their magnetic structure, yet.

Here, we report on three distinct experimental observations
leading us to identify the in-plane structure of the domain walls
in Mn3Sn. The first observation is that in the narrow magnetic
field window of multiple domains, there is a planar Hall effect
(PHE), which consists in an electric field oriented parallel (and
not perpendicular) to the applied magnetic field. The thermo-
electric counterpart of this effect, namely a planar Nernst effect
(PNE) was also detected. The second observation is the existence
of a transverse magnetic response in the same narrow field
window. Employing micron-size Hall sensors in close proximity
with the sample25,26, we monitored the local magnetic field at the
surface and found in the same field window a finite off-diagonal
magnetization: a finite magnetization oriented perpendicular to
the orientation of the applied magnetic field. We will argue below
that a satisfactory explanation of both these observations is pro-
vided by a specific spin texture inside the domain walls. The third
result is that the sign of the emergent electric field (set by the
clockwise or anti-clockwise rotation of the spins inside walls)
depends on the history of the magnetic field orientation. We will
show that this is caused by residual minority domains promoting
a specific chirality. This last observation constitutes a new case of
memory formation in condensed matter recording a direction27.

Results
PHE and PNE. Figure 1 shows an additional hitherto unreported
component in the Hall and the Nernst responses of Mn3Sn, which
we call PHE and PNE. The experimental configuration is sket-
ched in Fig. 1a. Charge current was applied along the z-axis (J//z)
and the magnetic field was oriented along the y-axis (H//y).
Electric field was measured simultaneously along both x- and y-
axes. Ex, which represents an electric field vector perpendicular
the magnetic field and the charge current, is the Hall response. As
seen in Fig. 1b, it displays a hysteretic jump as reported pre-
viously5,15,24. As the magnetic field is swept, three different
regimes succeed each other24. In regime I, the system hosts one
single domain. When the applied magnetic field (opposite to the
magnetization of the dominant domain) exceeds a threshold, new
domains nucleate and regime II starts. At sufficiently large
magnetic field, the system becomes single-domain again (regime
III). As seen in (Fig. 1c), in regime II, Ey, the component of the
electric field parallel to the magnetic field, becomes finite. The

result was reproduced in several other samples and was also
detected when the applied magnetic field was along the x-axis, see
Supplementary Fig. 2. In other words,in the presence of multiple
domains, when J//z and H//y(//x), there is a nonvanishing Ey (Ex).
This is a planar Hall effect, with an electric field, which is parallel
and not perpendicular to the magnetic field. Note that this signal
only emerges in the presence of domain walls. Its amplitude is
comparable to the amplitude of the topological Hall effect (THE)
(Fig. 1d) extracted by subtracting Hall and magnetization hys-
teresis loops24, see Supplementary Note 4. Interestingly, the THE
is present in the same field interval as the PHE, but shows dif-
ferent signs for the two sweeping orientations.

The experimental configuration for probing the Nernst
response is shown in Fig. 1e. The thermal gradient is applied
along the z-axis. When the magnetic field is oriented along the y-
axis, there is a finite Ex. It represents the anomalous Nernst effect,
which also displays a hysteretic jump (Fig. 1f), as reported
previously14,15. In addition to this, however, when the magnetic
field is along the x-axis, there is a finite Ex in regime II (Fig. 1g).
This is the PNE. Like its Hall counterpart, it becomes nonzero in
a narrow field window when there are multiple domains and its
amplitude is comparable to the amplitude of the topological
Nernst effect (TNE) (Fig. 1h) extracted by subtracting Nernst and
magnetization hysteresis loops, see Supplementary Note 4.

We carried out an extensive set of temperature-dependent
measurements, see Supplementary Fig. 4. In the whole tempera-
ture window of the triangular order in Mn3Sn (50 K < T < 300K),
the magnitude of PHE (PNE) remain a sizable fraction (≈0.3–0.4)
of the total AHE (ANE) and there is no significant evolution with
temperature. We will show below how the PHE, the PNE and
their odd parity in field, are set by the internal structure of
domain walls23 in this system.

Magnetization (bulk vs. surface; longitudinal vs. transverse).
Figure 2 presents the data magnetization obtained in two different
ways. In addition to measuring bulk magnetization with a con-
ventional vibrating sample magnetometer (VSM), we used two-
dimensional electron gas (2DEG) Hall sensors, attached to one
edge of the sample to monitor the local magnetic field at its
surface (See method). By choosing the mutual orientation of the
sensor and the applied magnetic field, we could extract both
diagonal and off-diagonal magnetization at the surface of the
sample.

As seen in Fig. 2a, b, the hysteresis loop of bulk magnetization
depends on the aspect ratio ly/lx, where ly(lx) is the length of the
sample along the y-axis (x-axis). When ly/lx ≈ 1 [inset (a)], bulk
magnetization for the field along two orientations are almost
coincident. But when ly/lx ≈ 3, the hysteresis loop is wider when
the field is oriented along the longer axis, in agreement with that
was reported previously15. As seen in the Fig. 2b, domain
nucleation occurs at the same magnetic field for the two
orientations, but the loop closes later when the field is oriented
along the longer axis. A straightforward interpretation of this
observation is that the new domain(s) occupy the whole sample
more efficiently when the magnetic field is oriented along a
shorter axis.

Additional insight is brought by surface magnetization data
obtained with Hall sensors. As shown in Fig. 2c, d, no matter the
sample’s aspect ratio, the hysteresis loop of surface magnetization
is always narrow. The surface magnetization shows a sharp jump
at the threshold field of bulk magnetization. We conclude that
when the field is oriented along y- (x-)axis, the new domains
nucleate at the xz(yz)-surface and immediately occupy the area
(5 × 5 μm2) probed by a Hall sensor. The wide hysteresis loop of
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the bulk magnetization monitors the gradual enhancement
produced by the smooth occupation of the center of the sample.

We used the Hall sensors to look for an off-diagonal magnetic
response, namely a finite magnetic field perpendicular to the
applied field. The mutual configuration of the sample, the
magnetic field and the Hall sensors for quantifying longitudinal
and transverse magnetization (TM) are shown in [inset (e)] and
[inset (f)]. The obtained data at room temperature is shown in
Fig. 2e, f. The transverse response is restricted to regime II and
has symmetric and asymmetric components.

Chiral domain walls. A spin texture for domain walls (see Sup-
plemental material in ref. 23), which would explain our results, is
sketched in Fig. 3. One domain (oriented along θ= π) is located
at the center and another domain with opposite polarity (θ= 0)
at the periphery. [In the convention used here23, θ is the angle
between the x-axis and a pair of parallel spins of the unit cell]. In
the (more or less thick) wall separating these two domains, spins
rotate smoothly and concomitantly in the x–y plane. The texture

along x-axis is such that at the center of the domain wall,
the adopted configuration has an orientation perpendicular to the
two domains. Figure 3b shows different versions of the same
structure with a narrower wall. One can see that the two possible
configurations are +π/2 and −π/2. This would correspond to an
either clockwise or anticlockwise rotation of spins depending on
the specific domain configuration at the center and the periphery.
Note that domain walls of this type, with in-plane rotation of two
possible signs, follow directly from the hierarchy of scales dis-
cussed in ref. 23, in which the Dzyaloshinskii–Moriya interaction
is much stronger than an in-plane twofold anisotropy. The origin
of the twofold anisotropy will be discussed in future work.

We note that a study using Magneto-Optical Kerr Effect
microscopy16 detected oppositely aligned domains in the multi-
domain regime at small magnetic fields. The domains were found to
extend over tens of microns. However, the fine structure of the walls
separating these domains23 could not be resolved in this study.

Such a texture would provide a natural explanation for the TM
and the planar Hall effect observed in regime II. The in-plane tilt of
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Fig. 1 Room-temperature anomalous transverse response. a Experimental configuration for measuring Hall effect in sample #5 with square cross-section.
Charge current is applied along the z-axis and the magnetic field along the y-axis. Two pairs of electrodes measure Ex and Ey. b Anomalous Hall resistivity
(ρAHE

xz ), extracted from Ex. c Planar Hall resistivity (ρPHE
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spins (and the magnetic octupole28) would generate a magnetic
field perpendicular to and electric field parallel to the orientation of
the applied magnetic field. This is the origin of the TM and planar
Hall effect. The angle-dependent study of the AHE24 has established
that the orientation of the electric field associated with anomalous
Hall effect is set by the orientation of spins (and not the crystal
axes). Therefore, the π/2 spin configuration in the center of domain
wall would naturally gives rise to an electric field perpendicular to
those generated by the θ= 0 and θ= π domains.

In this picture, the sign of the signals reflects the chirality of the
domain wall. Consider a hysteresis loop with the magnetic field
swept from a θ= π single-domain to another θ= 0 single-domain
regime and then back to the original θ= π single-domain (Fig. 3c).
If during this sequence, for both sweeping orientations, the spin
configuration inside the domain walls remains the same (either +π/
2 or −π/2), then the PHE and the TM signals will be even
(symmetric) in field. On the other hand, if what remains fixed is the
sense of the rotation (clockwise or anticlockwise), then the signals
will be odd (or asymmetric) in field, because the spin configuration
inside the domain wall will be opposite during the two sweeps.

Domain walls have a memory. Keeping this in mind, let us turn
our attention to another outcome of this study, a memory effect.
The experimental protocol is defined in (Fig. 4a). We performed
the measurement twice for identical configurations, but with
different prior histories. The measurement consisted in sweeping
the magnetic field oriented along x-axis from 0.5 to −0.5 T and
back. This corresponds to switching domains from θ= 0 to θ= π
configurations and back to the starting point. The measurement
was preceded in the first case by a field rotation from +π/2 to 0
and in the second case, by a rotation from −π/2 to 0. As one can
see in Fig. 4b, the results are strikingly different. In the first case
the PHE signals are positive, in the second are negative. We note
that this is a phenomenon belonging to the category dubbed
memory of direction27. By subtracting the two sets of data or
adding them, one can extract the symmetric (Fig. 4c) and the
asymmetric (Fig. 4d) components of the PHE signal. The sym-
metric part is seven times larger than the asymmetrical part.

Note the small gap seen between the two sets of ρPHE
xz data

obtained with two different prior histories in Fig. 4b. It arises
because we have assumed an identical offset for both sets of data.
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This offset is caused by an unavoidable misalignment between
lateral contacts. The difference between the two sets of data
obtained with different prior histories implies that history affects
the offset too.

The TM displays also a similar memory (see the protocol
defined in Fig. 4e and the data shown in Fig. 4f–h). One can see,
however, that in this case, the main component is asymmetric,
which is three times larger than the symmetric one.

Discussion
Recalling that PHE is a bulk effect, we conclude that the orien-
tation of the spins inside the walls is mainly set by the past
history. On the other hand, in the case of TM at the surface, the
spin orientation mainly depends on the sign of the magnetic field
and the rotation orientation is less affected by the prior history.
This raises an obvious question: where does the system stock the
information regarding the previous orientation of the
magnetic field?

A plausible answer to this question is provided by the scenario
sketched above. When the magnetic field is oriented along
θ=+π/2, at the end of a (−y↔+y) hysteretic loop, the sample is

practically single-domain with π/2 spin configuration. In princi-
ple rotating from π/2 to 0 before the measurement would change
the spin configuration of the whole sample from π/2 to 0.
However, if residual domains remain stuck in the π/2 config-
uration, they will set the spin configuration of the domain walls
along π/2. If this is the case, then one would expect to see a
dependence of the memory effect on the strength of the
prior magnetic field. The larger the magnetic field at which the
(π/2 to 0) rotation takes place before the measurement,
the smaller the fraction of the domains which had stayed in place
and the smaller their role in setting the chirality.

As seen in Fig. 5, this is indeed the case. We measured PHE after
cycling and rotating the magnetic field at B= 0.5, 1, and 2 T. One
can see that the magnitude of the PHE and in its symmetric
component steadily decreases. This implies that the symmetric
component of the PHE set by the chirality of the wall is promoted
by the presence of minority domains, whose population decrease
with increasing magnetic field. The asymmetric component, on
other hand, does not show significant evolution with magnetic field.

If domain walls with opposite chiralities were evenly dis-
tributed in the sample no PHE or TM signal would have been
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observed. This is not the case. The dominance of a symmetric and
history-dependent component in the PHE signal implies that
deep inside the sample, minority domains set the chirality of the
domain wall. The dominance of the asymmetric and history-
independent component in surface TM indicates that wall spin
orientation at surface is principally set by the orientation of the
magnetic field with only a minor role proposed by the minority
domains. We note that the domain wall spin texture proposed
here can also generate a topological Hall response as reported
previously24, provided that we assume an additional off-plane tilt
of spins residing inside the domain walls. Indeed, if the unit
vector of magnetization has a finite z dependence (∂~n∂z ≠0), then
combined with the finite ∂~n

∂r , it generates an axially oriented
emergent magnetic field (Bθ ≠ 0 in cylindrical coordinates)29 and
the skyrmionic number will be finite, producing real-space Berry
curvature. Such an assumption would not alter the conclusions
drawn above. Yet, it is not necessary for explaining the obser-
vations reported in the present study.

Heating the sample above TN= 420 K would presumably erase
all history dependence. It would be interesting to compare field-
cooled and zero-field-cooled behaviors across the transition
temperature in future experiments combining a furnace and a
magnet.

In summary we put under scrutiny a narrow field window in
which there are multiple magnetic domains in Mn3Sn and found
that in this regime, one can observe a planar Hall and planar
Nernst effect as well as TM. These observations can be explained
by a specific spin texture for domain walls where spins rotate in
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field. a Planar Hall effect measured after cycling and rotating the magnetic
field at 0.5, 1, and 2T. b, c Asymmetrical and symmetrical components of
planar Hall effect, extracted from (a). Inset in (c) shows the evolution of the
magnitudes of the two components. The symmetric component steadily
decreases with the increasing prior magnetic field, but the asymmetric
component does not. The closed and open symbols refer to opposite field
sweep orientations, marked by solid and dotted arrows shown in (a)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10815-8

6 NATURE COMMUNICATIONS |         (2019) 10:3021 | https://doi.org/10.1038/s41467-019-10815-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the pseudo-Kagomé plane. The choice of clockwise or antic-
lockwise rotation can be controlled by the prior magnetic history
of the sample, providing a new platform for memory formation.

Methods
Sample preparation and transport measurements. Mn3Sn single crystals with a
typical size in the range of centimeter were grown by the vertical Bridgman
technique24. They were cut to desired dimensions by a wire saw. All transport
experiments were performed in a commercial measurement system (Quantum
Design PPMS), using the Horizontal Rotator Option. Hall resistivity was measured
by a standard four-probe method using a current source and a DC-nanovoltmeter.
Two Chromel- Constantan (type E) thermocouples were employed to measure the
temperature difference in the case of Nernst measurements.

Magnetization. Bulk magnetization was measured using a VSM method. For
surface magnetization measurements, we employed an array of Hall sensors based
on high-mobility AlGaAs/GaAs heterostructure. The density of the 2DEG was n=
2.5 × 1011 cm−2 (300 K) and it was located 160 nm below the surface. The device
was fabricated using electron beam lithography and 250 V argon ions to define the
mesa. Supplementary Figure 1 shows an array of ten sensors each 5 × 5 μm2 square
with a 100 μm interval between two neighboring sensors26. Attaching the device to
the surface of the sample, the local magnetic field was determined by measuring the
Hall resistivity of the sensor using an AC current source and a lock-in amplifier.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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