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Although stress is implicated in the pathophysiology of mood and anxiety disorders,
not all individuals who suffer stressful life events develop psychopathology. Differential
susceptibility to stress may be influenced by genetically mediated differences in
hypothalamic-pituitary-adrenal (HPA) axis activity and moderation of the stress response by
the opioid peptide β-endorphin (β-E). The present study investigated genetic contributions
to coping behavior by examining anxious behavior of transgenic mice with varying
capacities to synthesize β-E [B6.129S2-Pomctm1Low /J; regulated by insertion of a
premature stop codon into one or both copies of the proopiomelanocortin (POMC) gene],
both under normal conditions and following 3 min of forced swim (FS). Ten minutes after
this stress exposure or a control manipulation, acutely food-deprived female and male
transgenic mice were subjected to a novelty-suppressed feeding (NSF) test, during which
their interaction with an almond slice located in the center of an open field box was
measured. There was an interaction between genotype and stress for latency to approach
the almond and whether or not the almond was approached, such that mice with low
or absent β-E displayed a stronger aversion to novelty-feeding after stress exposure than
did mice with normal levels. These data provide evidence for a moderating effect of β-E
on the behavioral response to stress. Genotypic differences in anxious behavior emerged
when mice were stressed prior to behavioral assessment, suggesting that β-E plays a role
in coping behavior. These findings indicate that genetic variability in sensitivity of the β-E
system to stress may contribute, at least in part, to heritable differences in stress reactivity
as well as vulnerability to stress-related psychopathology.
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INTRODUCTION
Over the past few decades, an extensive body of work has
emerged linking vulnerability to affective and anxiety disorders
with stressful life events. Stressful events often precipitate depres-
sive episodes (Brown et al., 1987; Hammen et al., 1992), and
early life stress has been shown to increase the risk for stress-
related psychiatric disorders in adulthood (Kendler et al., 1992a;
McEwen, 2003). However, not all individuals who suffer stressful
life events develop psychopathology; evidence suggests that some
individuals are resistant, and others vulnerable, to the adverse
effects of stress (de Rijk and de Kloet, 2005; Southwick et al.,
2005; Stiller et al., 2011; Castro et al., 2012; see Sandi and Richter-
Levin, 2009, for review). Differential vulnerability to stress is
regulated by an interaction of genetic and developmental factors
with major life stressors (Sullivan et al., 2000; Danese, 2008; Bet
et al., 2009). However, the neurobiological mechanisms under-
lying susceptibility to stress-related disorders remains poorly
understood.

One hypothesis is that genetic factors influence coping style
to moderate the vulnerability to stress (see Feder et al., 2009,
for review). “Coping” describes the behavioral and physiological

mechanisms that occur to return an organism to a basal state
following stress exposure. Thus, less effective coping, defined
as a failure to recover to a baseline state after stress exposure,
may render an individual more susceptible to stress-induced psy-
chopathology (McEwen, 2002; Meng et al., 2011). For example,
in rats, a behavioral profile characterized by high anxiety is asso-
ciated with susceptibility to the development of stress-induced
depression-like behavior (Sandi et al., 2008; Stedenfeld et al.,
2011; Castro et al., 2012). In humans, the neuroticism-anxiety
trait, which is associated with disengagement coping (an ineffec-
tive strategy; see Carver and Connor-Smith, 2010 for a review
of personality and coping) and less flexible coping strategies
across situations (Lee-Bagley et al., 2005), strongly reflects liabil-
ity to major depressive disorder (MDD) and generalized anxiety
disorder (GAD; Kendler et al., 2006a, 2007).

Moreover, differences in coping behavior and vulnerabil-
ity to stress may have a biological basis in hypothalamic-
pituitary-adrenal (HPA) axis function (van Santen et al., 2011)
and the moderating effects of the endogenous opioid peptide
β-endorphin (β-E) on the stress response (Schedlowski et al.,
1995; Gianoulakis, 1998; Sarkar et al., 2007; Grisel et al., 2008;
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Barfield et al., 2010). Activation of the HPA axis following expo-
sure to stressful stimuli mediates an adaptive response through a
hormonal cascade of behavioral and physiological changes aimed
at the maintenance of homeostasis in the body (Low, 2004).
During stress, the secretion of corticotrophin releasing hor-
mone (CRH) stimulates expression of the proopiomelanocortin
(POMC) gene in the anterior pituitary, which is subsequently
translated into peptides such as adrenocorticotropic hormone
(ACTH) and β-E (Charmandari et al., 2005). While ACTH acti-
vates the adrenal gland to initiate the peripheral response to stress,
β-E attenuates the stress response, at least in part, by inhibiting
secretion of CRH (Buckingham, 1986; Plotsky, 1991) and block-
ing stress-induced nociception (Bodnar et al., 1980; Nakagawasai
et al., 1999; Parikh et al., 2011). Reports indicating modulation
of the HPA axis by β-E fit well with those evincing a role for β-
E in the behavioral response to stress (Amir, 1982; Yamada and
Nabeshima, 1995; Ribeiro et al., 2005; Grisel et al., 2008; Barfield
et al., 2010). For example, we have shown that transgenic mice
with low β-E exhibit increased anxious behavior and show deficits
in coping ability during an inescapable aversive situation (Grisel
et al., 2008; Barfield et al., 2010). Thus, because stress-induced
release of β-E mediates endocrine and behavioral responses that
contribute to allostasis of the stress response, insufficient atten-
uation of the HPA axis arising from low β-E may contribute to
maladaptive coping behavior under stressful conditions.

Here, we examined the role of β-E in anxious behavior
of mice, both under basal conditions and following exposure
to an acute stressor. Anxious behavior was assessed using the
novelty-suppressed feeding (NSF) test, an ethologically rele-
vant paradigm that measures the suppression of food intake
(in a food-deprived animal) caused by exposure to a poten-
tially anxiogenic novel environment (typically an open field;
Merali et al., 2003; see Cryan and Sweeney, 2011 for summary
of hyponeophagia paradigms). Because anxiolytics and chronic
but not acute antidepressants reduce hyponeophagia (Britton and
Britton, 1981; Shephard et al., 1985; Bodnoff et al., 1988; Bessa
et al., 2009), the NSF test provides a sensitive and reliable measure
of anxiety-related states in animals that resemble those in humans
(Merali et al., 2003). Thus, we assessed the effect of genotype
(β-E level) and previous stress exposure, as well as their interac-
tion, on anxious behavior in the NSF test. We hypothesized that
studying the behavioral response to stress in mice with varying
levels of β-E would reveal an interaction of genetic predisposition
and environmental stress, such that differences in coping behavior
between genotypes would emerge following stress exposure.

MATERIALS AND METHODS
SUBJECTS AND DESIGN
Subjects were adult naïve male and female wild-type (C57BL/6J;
B6), heterozygous (HT), and β-E-deficient (B6.129S2-
Pomctm1Low/J; KO) mice. Transgenic mice were developed
over a decade ago in the laboratory of Malcolm Low (Rubinstein
et al., 1996) by insertion of a premature stop codon into the Pomc
gene. Homozygotes (KO) are entirely unable to synthesize β-E,
though all other Pomc products show normal expression. Opioid
receptor expression also remains unchanged (Rubinstein et al.,
1996). Mice for these studies were bred in-house from stock

purchased from Jackson Laboratories (Bar Harbor, ME, USA).
The gene mutation has been fully backcrossed to the C57BL/6J
strain (>20 generations). HT mice were bred from KO males and
B6 females; others were bred under identical conditions from
genotype-matched pairs. Mice were weaned at 21 days of age and
were group-housed by sex with 3–4 per Plexiglas cage, measuring
20 × 35 × 14.5 cm. Mice were maintained in a colony room at
21 ± 2◦C, on a reverse 12:12 light:dark cycle with lights on at
7 p.m. Water and food were available ad libitum. All procedures
were carried out in accordance with the National Institutes of
Health guidelines and approved by the Animal Care and Use
Committee of Furman University.

BEHAVIORAL TESTING
On testing day, food was removed at ∼8 a.m., 1 h after lights-out,
in order to facilitate feeding (LeSauter et al., 2009). Behavioral
testing occurred during the animals’ active phase, between 10 a.m.
and 4 p.m., in a dimly lit testing room, so as to enable behavioral
assessment of genotypic differences (Branchi and Ricceri, 2002;
Hossain et al., 2004; Roedel et al., 2006). Mice were brought into
the testing area, weighed, tail marked, and randomly assigned to
the control or the forced swim (FS) condition.

Mice in the control condition were individually placed in
a Plexiglas cage in the testing room for a 10 min habituation
period. Mice in the FS condition were subject to a modified
version of Porsolt et al.’s (1977) FS Test for 3 min in a white plas-
tic 5 gallon bucket measuring 30 cm in diameter by 40 cm in
height containing 20 cm of water maintained at 23◦C. To min-
imize the possibility of confounding effects (e.g., fatigue) from
sex and genotypic differences in behavior (previously reported
for 15 min of FS exposure, Barfield et al., 2010), pilot testing
was conducted to determine a FS duration that would induce
subthreshold amounts of stress. Duration of 3 min was chosen
because no sex or genotypic differences in immobile behavior
emerged following this brief length of time. Mice were judged
immobile when making no movements other than those required
to stay afloat, for at least 5 s. Two independent observers recorded
latency to immobility, total time spent immobile, and number
of immobile segments. Following the FS, mice were individu-
ally placed in a Plexiglas cage in the testing room for a 7 min
habituation period.

After habituation in the testing room, mice from both the con-
trol and the FS conditions were subject to the NSF test (Britton
and Britton, 1981; Bodnoff et al., 1988). Mice were individually
placed in an open field box (100 × 100 × 4.5 cm) that contained
a pre-weighed almond slice in the center, for 5 min. Two inde-
pendent observers recorded whether the almond was approached,
the latency to approach the almond, and the number of times
that the mouse sniffed the almond. Following the NSF test, the
almond slice was weighed, and the amount of almond eaten was
recorded.

STATISTICAL ANALYSIS
Main effects of and interactions between genotype (B6, HT, KO),
sex, and stress condition (control, FST) were analyzed using
between-subjects analysis of variance (ANOVA). Significant main
effects and interactions were further examined using Fisher’s
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least significant difference (LSD) test. Three separate Two-Way
chi-square tests of independence were performed to determine
whether correlations existed between (1) approach behavior
(whether or not the almond was approached) and stress condi-
tion (2 × 2 design), (2) approach behavior and genotype (2 × 3
design), and (3) approach behavior and genotype with condition
(2 × 6 design). Statistical analyses were performed using SPSS
Statistics 17.0 (SPSS, Inc., Chicago, IL). In all cases, the criterion
for significance (α level) was set at p ≤ 0.05.

RESULTS
There were no main effects of or interactions with sex, so male
and female data were collapsed for all analyses. As expected, there
were no main effects of genotype on any measure of immobility
in the 3 min FS exposure.

In terms of latency to approach the almond, there was a main
effect of condition [F(1, 81) = 31.261, p < 0.001] and a main
effect of genotype [F(2, 80) = 9.696, p < 0.001]. Post-hoc analysis
(Fisher’s LSD) indicated that KOs took the longest to approach
the almond (p < 0.01) and differed from both B6s and HTs,
which did not differ from each other. There was also a signifi-
cant interaction between genotype and condition for latency to
approach the almond [F(2, 80) = 4.899, p ≤ 0.01], such that the
effect of stress on hyponeophagia increased as β-E levels decreased
(Figure 1). There were no genotypic differences in the control
condition, but in the stressed condition, KOs took the longest to
approach the almond (as confirmed by Fisher’s LSD, p < 0.05).
Thus, the main effect of genotype on latency to approach the
almond was driven primarily by differences between genotypes
in the stressed condition.

In terms of whether or not the almond was approached, FS
exposure decreased the likelihood that mice would approach the
almond at least once during the 5-min NSF test [X2 (1, N = 83) =
17.250, p < 0.01]. When data were collapsed across condition,
whether the almond was approached depended on genotype

FIGURE 1 | Latency to approach almond slice during the 5-min

novelty-suppressed feeding (NSF) test in wild-type C57BL/6J (B6),

heterozygous (HT), and β-E knock-out (KO) mice, following either

10 min single housing (Control) or 3 min of forced swim, followed by

7 min single housing (FS). Data show mean ± SE. Significant differences
(p-values ≤ 0.05) between groups were determined following ANOVA by
post-hoc analysis (Fisher’s LSD test). There were main effects of the FS
stressor, genotype, and an interaction between stress condition and
genotype.

[X2 (2, N = 83) = 15.235, p < 0.01] such that as β-E levels
decreased, likelihood of approaching the almond also decreased.
To determine if genotype and condition were correlated with
approach behavior, we further separated genotypes into groups
based on condition (i.e., B6 stress, B6 control, HT stress, etc.).
Whether or not the almond was approached depended on
both genotype and condition [X2 (5, N = 83) = 49.427, p <

0.01]. Figure 2 depicts the percentages of mice in each geno-
type and condition that approached the almond. All control
mice approached the almond, but whether or not stressed mice
approached depended on genotype. Thus, the significant correla-
tion between genotype (collapsed across condition) and whether
the almond was approached was driven by genotypic differences
that emerged only in the stressed condition.

For number of sniffs, there was a main effect of condition
[F(1, 81) = 31.261, p < 0.001] such that stressed mice sniffed the
almond less frequently, and a main effect of genotype [F(2, 80) =
8.681, p < 0.001] such that β-E levels were indirectly correlated
with degree of hyponeophagia (Figure 3). Post-hoc analysis indi-
cated that B6s sniffed the almond more than either of the other
two lines (p ≤ 0.001), but HTs and KOs did not differ from each
other. There were no significant interaction effects of genotype
and condition on number of sniffs [F(2, 80) = 2.043, p > 0.05].

There was a main effect of condition on amount of almond
eaten [F(1, 81) = 17.470, p < 0.001] such that stressed mice ate
less (Figure 4). However, there was no main effect of genotype
[F(2, 80) = 0.107, p > 0.05] nor an interaction between genotype
and condition for this measure [F(2, 80) = 0.727, p > 0.05].

DISCUSSION
Employing the NSF test to assess anxious behavior in transgenic
mice expressing varying levels of β-E, our findings suggest that
β-E modulates the effect of stress on behavior. The ability of
exposure to a novel environment to suppress interaction with
and ingestion of a highly palatable food was magnified when

FIGURE 2 | Percentage of wild-type C57BL/6J (B6), heterozygous (HT),

and β-E knock-out (KO) mice in each group that approached the

almond slice at least once during the 5-min NSF test. Significant
correlations between experimental variables were determined by Two-Way
chi-square tests of independence. Whether or not the almond was
approached depended on stress condition, genotype, and interaction of
genotype and stress condition (all p-values ≤ 0.05).
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FIGURE 3 | Number of sniffs to the almond slice made by wild-type

C57BL/6J (B6), heterozygous (HT), and β-E knock-out (KO) mice during

the 5-min NSF test. Data show mean ± SE. ANOVA and post-hoc analysis
(Fisher’s LSD test) indicated that forced swim exposure decreased almond
sniffing, and a main effect of genotype reflected the fact that B6s sniffed
the almond more than either of the other two lines, which did not differ
from each other (p-values ≤ 0.05). There were no significant interaction
effects of genotype and condition on number of sniffs.

FIGURE 4 | Average amount of almond eaten during the 5-min NSF

test by wild-type C57BL/6J (B6), heterozygous (HT), and β-E knock-out

(KO) mice. Data show mean ± SE. ANOVA indicated that prior forced swim
decreased consumption (p ≤ 0.05), but there were no differences between
genotypes, nor was this effect dependent upon genotype.

mice were first exposed to FS in a genotype-dependent manner.
(Figures 1, 2). These data are in line with previous reports show-
ing increased hyponeophagia in rodents exposed to unpredictable
chronic mild stress (Bessa et al., 2009) or social isolation (Voikar
et al., 2005), and extend these findings by suggesting a critical role
for β-E.

The main effect of genotype on number of sniffs (Figure 3)
suggests a direct relationship between peptide levels and inter-
action with the novel food stimulus. However, there was also an
interaction between genotype and stress for latency to approach
the almond (Figure 1) and whether the almond was approached
(Figure 2); mice with lower levels of β-E displayed a stronger
aversion to novelty-feeding after exposure to stress than did
mice with higher levels. Moreover, there were no differences
between wild-type (B6), HT, or, β-E knock-out (KO) mice under

control conditions. Because the effects of stress on hyponeopha-
gia are magnified with lower levels of β-E, these data suggest
that β-E plays an active role in coping behavior by mitigating the
behavioral response to stress.

As expected based on pilot testing, there were no effects of
or interactions between genotype and sex on immobile behav-
ior of mice during the 3 min FS. In a previous study in our lab,
using the same three strains of mice, we found effects of sex and
genotype on immobility during a 15 min FS Test (Barfield et al.,
2010). However, for the present study, we aimed to induce a sub-
threshold amount of stress that would not produce genotypic or
sex differences in behavior during the FS so as to minimize the
possibility that behavior in the NSF test would be confounded by
factors such as fatigue from the FS. We found that 3 min of expo-
sure to the FST was just stressful enough for genotypic differences
in novelty-feeding to emerge. Furthermore, although we found an
interaction between genotype and stress for latency to approach
the almond and whether or not the almond was approached,
there was no such interaction for number of sniffs and amount
of almond eaten. It is possible that interactions between genotype
and stress for the latter two measures may emerge with FS times
longer than 3 min.

Likewise, although we found no effects of sex on behavior dur-
ing the NSF test, it is possible that this design did not induce
sufficient stressor intensity to allow for detection of sex differ-
ences. Thus, the present findings do not preclude the possibility
of sex differences in coping behavior. Given that sex differences in
the risk for and prevalence of stress-related disorders in humans
are well-documented (Kessler et al., 1993; Zilberman et al., 2003;
Marcus et al., 2005; Hasin et al., 2007), future research should aim
to develop animal models that reflect such differences.

The findings presented here support our earlier findings using
the plus maze, light-dark box (Grisel et al., 2008), FS Test, and tail
suspension test (TST; Barfield et al., 2010), suggesting that β-E
contributes to the ability to behaviorally manage stressful stim-
uli. For example, we have shown an inverse relationship between
β-E levels and anxious behavior (as measured by percent of open
arm entries and time spent in the open arms in the plus maze,
and time spent in the light compartment of the light-dark box;
Grisel et al., 2008). We have also shown a direct relationship
between β-E levels and immobility in the FST and TST (Barfield
et al., 2010). Because these tests subject mice to inescapable aver-
sive situations, whereby failure to exhibit actions aimed at escape
may represent an effective coping strategy, these results suggest
that β-E facilitates coping behavior. The present study provides
additional evidence to support this role of β-E by showing that
under conditions of acute stress, mice alter their behavior in an
anxiogenic situation to mitigate a deficiency in β-E. Moreover,
these data extend our earlier findings to suggest that behav-
ior becomes increasingly influenced by underlying neurobiology
when an organism is exposed to stressors.

An interaction of both genetic predisposition and environ-
mental stressors contributes to increased risk for developing
stress-induced psychopathology (Danese, 2008; Bet et al., 2009).
In line with this view, it is possible that an individual who pro-
duces lower than normal amounts of β-E may suffer from an
overactive HPA axis and an impaired ability to effectively manage
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stressful stimuli (behaviorally and physiologically). These factors
may render an individual particularly susceptible to the aversive
effects of stress and to developing anxiety and depression. Indeed,
evidence from studies utilizing selectively bred rodent lines sug-
gests that individual differences in HPA activity and anxiety traits
may contribute to differential susceptibility to stress. Rats with a
behavioral profile characterized by high anxiety and low explo-
ration are particularly vulnerable to developing depression-like
behaviors and HPA axis hyper-reactivity when exposed to sub-
chronic stress, while low anxiety rats are more resistant to the
development of stress-induced depression-like behavior (Castro
et al., 2012). Additionally, rats classified as low-responders to nov-
elty (high anxiety) who are exposed to chronic mild stress exhibit
increased latencies to approach and consume food in the NSF
test, while the behavior of rats classified as high-responders to
novelty (low anxiety) is unaffected by chronic stress (Stedenfeld
et al., 2011). Chronically stressed low-responder rats also become
anhedonic more rapidly and to a greater degree than chronically
stressed high-responder rats (Stedenfeld et al., 2011).

The role of genetic factors in the etiology of MDD and anx-
iety disorders is well recognized (Unschuld et al., 2009; see
Sullivan et al., 2000, for review), as heritability is estimated to
be around 40% for MDD (Kendler et al., 2006b), and 32% for
GAD; Hettema et al., 2001. At least in part because of the com-
plexity of these disorders, candidate gene studies have not been
able to unambiguously identify susceptibility genes (Levinson,
2006). Moreover, the high comorbidity of MDD and anxiety dis-
orders (Gorman, 1996; Kessler et al., 1996, 2008; Kaufman and
Charney, 2000; Hettema et al., 2003) suggests that risk factors for
these disorders are not mutually exclusive (Krueger, 1999; Ohara
et al., 1999; Vollebergh et al., 2001; Gorwood, 2004). Indeed,
twin studies indicate significant overlap of genetic risk factors
for depression and anxiety (Hettema et al., 2003; Kendler et al.,
2007). In particular, it has been suggested that the genes influenc-
ing liability to MDD are the same as those influencing liability to
GAD (Kendler et al., 1992b). Nevertheless, genome-wide associ-
ation studies suggest that a large number of genes, each with a
small effect, influence susceptibility to MDD, and there is overlap
in genetic risk factors with GAD (Demirkan et al., 2011).

Because the ability to cope with stress is an important fac-
tor influencing susceptibility to stress-related disorders (Meng
et al., 2011; Mahmoud et al., 2012), it is possible that shared
liability genes for anxiety and depression influence stress reac-
tivity (Kendler et al., 1991; Gorwood, 2004; Yu et al., 2012).
Indeed, stress-induced activation of the HPA axis is moderately
to highly heritable (Federenko et al., 2004). Healthy individuals
with depressed first-degree relatives show a moderately elevated
cortisol response following challenge with dexamethasone (DEX-
CRH test), though not as elevated as that of patients with MDD
(Holsboer et al., 1995), and healthy individuals with diagnosed
parental history of anxiety or depression show higher corti-
sol awakening levels than individuals without parental history
(Vreeburg et al., 2010). Moreover, the response of the β-E system
to acute stress exposure is also highly heritable (Dai et al., 2002,
2005), and genetic variation in the μ-opioid receptor contributes
to the differential response of the HPA axis to stress (Chong et al.,
2006; Schwandt et al., 2011).

Although a compelling number of studies report evidence for
dysregulation of the HPA axis in patients suffering from depres-
sion and anxiety (Young et al., 1991; Carroll et al., 2007; Lloyd
and Nemeroff, 2011), the above findings suggest that a hyperac-
tive HPA axis in normal individuals may represent a vulnerability
marker for stress-related psychopathology. Because β-E plays a
role in moderating the effects of stress (Amir, 1982; Yamada and
Nabeshima, 1995) as well as termination of the stress response
(Buckingham, 1986), individual differences in HPA axis activa-
tion and subsequent release of β-E may influence differential
vulnerability to stress-induced changes in the coordination and
dynamics of the stress response. Indeed, depressed patients show
hypertrophy of the adrenal gland (Rubin et al., 1995), indicative of
HPA hyperactivity, and mice with low or absent β-E have enlarged
adrenal glands, suggesting chronic upregulation of the HPA axis
with decreased β-E levels (Grisel et al., 2008).

The present study, along with earlier studies in our lab, pro-
vides evidence of a moderating effect of β-E on the behavioral
response to stress (Grisel et al., 2008; Barfield et al., 2010), impli-
cating a role for this peptide in coping behavior. In particular, we
found an effect of interaction between genetic predisposition and
environmental stressors on anxious behavior in mice. Behavioral
differences between “genetically vulnerable” (low or absent β-E)
and “genetically resistant” mice emerged when mice were exposed
to a stressor before the NSF test. These data suggest that low
β-E levels impair the ability to return to a basal state following
stress exposure, and thus compromise coping ability. Considering
the evidence for heritability of stress-induced HPA axis activity
together with the findings presented here, it is possible that genet-
ically determined differences in sensitivity of the β-E system to
stress contribute, at least in part, to heritable differences in vul-
nerability to developing anxiety and depression (Charmandari
et al., 2005; Hegadoren et al., 2009; Merenlender-Wagner et al.,
2009).

MDD and anxiety disorders affect a significant portion of
the nation, with a lifetime prevalence of ∼20% for MDD and
28% for anxiety disorders (Kessler et al., 2005). Although the
neural mechanisms involved are poorly understood, evidence
from clinical and pre-clinical studies implicates the role of HPA
axis abnormalities in the pathophysiology of mood and anxi-
ety disorders (Carroll et al., 2007; see Arborelius et al., 1999,
for review). Thus, genetically mediated interindividual differ-
ences in HPA axis activity may help explain why some individuals
are particularly vulnerable, and others resilient, to anxiety and
depression (Holsboer et al., 1995; Wüst et al., 2000; McEwen,
2002; Vreeburg et al., 2010). Altogether, our findings suggest that
β-E facilitates coping behavior. Low levels of this peptide may
impair the coordination and dynamics of the stress response,
thereby enhancing vulnerability to stress-related psychopathol-
ogy. Further investigation of the role of β-E in allostasis of the
stress response may yield insight into the etiology of anxiety and
depression.
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