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Abstract

Background: Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer
therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological
heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological
pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two
opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast
subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as
well as further classifying the heterogeneous TNBC subtype.

Methods: Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment
Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active
pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC
with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was
tested using Cox regression model.

Results: Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang
pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang
pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance
profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each
having different clinical outcomes.

Conclusion: We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the
most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies.
Also the pathway classifier we performed in this study provided insight into the TNBC heterogeneity.
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Background
Breast cancer is the most commonly diagnosed cancer
and leading cause of cancer-related deaths in women. In
the US, it is the second-most common cause for cancer-
related death in women, just behind lung cancer, with
the expectation that 231,840 new cases will be diagnosed
with 40,290 deaths in 2015 [1]. While breast cancer is

typically referred to as a single disease, human breast tu-
mors comprise heterogeneous and diverse groups, with
patients in the same stage of disease varying in morph-
ologies, treatments, treatment responses and overall
outcomes [2]. With the advent of gene expression profil-
ing technologies, researchers have been able to dissect
the genetic and phenotypic variability among tumors
and differentiate breast cancer into four molecular
subtypes based on the presence or absence of the estro-
gen and/or progesterone hormone receptors (HR) and
overexpression of the human epidermal growth factor 2
(HER2) protein: luminal A (HR+/HER2-), luminal B (HR
+/HER2+), HER2-enriched (HR-/HER2+) and basal-like
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(HR-/HER2-) [2–5]. These groups are determined
through the analysis of biological markers, which can
provide diagnostic, prognostic and therapeutic response
information about a certain cancer and are important in
the early detection, diagnosis and treatment to improve
patient outcome [6, 7]. Of the one million breast cancer
cases annually diagnosed around the world, approxi-
mately 15–20%, or 170,000, of the cases will be of the
Triple-Negative Breast Cancer (TNBC) subgroup [8–10].
Similar to breast cancers as a general group, TNBCs
exhibit a disparity among racial groups, with premeno-
pausal African and African American women demon-
strating higher rates of diagnosis. Younger women, as
well as Hispanic and non-Hispanic women of lower socio-
economic statuses, are also more frequently diagnosed
with aggressive TNBCs [1, 9, 10]. Other risk factors
include increased parity, younger age at first pregnancy,
shorter period of breast feeding and higher hip-to-waist
ratio [8].
Despite the widespread use of standard chemotherapy

such as Paclitaxel (Taxol) or the combination of taxanes
and genotoxic drugs, TNBCs lack the appropriate targets
for the commonly used targeted breast cancer therapies,
conferring an aggressive phenotype and poorer survival
rate to the disease [8–12]. For example, Tamoxifen,
which was originally used to treat all breast cancers, is
now known to be effective against tumors expressing
hormone receptors (ERs and PRs), while Trastuzumab
therapy is used to treat patients presenting an over-
amplification of HER2 [13]. Due to the lack of targeted
therapies, TNBC patients have a poorer prognosis with
more frequent relapse, distant recurrence and higher
proliferation rates than other subtypes of breast cancer
patients [8, 10–12].
Currently, many researchers are analyzing the dysfunc-

tional pathways unique to TNBC in order to identify
possible gene targets and develop drug therapies [14–
17]. Although a couple of drugs are currently in under-
going clinical trials, the biology behind TNBC is still
largely unknown. It is known that the TNBC represents
distinct heterogeneity which complicates clinical treat-
ment strategies. Further classification of TNBC may help
in achieving better clinical outcome through. Currently,
TNBC can be separated into distinct subtypes with gene
expression profiling. Six subtypes have been reported
with unique gene expression and ontologies: basal-like 1
(BL1), basal-like 2 (BL2), immunomodulatory (IM), mes-
enchymal (M), mesenchymal stem-like (MSL) and lu-
minal androgen receptor (LAR) [18]. Masuda et al. [19]
determined seven subtypes. In this study, we explored
the pathways that are upregulated and downregulated in
TNBC with respect to normal breast tissue samples. We
hypothesized these up- and down-regulated pathways
represent two opposing effects (Yin and Yang) that

determine the cancer outcome [20–22]. These Yin and
Yang pathways could help identify potential therapeutic
targets for TNBC. They can be also used to build path-
way classifiers in which the Yin and Yang pathways
present a strong contrast pathway profile together. The
TNBC subtypes classified by Yin and Yang pathways
would aid in the personalized therapy for TNBC.

Methods
Gene expression data
The Cancer Genome Atlas (TCGA) uses genome ana-
lysis technologies, such as large-scale genome sequen-
cing, to aid in the understanding of the molecular basis
of cancer [23]. The mRNA (RNASeqV2) and clinical
data were downloaded for 1085 patients with breast in-
vasive carcinoma who had received pharmacological
treatment (hormone therapy), chemotherapy, hormone
and chemotherapy, an unknown treatment, or no treat-
ment. Cases, which were either ER or PR or HER2
positive, were excluded such that 114 patients with
TNBC remained.
For classifier comparison, we downloaded gene expres-

sion raw data files (.cel) of seven data sets from NCBI
GEO database (GSE5327, GSE5847, GSE12276,
GSE16446, GSE18864, GSE19615, and GSE20194). The
expression values were summarized and normalized by
Robust multiarray analysis (RMA) [24]. The Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) is a joint Canada-UK project with the pur-
pose of analyzing the molecular signatures of a large
number of well-annotated breast tumors to further clas-
sify the tumors into subtypes [25]. The clinical traits and
gene expression data were analyzed for ER, PR, and
HER2 information resulting in the identification of 126
TNBC cases. In addition, two more sets (GSE58812,
GSE25066) and cell line data (GSE10890) were used for
prognostic signature validation.

GSEA for TNBC pathways analysis
The TCGA patient data were grouped into seven sub-
groups based on three commonly used markers: Triple
Negative (TN), ER+/PR+/HER2− (Luminal A), ER−/PR
−/HER2+ (HER2 enriched), ER+/NODE− (early ER+), ER
+/NODE+ (late ER+), ER+/PR+/HER2−/NODE− (early
Luminal A), and ER+/PR+/HER2−/NODE+ (late Luminal
A). The gene expression values for the tumor and nor-
mal breast samples were then put through Gene Set
Enrichment Analysis (GSEA) [26] to generate an output
of pathways that are upregulated and downregulated in
each of these subtypes of breast cancer. Tests were run
against the 4729 curated canonical pathways. The Yin
(upregulated) pathways and Yang (downreguated) path-
ways were selected from these seven breast cancer sub-
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group analyses. The hierarchical cluster heat map using
–log10 p-values or FDRs of pathways was used to com-
pared the pathway differences among all seven breast
cancer sub-groups.

Pathway classifier
We hypothesize that the Yin and Yang pathways
together present a contrast pathway profile for discrim-
ination of cancer subgroups. We intended to develop
classifiers for TNBC patients using the significant
pathways derived from TNBC sample analysis. We
first used all 204 pathways, including 133 Yin path-
ways (FDR < 0.05) and 71 Yang pathways (p < 0.05)
(Additional files 1 and 2: Table S1 and S2). These
FDR and p-value cutoff values were chosen because
the default FDR < 0.25 [26] was too high for Yin path-
way selection but too low for Yang pathway selection
in the TNBC data analysis. The “Core” genes of these
pathways were extracted and the weighted sum scores
of each pathway were calculated. We first ordered all (n)
the genes (xi) of the pathway according to their expression
level, and then the weighted sum score = sum(xi* (n-i)/n).
The TNBC samples were clustered by the pathways scores
using Euclidean complete linkage. We then chose 16 path-
ways for pathway classifier testing. Among the top Yin
pathways enriched in TNBC, most were involved in cell
cycle regulation. We selected 8 top significant pathways
that were involved in different stages of the cell cycle. The
Yang pathways are the 8 most significantly downregulated
pathways of the curated canonical pathways.

Clinical outcome association study
We tested if the identified subgroups of TNBC have
different clinical outcomes. The subgroups classified
by multi-pathway classifier were tested against clin-
ical information using Cox regression model. We
used Partek Genomic Suite for these analyses. This
test was to evaluate the clinical relevance of the
pathway classifier.
We assume that the genes of the Yin and Yang

pathways are both biologically and clinically relevant.
Therefore we tested if the genes selected from all
these pathways can be used to develop multigene sig-
natures for TNBC prognosis. The “core” genes in the
enriched pathway that contribute most to the gene
enrichment results were selected. The “core” genes
from the Yin pathways were the Yin genes and the
“core” genes of the Yang pathways were the Yang
genes. The Yin Yang gene expression mean ratio
(YMR) signature [20–22] was tested using the TNBC
samples of the TCGA and METABRIC datasets by
the R package Survcomp.

Results
Pathways between TNBC and other subtypes of breast
cancer
Among the 4729 curated canonical pathways, and using
the TCGA dataset, 191 Yin pathways were discovered
among the seven breast cancer groups where the FDR is
less than 0.1 in at least one group and 176 Yang path-
ways where the p-value is less than 0.05 in at least one
group (Additional files 1 and 2: Table S1 and S2.). We
found the FOXM1 associated pathway is the top Yin up-
regulated pathway in TNBC but not in other subgroups
of breast cancers. The PPARα associated pathway is the
top listed Yang pathway TNBC but is also one of the
pathways with similar significance shared with other
breast cancer subtypes. Among those Yin pathways, the
cell cycle related pathways are dominant in all types of
breast cancers, including the FOXM1 pathway that in-
teracts with cell cycle S, G2, and M phases, but are more
significant in TNBC type than other types. Among the
top Yang pathways, the GATA3 pathway showed unique
significance in TNBC (Additional file 2: Table S2).
The 2D complete linkage clustering showed the Yin

pathway (Fig. 1) and Yang pathways (Fig. 2) significantly
identified the seven breast cancer groups. The Yin path-
way profile demonstrated that the TNBC is unique and
distinct from the other six groups. In the Yang pathway
profiling, TNBC were also classified as unique in most
of the significant Yang pathways. However, using Yang
pathways the TNBC seemed to share some similarity to
the HER2 enriched subtype. These distinct patterns of
the pathway enrichment significant scores were also
shown among the intrinsic subtypes of breast cancers of
TCGA data (Additional file 3: Figure S1 and S2).

Pathway classifier for TNBC
For developing classifiers for TNBC, we chose the path-
ways from the TNBC pathway analysis above using the
TCGA data set to classify the METABRIC cohort. Using
all 133 significant Yin pathways (FDR < 0.05) and 71
Yang pathways (p < 0.05) we were able to classify the
METABRIC TNBC into six subgroups based on the level
three cluster branch (Additional file 3: Figure S3A).
These six subgroups demonstrated strong contrasting
Yin and Yang pathway score profiles. Different clinical
outcomes were also found amongst these six subgroups,
with cluster C1 having the highest 10 year overall sur-
vival time (>75%) and cluster C5 having the lowest OS
time (35%) (Additional file 3: Figure S3B). These two
clusters had highly contrasting Yin and Yang pathways
scores (high score for all Yin pathways with low score
for all Yang pathways, or high score for all Yang path-
ways with low score for all Yin pathways).
We further chose the top 8 Yin pathways that repre-

sent different stages of the cell cycle (for example, G0,
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G1, M-G1, G1-S, etc.) and the top 8 Yang pathways to
build the pathway classifier. We applied this to the
METABRIC TNBC cohort and as shown in Fig. 3a, the
16 pathways classifier on the METABRIC cohort, had an
overall similar pathway score pattern to that found using
the 204 pathway analysis on the METABRIC set
(Additional file 3: Figure S3A), for example the C1, C2,
C5, C6 in both sets. However, each of the patient clus-
ters had different numbers of cases when the different
classifiers (16 versus 204 pathways) were used (Fig. 3a
versus Additional file 3: Figure S3A). In the 16-pathway
classifier, the Cluster C5 still remained the highest risk

group (Fig. 3b) because it had the highest contrast (high
score for all Yin pathways with low score for all Yang
pathways) of Yin and Yang pathway score profile
(Fig. 3a). The cluster C6 had a higher OS rate than C5
(Fig. 3b) probably because C6 had higher pathway VIP
and PPARα scores (higher intensity of red color) in the
Yang pathway list (Fig. 3a). The cluster C4 had the low-
est Yin and highest Yang contrast score profile, therefore
showed the highest 10 year OS rate (80%). In the
16-pathway classifier, the cluster C1 did not show the
highest OS rate, differing from the 204-pathway classi-
fier, because this cluster was a mixed sub-cluster of high

Fig. 2 Yang pathway significant score profiling among 7 breast cancer subgroups using TCGA data. The significance values of 176 common Yang
(downregulated) pathways (rows) were transformed into –log10 p-values and standardized by mean of 0 and standard deviation of 1. The hierarchical
Euclidean clustering with complete linkage was performed on all 7 breast cancer sub-groups (columns) using the pathway significant values

Fig. 1 Yin pathway significant score profiling among 7 breast cancer subgroups using TCGA data. The significance values of 191 common Yin
(upregulated) pathways (rows) were transformed into –log10 FDRs and standardized by mean of 0 and standard deviation of 1. The hierarchical
Euclidean clustering with complete linkage was performed on all 7 breast cancer sub-groups (columns) using the pathway significant values
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Yin pathway scores (Fig. 3a). We compared the 16 path-
way classifier with a previously reported classification of
seven TNBC subtypes using the same validation data
sets of 201 samples [18]. Each of the six clusters identi-
fied using our 16-pathway classifier contains a variety of
the previously defined subtypes [18]. This result sug-
gested that these two approaches caught completely
different features (Additional file 3: Figure S4).

Pathway association to clinical outcome
We tested if the core genes selected from the pathway
analyses (using either 204 pathways, 16 pathways or 2
pathways i.e. FOXM1 and PPARα) can be used to build
signatures for TNBC. One hundred and fourteen genes
from the Yin (133) pathways and 66 genes from the list
of Yang (71) pathways were then used in the YMR signa-
ture [20–22] and tested against the METABRIC dataset.
All the 126 patients from the METABRIC dataset were
separated into high risk and low risk groups using a me-
dian value of 1.00 and then survival curves over 10 years
for the treated and untreated patients were generated.
However, the survival curve graph for the treated and
untreated patients in the low risk group did not show a
significant stratification in survival outcomes. This is
probably because chemotherapy disturbed the clinical
association. When we used the 29 untreated TNBC pa-
tients, the YMR signature showed high risk and low risk
group stratification significantly (log P-value of 2.8 × 10−2)
though the group size is small (Fig. 4).
We further tested if the YMR signature built using

the top two FOXM1 and PPARα pathways only have
prognostic value for TNBC. The two-pathway YMR
significantly stratified the 126 METABRIC TNBC
samples into low- and high-risk groups (Fig. 5). We

examined the YMR score of the FOXM1 and PPARα
pathways in breast cancer cell lines. As shown the
YMR scores in ER-negative cell lines are higher than
ER-positive cell lines with a moderate significant
p-value (Additional file 3: Figure S5). However, this
2-pathway YMR score did not significantly stratify
TNBC patients in another two independent cohorts
(Additional file 3: Figure S6 and S7).

Fig. 3 Yin Yang pathway classifier for METABRIC TNBCs. The weighted sum score was calculated for each of the 16 pathways (obtained from TCGA
analysis) using the METABRIC dataset. The 126 TNBC samples of the METABRIC data set were clustered by the pathways scores using 2D Euclidean
complete linkage (a). The clinical outcomes of the 6 clusters were evaluated by the Cox regression model using Partek Genomic Suite (b)

Fig. 4 YMR signature built from the genes selected by Yin and Yang
pathways. The “core” genes from the Yin pathways (133) were the Yin
genes and the “core” genes of the Yang pathways (71) were the Yang
genes. The Yin Yang gene expression mean ratio (YMR) signature [20]
was tested using the untreated TNBC samples of the METABRIC
dataset by the R package Survcomp
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Discussion
A number of the top pathways shown by GSEA to be
upregulated in TNBC play a variety of roles in the mi-
totic cell cycle, cell division, and specific chromosomal
processes. Of these pathways, the FOXM1, which is the
top Yin pathway in TNBC but not in other breast cancer
subtypes (i.e luminal, HER2 enriched), is listed as the
most significant with a FDR of 0 (Additional file 1: Table
S1). The FOXM1 includes Nek2, which is ranked first
among all the genes from the gene sets characterized by
GSEA (data not shown). Nek2, a member of the serine-
threonine kinase family, is a cell cycle dependent protein
kinase that has been shown to be upregulated in cancers
such as lymphoma, cholangiocarcinoma, breast, prostate
and cervical. Nek2 functions in the regulation of mitotic
spindle formation, chromosome segregation, cell
division, carcinogenesis, and the tumorigenic growth of
breast cancer [27, 28]. It is especially known to play a
role in the mitotic progression of cells where it prompts
the separation of the centrosomes by centering itself on
the centrosome and establishing a bipolar spindle [27].
This is noteworthy as chromosome instability is consid-
ered a common defect in cancer cells which may arise
from malfunctions in cell division and the unequal
separation of chromosomes to their respective daughter
cells during mitosis [29].
PPARα is the top listed TNBC Yang pathway but is a

pathway shared with the other breast cancer subtypes
(Additional file 2: Table S2). Some of the key players in
the PPARα pathway are the nuclear receptors from the
family of peroxisome proliferator activator receptors

(PPARs). They generally control cellular proliferation and
differentiation, glucose and lipid metabolism, as well as
adipocyte differentiation [30, 31]. PPARα ligands have
been shown to induce cell cycle arrest at the G1 phase of
the cell cycle to prompt the differentiation of liposarcoma
and colon, prostate and breast cancer cells, conferring a
less malignant phenotype to the cells. The induction of
apoptosis through the PPARα pathway in the cells was ac-
companied by the activation of the NF-κB pathway, which
functions in the inflammatory response, innate and
adaptive immunity, and prevention of cells undergoing
apoptosis following DNA damage [31, 32].
When we input all Yang pathway genes into Ingenuity

Pathway Analysis system (IPA), again the top one is the
PPARα/RXRα pathway with a p-value of 1.95 × 1053. The
PPARα/RXRα pathway functions in both the cytoplasm
and nucleus of cells. Retinoid X receptors (RXRs) are
nuclear receptors that form heterodimers with retinoic
acid receptors (RARs), which are ligand-regulated tran-
scription factors, to control cell growth and survival.
Retinoic acid binds to RARs to regulate processes such
as development and cell proliferation, differentiation and
apoptosis [33]. In the PPARα/RXRα pathway, PPARα
and RXRα form a heterodimer which then binds to
DNA to regulate gene transcription. From the IPA
output, genes are then transcribed that function in fatty
acid oxidation, lipoprotein metabolism, and anti-
inflammation. There has been evidence that therapies
combining PPARα and RXRα ligands in the treatment of
breast cancer are effective [34]. Recently, there has been
interest in the treatment of cancers using RAR and RXR
modulators as it has been shown that the use of RAR
modulation to treat acute promyelocytic leukemia has
been successful. Therefore, the use of selective receptor
modulators may help address the limitations of some
drugs [35]. Selective agonist retinoids were studied in
vitro to determine their effects on the proliferation and
apoptosis of human breast cancer cells. As the PPARα/
RXRα IPA pathway was constructed from the list of
downregulated genes, it is possible that induction or
amplification of PPARα/RXRα within TNBC cells may
provide a better treatment for the disease.
Gene expression profiling has been used to separate

TNBC into six subtypes with unique gene expression
and ontologies: basal-like 1 (BL1), basal-like 2 (BL2),
immunomodulatory (IM), mesenchymal (M), mesenchy-
mal stem-like (MSL) and luminal androgen receptor
(LAR) [18]. It was found that the EGFR, VEGFR and
FGFR gene products were particularly amplified in
TNBCs and serve as putative targets for drug therapies
[18]. Although initially it was unclear as to the clinical
significance of these subtypes, Masuda et al. [19] deter-
mined that a seven subtype classification, which includes
an unstable (UNS) subtype, has the potential to aid in

Fig. 5 YMR signature built from FOXM1 and PPARα pathway genes.
The YMR signature built using core genes of FOXM1 and PPARα
pathways was tested using 126 METABRIC TNBC samples
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the development of innovative personalized medicine re-
gimes for TNBC patients. More recently, though,
Burstein et al. [36] analyzed the prognosis of TNBC sub-
types and separated the disease into four groups:
luminal androgen receptor (LAR), mesenchymal (MES),
basal-like immunosuppressed (BLIS) and basal-like im-
mune activated (BLIA) subtypes, with the worst progno-
sis conferred to BLIS and the most favourable to BLIA.
Potential targets included androgen receptor and cell
surface mucin (MUC1) for LAR, growth factor receptors
such as platelet-derived growth factor (PDGF) receptor
A for MES, immunosuppressing molecule (VTCN1) for
BLIS and stat signal transduction molecules and
cytokines for BLIA [36]. In this study, we used the path-
way score profiles of the Yin and Yang pathways as a
classifier for TNBC. The 6 subtypes of TNBC generated
by our approach showed different pathway patterns and
distinct clinical outcomes. We compared our 16-con-
trasting pathway classifier to the previous 7-subtype
classifier using the same validation data [18]. We found
that these two classifiers resulted in different classifica-
tions (Additional file 3: Figure S4). This is expected since
we used the same pathway but different scores to differ-
entiate subtypes while previous methods used gene ex-
pression profiling for clustering.
A different YMR signature model has demonstrated

significance in stratifying TNBC into high- and low-risk
groups though the cohort size is small. Due to the high
level of molecular and clinical heterogeneity of TNBC,
this range of significance suggested that the YMR built
from the Yin Yang pathway genes or FOXM1, PPARα
pathway genes has potential significance in some sub-
groups of TNBC. However, currently TNBC data are
mostly collected from patients who underwent chemo-
therapy, which may disturb the prognosis detection we
encountered in this study.
The limitation of this study is the validation of prog-

nostic model of FOXM1 and PPARα pathways. In
contrast to previous studies that purposely selected
prognostic genes or pathways; we identified important
pathways in TNBC tumor compared to normal and then
tested their prognostic significance. We validated the
2-pathway prognostic model using the METABRIC data
set. We attempted to validate our 2-pathway YMR
model in other data sets (GSE28812, GSE25066), how-
ever although a similar pattern was found it did not
achieve statistical significance. Therefore this is a limita-
tion of our study. The reasons for this are unclear,
although different treatments and the frequency of
treated versus untreated cases in the cohorts may under-
lie the different results obtained. We must cautiously
interpret the data where patients underwent therapy be-
cause therapy can alter prognosis or we were testing the
treatment benefit. There is also a limitation in finding

large sample size of TNBC without therapy treatment
for our validation.

Conclusion
Through the use of GSEA we explored the regulatory
signaling pathways in TNBCs. The upregulated FOXM1
pathway and downregulated PPARα pathways were
found to be the most significant in TNBC. Therefore,
simultaneously targeting these two opposing pathways
potentially could provide novel treatments options for
some TNBC patients. The pathways can also be used as
classifiers to subtype TNBC further for prognosis. The
resulting TNBC subtypes exhibit different clinical out-
comes, which supports the utility of our approach. This
is a primary study using contrasting pathways for TNBC
subtyping. Further study will focus on prognosis and
treatment prediction signatures for each of these
subgroups using more data sets.
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