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Abstract

T lymphocytes utilize amoeboid migration to navigate effectively within complex

microenvironments. The precise rearrangement of the actin cytoskeleton required

for cellular forward propulsion is mediated by actin regulators, including the

actin-related protein 2/3 (Arp2/3) complex, a macromolecular machine that

nucleates branched actin filaments at the leading edge. The consequences of

modulating Arp2/3 activity on the biophysical properties of the actomyosin

cortex and downstream T cell function are incompletely understood. We report

that even a moderate decrease of Arp3 levels in T cells profoundly affects actin

cortex integrity. Reduction in total F-actin content leads to reduced cortical

tension and disrupted lamellipodia formation. Instead, in Arp3-knockdown cells,

the motility mode is dominated by blebbing migration characterized by transient,

balloon-like protrusions at the leading edge. Although this migration mode

seems to be compatible with interstitial migration in three-dimensional

environments, diminished locomotion kinetics and impaired cytotoxicity

interfere with optimal T cell function. These findings define the importance of

finely tuned, Arp2/3-dependent mechanophysical membrane integrity in

cytotoxic effector T lymphocyte activities.

INTRODUCTION

Cytotoxic effector T lymphocytes (CTLs) provide

immunosurveillance against invading pathogens and

malignant cells.1,2 To effectively contribute to successful

immune responses, CTLs employ flexible migratory

programs that are informed by extrinsic (e.g. chemokines,

stromal elements) and intrinsic (signaling molecules,

cytoskeleton) factors.3–5 Thus, migrating CTLs in situ

adopt a polarized cell shape defined by the formation of

a lamellipodium at the leading edge and a uropod at the

rear of the cell.6 This ameboid migration mode is typical
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of leukocytes, including granulocytes and lymphocytes,

and is thought to facilitate the rapid movement of these

cells to and within sites of inflammation and infection.7,8

The structure and function of the actomyosin cortex is

highly cell-type dependent and governed by the

submembranous cytoskeleton, which comprises actin

network filaments, actin-binding proteins and myosin-II.9

Together, these actin regulators control the cell shape

changes requisite for cell migration through the interstitial

spaces of organs. As lymphocytes have unique migratory

demands, it is important to understand the biomechanics

of the actomyosin cortex, the precise contribution of its

regulators and the consequences of its disturbance upon

lymphocyte migration and effector functions.

At the molecular level, precise T cell migration is

associated with constant remodeling of the cytoskeleton,

particularly at the leading edge, which provides the engine

that propels the cell membrane forward. Remodeling of

the lamellipodium is facilitated by polymerization and

branching of actin filaments. These are mediated by actin

nucleation factors such as the actin-related protein

2/3 (Arp2/3) complex.10 The Arp2/3 complex is a 225-kD

macromolecular assembly comprising seven subunits: five

highly conserved but unique subunits of ARPC (ARPC1–
5) and two ARP (Arp2 and Arp3) that structurally mimic

actin monomers. For activation, Arp2/3 requires one or

more nucleation-promoting factors including the

verprolin-homologous protein (WAVE) family, the

Wiskott–Aldrich syndrome protein family and the

hematopoietic lineage cell-specific protein 1 from the

cortactin family.11 When activated, the Arp2/3 complex

binds to the side of a pre-existing actin filament, and Arp2

and Arp3, together with an additional actin monomer,

form a nucleation core. This trimer then operates as a

template for daughter filament elongation.12,13

Functionally, the Arp2/3 complex is critical for cell

polarity, cell migration14 and cellular cortex network

integrity.15 Other studies have revealed the Arp2/3

complex as a critical mediator of cytokinesis in multiple

cell types.16–18 In Arp3-KD human natural killer cells, the

assembly and maturation of the lytic synapse were

impaired while the integrin and natural killer receptor

signaling were unaffected.11 The disruption of Arp2 or

Arp3 in the Arp2/3 complex often leads to a decrease in

the expression of other Arp2/3 complex components

hindering the integrity of the complex resulting in severe

phenotypes such as disrupted T cell receptor (TCR)

expression.19 Moreover, ARPC4 knockdown in the

epidermis leads to psoriasis-like skin complications,20 and

global Arp2 mutations are lethal in Dictyostelium.21 ARPC3

depletion results in embryonic lethality in mouse.22 In

humans, ARPC1B mutations result in symptoms of

immune dysregulation including mild bleeding tendency.23

Furthermore, a recent study by Schaffer et al. highlighted

the importance of Arp2/3 regulation in a human disorder

known as pachygyria, where a mutation in CTNNA2 leads

to an overactivity in Arp2/3, resulting in disordered

cortical neuronal migration.24 Silencing Arp2 and Arp3 in

Jurkat T cells results in failure to spread on anti-CD3-

coated coverslips, switches the F-actin-rich lamellipodia

leading edge to polarized filopodia-like structures, which

established the link between the b2-integrin activation and

functional Arp2/3.19 Silencing these genes also impaired

immunological synapse (IS) formation in ARPC2-

knockout T cells in vitro.25 A recent study showed that

conditional knockout of ARPC2 in T-cells results in

decreased expression of the TCR and impaired T-cell

homeostasis.25 Although the role of Arp2/3 in lamellipodia

formation has been studied intensively, its roles in T

lymphocytes and their immunological function remain to

be completely defined. Moreover, the consequences of

disrupted Arp2/3 complex, particularly the Arp3 subunit,

on T-cell locomotion and morphology in vivo are neither

characterized nor quantified.

The actomyosin cortex is usually observed immediately

adjacent to the cell membrane. However, under certain

circumstances, the cell membrane transiently detaches from

the actin cortex resulting in the formation of blebs.26 Blebs

have long been observed under physiological circumstances

such as during cell death (apoptosis) and cytokinesis (at

the poles of dividing cells), particularly in embryonic cells

(where the blebs are known as lobopodia).27,28 Currently,

the center of speculation is on the factors that facilitate

membrane detachments such as reduced actin

polymerization or reduced cortical contractility.

As an emerging concept, blebbing is also considered a

motility mode occurring under certain conditions during

cell migration in two-dimensional (2D) and 3D

microenvironments (reviewed in Blaser et al.26 and

Paluch and Raz29). For example, in Walker carcinoma

cells, this mode represents a putative escape mechanism

particularity observed during protease-inhibitor

treatment.30 The zebrafish primordial germ cells also use

blebbing migration toward distant targets in the gonad.26

Blebbing has also been observed in other cell lines such

as neutrophil-like cells in microfluidics devices,31 when

adhesion to the substrate is reduced in cells from patients

with leukocyte adhesion deficiency.32 Fibroblasts

following cell cortex ablation33 or epithelial cells in which

Arp2/3 activity was hindered with an Arp3 short hairpin

RNA (shRNA) or CK-689 will also bleb.34 These findings

suggest that stimuli leading to blebbing motility are cell

type specific. Thus, further studies that focus on the

molecular mechanism allowing the switch to blebbing

migration are necessary to understand processes leading

to the formation of different protrusions.
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Nevertheless, T cells are thought to exclusively utilize

lamellipodia- or filopodia-based locomotion, even when

migrating using an integrin-independent strategy.35

Unlike blebbing, lamellipodia motility seems to allow

precise sensing of the microenvironment and might

provide navigation guidance based on the rigidity of the

substrate measured via formation of focal adhesions.36

These require precise regulation of actin polymerization

and dendritic network growth and also matrix

proteolysis. Although the architecture of lamellipodial

actin filaments and mechanical properties of cortical actin

are critical for active migration of T cells, relatively little

is known about how the cytoskeleton network and

different subunits of Arp2/3 regulate the movement,

morphology and function of T cells in 3D environments.

To gain insight into the mechanisms and the role of

the Arp3 subunit in morphology and function of primary

T cells, we used shRNA mediated Arp3 knockdown (KD)

to study the role of this protein in controlling cortical

actin organization. We have also developed image

analysis algorithms to quantify Arp3-KD effects on cell

shape. Our results demonstrate that CTLs with

compromised Arp3 levels exhibit impaired F-actin

content maintenance leading to defects in CTL

functionality. We further show that the CTL motility

mode, instead of the actin-rich lamellipodia-based

migratory strategy, displays blebbing-like migration at the

cost of reduced migration speed. Taken together, our

results suggest that optimal mechanophysical and

biochemical properties of the actomyosin cortex, as

maintained by the Arp2/3 complex, are essential for the

proper functioning and effective migration of CTLs.

While many key issues still need to be addressed, our

study provides a model system for studying the molecular

and physiological aspects of blebbing migration.

RESULTS

Reduction of Arp3 in cytotoxic T cells reduces total

F-actin content

To explore the consequences of modulated Arp3

expression levels in CTLs, we employed a retroviral

knockdown strategy. Activated CTLs were transduced

with viral particles encoding an shRNA against Actr3

(encoding Arp3) or a nonsilencing shRNA (control). This

RNA interference technique was used as, compared with

other approaches such as small interfering RNA, it offers

sustainable KD and less off-target effects.37 The construct

also contained mCherry to facilitate the identification of

transduced T cells. CTLs were generated from na€ıve T

cells isolated from OT-I TCR transgenic mice in which

the CD8+ T cells express a TCR specific for the

SIINFEKL peptide of ovalbumin presented on kb. Mice

were crossed to either recombination activating-gene 1

(Rag1–/–) background or enhanced green fluorescent

protein (EGFP)-Lifeact mice, in which EGFP is fused to

the F-actin-binding peptide, Lifeact.38 Molecular

characterization of fluorescence-activated cell sorting

(FACS)-sorted mCherry+ CTL was used to evaluate the

efficacy of shRNA-mediated Arp3 KD. This indicated that

introduction of shRNA-Actr3, but not control shRNA,

led to reduced expression but not complete ablation of

the endogenous Arp3 subunit (Figure 1a, b and

Supplementary figure 1a). Flow cytometry analysis of

phalloidin-stained CTLs, a readout of filamentous actin,

indicated that total F-actin content in shRNA-Actr3-

transduced T cells was reduced by approximately 60%

(Figure 1c, d). This is in line with a critical role played

by Arp3 subunit in the Arp2/3 complex formation,

function39 and maintenance of F-actin levels in CTLs.

T cell phenotype remains unaltered after Arp3

knockdown

The actin cytoskeleton provides the framework to

maintain T cell membrane organization dynamics.40

Thus, we examined whether Arp3 knockdown resulted in

changes in the surface expression of the TCR or

activation markers, including CD44, CD25, CD69 and

CD62L, in activated CTLs (Figure 1e, f). Despite the

reduction in the total F-actin content in CTLs following

Arp3 knockdown, the expression profile of examined

molecules was comparable to CTLs transduced with

control shRNA. Experiments in this study relied on the

in vitro expansion, transduction and sorting of mCherry+

OT-I cells. In these experiments, we noticed a reduction

in the number of Arp3-KD cells maintained in culture,

particularly at day 5 following cell sorting (Figure 1g, h).

The relative loss of Cherry+ cells in the Arp3-KD

population correlated with the reduction in the total cell

number in the plate. This suggests that relative loss of

Cherry+ cells is not a result of the loss of the KD

construct. Therefore, we next evaluated CTL proliferation

by carboxyfluorescein diacetate succinimidyl ester (CFSE)

and CellTrace violet dilution. Regardless of the virus

employed for transduction or the transduction efficiency,

all CTLs examined exhibited identical proliferation

profiles (Figure 1i, Supplementary figure 1b).

Nevertheless, the contribution of mCherry-negative

(non-transduced) CTLs increased consistently in the

Arp3-KD group, in contrast to controls (Supplementary

figure 1c, d), suggesting a survival deficit in Arp3-KD

CTLs. To test whether this was a result of increased rates

of apoptosis, we assessed the apoptotic status of

transduced cells using Annexin V staining, which binds
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Figure 1. Evaluation of the effects of Arp3-knockdown (KD) on F-actin, proliferation, cytotoxic phenotype and apoptotic status. (a)

Representative immunoblot of Arp3 (ACTR3) expression levels in cells transduced with anti-Actr3 short hairpin RNA (shRNA), control shRNA and

non-transduced wild-type (WT) cytotoxic effector T lymphocytes (CTLs) lysed at day 5 post-harvest. See also Supplementary figure 1a. (b) The

column graph shows the densitometry analysis of the Arp3 protein band. Arp3 expression signal was normalized against WT expression level and

corrected against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) signal (n = 4 independent experiments, **P = 0.0014, also see Figure 1a,

b). (c, d) Total F-actin content in the Arp3-KD. (c) Flow cytometry plot demonstrating phalloidin staining of F-actin; KD in red, WT in black,

control in gray. (d) Quantification of total F-actin in Arp3-KD CTLs on day 7 post-isolation, 48 h post-fluorescence activated cell sorting (n = 3

independent experiments, ****P < 0.0001). The relative fluorescence expressions were normalized to WT control. (e) A representative FACS plot

shows transduction efficiency of splenocytes harvested from Lifeact-GFP9OT-I mice on day 5 post-transduction (n = 4 independent experiments).

(f) FACS histograms of transduced T cells (red) and WT [non-transduced cells (gray) acting as an internal control] stained with anti-CD8a, anti-

Va2, anti-CD44, anti-CD25, anti-CD69 and anti-CD62L antibodies as indicated (data from day 6 following T cell isolation; representative results of

three independent experiments). (g) Growth curve of FACS-sorted transduced CTLs and WT control over 5 days (counting commenced 48 h

post-thawing, day 6 post-harvest). See also Supplementary figure 1c, d. (h) Quantification of cell numbers compared with WT cells on day 5

post-FACS sort (n = 3 independent experiments, *P = 0.03). (i) Carboxyfluorescein diacetate succinimidyl ester (CFSE) profiles of control

transduced and Arp3-KD CTLs for 3 days post-staining on days 6–9 post-harvest (representative of three independent experiments between days

6 and 11 post-harvest, see also Supplementary figure 1b for CFSE labeled prior to cytokine stimulation of splenocytes). (j) Representative flow

cytometry plots illustrating Annexin V staining in vector control, Arp3-KD and non-transduced internal control. (k) The mCherry expression ratio

between transduced and control (non-transduced) Annexin V+ cells (data pooled from two independent experiments; days 6–8 post-harvest). ns

denotes not significant. Data are represented as mean � s.d.; statistical significance was calculated between control and KD cells using the

unpaired Student’s t-test. DAPI, 4,6-diamidino-2-phenylindole; FSC, forward scatter; GFP, green fluorescent protein.
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to the phosphatidylserine on the outer leaflet of the

plasma membrane in the early stages of apoptosis. The

level of Annexin V binding varied between 5 and 10%

but was not enriched in transduced versus

non-transduced cells for either Arp3 knockdown or

control (Figure 1j, k). Therefore, apoptotic cell death was

not different at any time point (days 4–7) where cells

were used for functional assays. Collectively, these

findings suggest that, while the reduction of Arp3 showed

no significant effect on the examined cell cytotoxic

surface markers and rates of proliferation during days

2–11 post-CTL harvest. Thus, the Arp2/3 complex is

potentially important for CTL survival.

In vivo survival of adoptively transferred Arp3-KD

OT-I CTLs critically depends on Arp3 expression

To characterize the effect of Arp3 knockdown on T cell

homing and survival in vivo, we adoptively transferred

CD45.2+ Arp3-KD or control CTLs 5 days

post-transduction into CD45.1+ Ptprca congenic recipient

mice. To evaluate cell survival over time, mice were

subsequently bled on day 1 and day 6 post-adoptive cell

transfer, together with organ harvest on day 6

(Figure 2a). Donor CTLs were discriminated on the basis

of CD45.1 expression by flow cytometry (Figure 2b).

Similar to the in vitro data, the fraction of Arp3-KD T

cells in blood declined with time, relative to the fraction

of non-transduced cells (Figure 2c–f). We also found that

Arp3-KD OT-I CTLs were capable of entering lungs,

spleens, livers and lymph nodes. Arp3 depleted CTLs

accumulated preferentially in lymph nodes compared

with control cells, but to a lesser extent in lungs, spleens

and livers (Figure 2g, Supplementary figure 2a–c). These
slight differences in trafficking and distribution of the

leukocytes in the body might be related to motility

alteration as a result of lack of proper Arp2/3 function in

Arp3-KD CTLs. Together, these findings suggest that

Arp3 knockdown impedes the survival of effector CTLs

in vivo which may be a result of lack of coordination of

the cytoskeletal structures, but only has moderate effects

on their homing throughout the organism (Figure 2h).

Arp3 knockdown results in impaired OT-I CTL

migration speed and more confined migration

The requirement of Arp2/3 for in vivo survival of CTLs

prompted us to quantify the precise 3D migration

characteristics of Arp3 depletion on CTL locomotion in

3D environments. First, we visualized OT-I or Lifeact-GFP

CTLs transduced with Arp3-shRNA or control shRNA

embedded within the collagen matrix in vitro by confocal

microscopy. Arp3-KD CTLs exhibited an arrested

phenotype compared with control CTLs (Figure 3a). This

was reflected by a significant reduction in the average

migratory speed (from 5 � 2.3 to 2.3 � 1.4 lm min�1,

Figure 3b). The confinement ratio, reflecting the degree of

exploratory behavior of the cells, was also significantly

lower in the knockdown population with shorter track

lengths (Figure 3c, d). In control conditions, cells show

both straight and meandering migration, whereas, after

Arp3-KD, most cells show meandering migration for most

of the time (Supplementary videos 1 and 2). We also

observed that the Arp3-KD cells had on average a lower

diffusion coefficient (10.4 lm2 min�1) than the control

cells (26.7 lm2 min�1, Figure 3e). While both control and

KD cells had a linear relationship in time versus mean

square displacement (MSD), further experiments

demonstrated that there was a difference in the “confined”

and “straight” plots between the two groups. When

compared with the control, Arp3-KD CTLs possessed a

more negative score, suggesting that their migratory

behavior was more “confined” (Figure 3f).

Next, to understand the effect of Arp3 knockdown on

CTL migration in vivo, we utilized a zebrafish model.

Zebrafish larvae are transparent and have gained

popularity for studying cell trafficking in real-time

in vivo.41,42 Furthermore, the lack of an adaptive immune

system during the first 2 weeks of the zebrafish

embryonic life enables xenotransplantation of T cells with

no adverse effects.43 We, therefore, microinjected

transduced CTLs into zebrafish embryos to track their

migratory behavior in vivo. We observed a similar

migratory impediment in CTLs after Arp3 knockdown

compared with control T cells (mean track speed of

3.3 � 2.5 versus 7 � 4 lm min�1, Figure 3g, h). When

zebrafish embryos were imaged 2- and 4-h post-injection,

the distance traveled by Arp3-KD CTLs in vivo was

approximately 66% shorter than that observed in control

cells (Figure 3i–k). Collectively, these data demonstrate

that a defect in the Arp3 subunit of the Arp2/3 complex

leads to a significant reduction in the migratory capacity

of CTLs both in vitro and in vivo.

Downregulation of Arp3 affects morphology and

membrane dynamics of cytotoxic T cells

Given the impediment in the migration of Arp3-KD

CTLs, we sought to better understand the mechanistic

consequences of Arp3 deficiency in CTL migration by

monitoring individual cells. Motility, an essential feature

of T cell function, is dictated by cell polarity. Polarized

cells, exhibiting characteristic lamellipodia and uropod,

are migratory while rounded cells are not.44 To decipher

the effects of Arp3 knockdown on cell morphology, CTLs

were imaged in tissue culture plates coated with a thin
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Figure 2. In vivo survival of adoptively transferred Arp3-KD OT-I cytotoxic effector T lymphocytes (CTLs) critically depends on Arp3 expression.

(a) Schematic representation depicting the tracing of adoptively transferred transduced OT-I cells and non-transduced wild-type (WT) OT-I cells (a

total of 20 9 106) injected into B6.SJL/Ptprca (CD45.1) mice. Cells were evaluated by flow cytometry on injection day (day 6 post-harvest in vitro)

and subsequently on day 1 and day 6 post-injection of cells. (b) Gating strategy used in flow cytometry analysis to detect the percentage of the

mCherry+ donor CTLs in recipient mice. (c) Representative fluorescence-activated cell sorting (FACS) plot of transduction efficiency on day 0 (day

6 post-harvest) prior to adoptively transferring CTLs (top), day 1 (middle) and day 6 (bottom) post-injection. (d) The percentage of mCherry+ cells

in Actr3-KD and control CTLs on days 0, 1 and 6 post-injection [two independent experiments, experiment 1 (Exp 1, n = 4) and Exp 2, KD n = 4,

control n = 5 mice/group]. (e) Paired analysis of mCherry+ percentages normalized against percentages detected in blood on day 6 post-injection.

(f) Boxes and Whisker graph showing pooled data from two independent experiments (KD n = 8 mice, control n = 9 mice). (g) Bar graphs show

the percentage of mCherry+ of total Va2 on injection day, day 1 and day 6 in control CTLs in blood and other organs, respectively. (h) The

percentage of mCherry+ cells for each tissue was normalized by the input percentage of mCherry+ cells to obtain the Homing Index. See also

Supplementary figure 1. Panel f, statistical analysis was performed with the Mann–Whitney U test. ****P < 0.0001. KD, knockdown; LN, lymph

node.
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Figure 3. The influence of Arp3-KD on cytotoxic effector T lymphocyte (CTL) migration in vitro and in vivo. (a) OT-I 9 Lifeact-GFP Arp3-KD CTLs

embedded in collagen and imaged with confocal microscopy for approximately 15 min. Scale bar: 10 lm. (b and c) Distribution of mean speed

and confinement ratios of transduced CTLs on day 5 post-harvest or day 2 post-thawing. Data were pooled from three fields of view, from three

independent experiments. The values are mean � s.d. of 220 control and 55 KD cells with the filter being imposed on cell track analysis

(excluded track length < 5 lm). (d) A representative two-dimensional reconstruction of single-cell tracks from one experiment aligned to a

common origin (41 and 47 track numbers for control and KD, respectively, see Supplementary videos 1 and 2). (e) Bars showing mean square

displacements (MSDs) � s.d. (error bars), linear regression (line) and confidence intervals (shaded areas) with a diffusion coefficient of 26.7 and

10.4 lm2 min�1 for control and KD cells, respectively. (f) Straightness Z-score. (g, left panel) Zebrafish embryos microinjected with approximately

60 control-KD OT-I 9 Lifeact-GFP T cells (WT = green only, control = green and red). (g, right panel) A snapshot of migration of control and KD

cells at 0 and 5 min with the 10-min rainbow color tracking trajectories. (h) Distribution of mean speed of CTLs in vivo in about 20 min post-

microinjection. Data were pooled from two (control) and three (KD) independent experiments for 10–20 min imaging (control cells n = 49, KD

n = 34, 2–3 zebrafish/group, 1–2 ROI(s)/embryo, 5–19 cells/image). (i, j) A representative image of CTLs at early (30 min) and late (4 h) time

points post-injection (non-transduced cell serves as internal control, the yellow dashed line indicates the tails part of larva). (k) Distribution of

distances from injection site, data were pooled from three independent experiments with 2- to 4-h migration time (4–12 zebrafish/group, WT1

n = 394, WT2 n = 175 internal control mixed with control n = 107 and KD n = 45, respectively). In vivo imaging performed at 37°C on day 6 or

7 post-harvest. Statistical analyses in b, c and h were performed using unpaired Student’s t-tests and in k using one-way ANOVA, followed by

Tukey’s multiple comparisons test. ns denotes not significant. Data are represented as mean � s.d. in h and mean� 95% CI in k. **P = 0.002,

***P = 0.0003 and ****P < 0.0001. GFP, green fluorescent protein; KD, knockdown; ROI, region of interest.
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Figure 4. The Actr3-KD T cells become rounded and switch to blebbing migration mode. (a) The aspect ratio [maximum (red line) minimum

(green line) length] measured using ellipse fitting (yellow dashed line) into the binary mask of Actr3-KD and control cells at the bottom of 96-well

plates. The graph (right) shows mean � s.d. pooled from two control (n = 20 cells), two wild-type (WT; n = 17) and three KD (n = 32)

independent experiments; one-way ANOVA, followed by Tukey’s multiple comparisons test was performed, **P = 0.0017, ***P = 0.0001.

Bars, 10 lm. (b) Representative images of control cells with lamellipodia at the leading edge (yellow arrows) and KD cytotoxic effector T

lymphocytes (CTLs) with balloon-like protrusions at the leading edge (red arrows) in three-dimensional collagen matrices and in vivo zebrafish

model. (c) Fluorescence microscopy images of control cells at t = 0 s with brightfield images at t = 0–36 s and spiky lamellipodia at leading edge

(yellow arrows). (d) Observation of individual blebs (yellow boxes) of Arp3-KD CTLs in different z-stacks, traceable in brightfield images of Arp3-

KD CTLs (yellow boxes). (e) Visualization of bleb formation using consecutive frames in one z-stack (yellow boxes). The time interval was

calculated by dividing the time used in capturing the entire z-stack by the number of frames. z1 = 0 s expansion initiation, z3 = 1.3 s expanded

bleb devoid of actin. (f) Schematic of switching from lamellipodia formation in control to blebbing in Arp3-KD CTLs (life cycle of a bleb: one

devoid actin, two recruiting actin and three filled with actin). (g) A representative time series from 18 consecutive frames in a z-stack of an Arp3-

KD CTLs embedded in collagen on day 5 post-harvest is displayed. (h) Quantification and (i) distribution of Lifeact-GFP (green) recruitment

relative to the cell membrane (red, cytoplasmic mCherry) into the bleb membrane protrusions in Arp3-KD CTLs in vivo and in vitro. Data were

pooled from two independent experiments (represented as mean � s.d.), cell number, in vivo n = 8 blebs (four cells, in two zebrafish embryos),

in vitro n = 9 blebs (four cells), and an unpaired Student’s t-test was performed, **P = 0.0014. GFP, green fluorescent protein; KD, knockdown.
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layer of type I collagen. We found that Arp3-KD CTLs

displayed a more rounded morphology compared with the

polarized morphology in control and non-transduced CTLs

(Figure 4a). Further analysis of cell morphologies revealed

that, as expected, control CTLs exhibited features

reminiscent of lamellipodia and filopodia throughout their

migration (Figure 4b, left and right top panels and

Figure 4c). Surprisingly, however, we consistently observed

that a reduction in Arp3 levels resulted in spherical

protrusions on the cell surface initially devoid of actin in

CTLs, as visualized by the absence of Lifeact-GFP signal in

both T cells migrating in vitro and in vivo (Figure 4b,

bottom left and right panels). Absence of actin filaments

identified these structures as membrane blebs (Figure 4d,

observation in different z-stack). We then analyzed, in-

depth, the dynamics of actin recruitment into each bleb by

3D real-time imaging in transduced CTLs (Figure 4e,

observation in one z-stack). By addressing the temporal

order of membrane protrusion and actin recruitment to

each bleb, we were able to demonstrate that membrane

protrusion occurred prior to F-actin recruitment to each

bleb (Figure 4f). The average time difference in the

detection of Lifeact-GFP (F-actin) relative to cell membrane

indicated by mCherry was about 1 s (Figure 4g–i).
Finally, we measured the size and the number of blebs per

imaging frame (Figure 5) using brightfield imaging as time-

lapse imaging resulted in photobleaching of the mCherry

fluorophore. Blebs were only observed in Arp3-KD CTLs

and not in control CTLs (Figure 5a, control with no bleb).

Bleb expansion and retraction dynamics were calculated for

more than 600 blebs (about 50/cell) by tracking the bleb

masks. Bleb expansion occurred over a 19-s time span and

was faster than retraction, which occurred over a 32-s time

span (Figure 5b, c). Approximately five blebs (5 � 2) were

detected per leading edge of each cell, each comprising

� 2% of the total cell area with an average diameter of

roughly 3 lm (Figure 5e–g, Supplementary table 1). In

addition, blebs were always observed at the leading edge of

the CTLs, where expansive forces generated by the

contractility of actomyosin cortex are transmitted by

cytosolic hydrostatic pressure to the leading edge of the cell

(Figure 5h, i).

Reduction in Arp3 expression levels weakens the actin

cortex

The formation of blebs indicated potential defects in the

membrane attachment to the cortical network in Arp3-

KD CTLs. Connections between the membrane and the

cortical actin network define the cortical rigidity.45

Therefore, to measure the stiffness of the actin cortex

which provides support for the plasma membrane, we

performed micropipette aspiration experiments. This is a

well-established mechanical measurement technique that

assesses membrane-to-cortex attachment in an individual

cell.46–48 Individual CTL cortical tension was quantified

based on the portion of the cell aspirated into the pipette

(Figure 6a). Compared with control CTLs, knockdown of

Arp3 resulted in a significant reduction in cortical

tension (Figure 6b), suggesting that the actin cortex

network and potentially its connection to the membrane

was compromised.

Reduction in Arp3 expression levels impairs cytotoxic

T cell function and cell-to-cell interactions

Following successful interstitial migration, cytotoxic T

cells need to physically contact target cells, which can

lead to the formation of an “immunological synapse” and

direct the killing of target cells.49,50 To evaluate the effect

of Arp3 knockdown on cytotoxic T cell function, we used

a combination of bulk killing and single CTL:target cell

interaction assays over prolonged and short periods of

time, respectively. We co-incubated the Arp3-KD and

control CTLs with cognate (EG7-OVA) and non-cognate

(EL4) target cells for 3 h. Arp3-KD CTLs induced a

consistent decrease in EG7 target cell lysis compared with

control CTLs (Figure 6c–g, Supplementary figure 1e),

indicating that cytotoxicity was impaired in Arp3-KD

CTLs. Supplementary figure 3 shows the surface

expression of the TCR or activation markers, including

CD44, CD25 and CD69, in a set of activated CTLs on

day 5 post-harvest.

To further examine the Arp3-KD cytotoxicity

impairment, we performed single-cell micropipette

adhesion frequency assays to assess the ability of OT-I

CTLs to make contact with their target cells. This

technique is frequently used to demonstrate the binding

specificity of receptors for their ligands during single cell–
cell interactions46,51–53 wherein adhesion is measured

using a binary scoring system (one if adhesion is

observed, zero if not). In this assay, multiple CTL–target
cell pairs were tested while each pair was evaluated by

bringing the cells together ten times with a 20-s

interaction time (Figure 6h, i). We observed a significant

decrease in the adhesion frequency of Arp3-KD CTLs to

EG7 cells when compared with control and

non-transduced cells (Figure 6j). Together, these data

indicate that disruption of the actomyosin cortex leads to

decreased adhesion between CTL and target cell and

impaired cytotoxic function of T lymphocytes.

DISCUSSION

Migration is integral to T lymphocyte function. Indeed, T

cells can be considered professional migratory cells that
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Figure 5. Properties of blebs in Arp3-KD cytotoxic effector T lymphocytes (CTLs). (a) Representative (Lifeact-GFP) brightfield image of the control

cell displaying lamellipodia at the leading edge (yellow arrowheads). (b) Images of Arp3-KD CTL blebbing during an expansion (red boxes) and

retraction (blue boxes) were analyzed by manually tracking the bleb masks in consecutive frames. (c) Distribution of bleb expansions and

retractations in Arp3-KD CTLs embedded in three-dimensional collagen (n = 3 independent experiment); nine expanding and ten retracting blebs

in three or four cells/experiment on day 6 post-harvest (*P = 0.016, an unpaired Student’s t-test was used, and data are represented as

mean � s.d.). (d) Distribution of the total number of observed and analyzed blebs per cell (cell number: Exp1 = 3, Exp2 = 3, Exp3 = 5, imaging

for 2–3 min on days 5–7 post-harvest). Data are represented as mean � s.d. (e) Distribution of the observed bleb numbers in each frame

(number of blebs Exp1 = 33, Exp2 = 39, Exp3 = 64). (f) Distribution of the size of the observed bleb (area) normalized to the size (area) of the

whole-cell expressed as bleb size percentage of cell size (number of blebs: Exp1 = 162, Exp2 = 179, Exp3 = 290). (g) Distribution of the

observed bleb, longest diameter expressed in micrometer (number of blebs: Exp1 = 162, Exp2 = 179, Exp3 = 290). See also Supplementary table

1. (h) Blebbing frequently observed at the leading edge of cells migrating in three-dimensional collagen matrices in vitro (top panels) and in vivo

(bottom panels) in zebrafish embryos. White arrows show migration direction, red arrows depict the bleb locations. (i) Representative images

displaying blebs at the leading edge (top panel), the overlap of each bleb center (+) in time (left bottom panel) and overlap of time-lapse images

of cell border (right bottom panel, white is time 0 and dark red is the last time point). (e–g) The results from three independent experiments

represented in a box and Whisker plot format, with a median, first and third quartiles outlined by the box, and minimum and maximum values of

the data set denoted by Whiskers. GFP, green fluorescent protein; KD, knockdown.
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Figure 6. The influence of Arp3 reduction on cytotoxic effector T lymphocyte (CTL) cortical tension, cytotoxic function and interactions with the

target cell. (a) Schematic diagrams and photomicrographs of micropipette aspiration of a CTL. The aspiration pressure inside the pipette (Dp, low

for holding cells, high for cortical tension measurement), the inner radius of the pipette (Rp), the radius of the spherical portion of the cell outside

the pipette (Rc) and the length of the cell tongue aspirated inside the pipette (Lp) are indicated. (b) The graph shows cortical tensions in OT-I

cells on days 5–6 post-harvest. Data represent mean � s.e.m. of two pooled independent experiments [wild type (WT) and vector n = 10 and KD

n = 11 cells/experiment, one-way ANOVA, followed by Tukey’s multiple comparisons test was performed, *P = 0.0148 (exp1), *P = 0.0144

(exp2) and **P = 0.0049] scale bar, 5 lm. (c) FACS plot shows the gating strategy for sorted CTLs co-incubated with the specific (EG7-OVA)

target cells over 3 h measuring the experimental death (killed cells gate). (d) The “spontaneous death” of EG7 propidium iodide (PI)+ (4.51%)

cells, when target cells were incubated alone. (e) A representative example of the Arp3-KD cells co-incubated with target cells (EG7-OVA) at 1:1

and 20:1 E/T ratios (WT:target cells, top panel; control:target cells, middle panel, KD:target cells, bottom panel). Red box, the percentage of

experimental death. (f) Bar graph of a representative cytotoxicity experiment (n = 3). See also Supplementary figure 1. (g) The column graph

shows the percentage of killing normalized to WT for 15:1 E/T ratios of n = 3 independent experiments; mean � s.d., an unpaired Student’s t-

test was used, *P = 0.03. Cells were FACS sorted on days 6–7 and used in assay on days 9–11 post-harvest. (h) Schematic of single-cell

micropipette adhesion frequency assay. OT-I T and EG7-OVA cells were aspirated by two opposing micropipettes, where the target EG7 cell was

driven by a piezoelectric translator to touch the T cell for 20 s and then retracted. (i, top panel) Photomicrograph of a control cell reaching out

to a target cell even before the touching step. (i, bottom panel) A KD cell fails to make any visible interaction, no interaction, and well-defined

shape even during the “touch” step. (j) Adhesion frequency measurements for individual T cell–EG7 pairs with 20 s contact durations. Data were

pooled from two independent experiments (n = 9, four or five cells/experiment average of ten touches/cell). The results are represented in box

and Whisker plots, with a median, first and third quartiles outlined by the box, and minimum and maximum values of the data set denoted by

Whiskers measurements, ****P < 0.0001 using one-way ANOVA, followed by Tukey’s multiple comparisons test. ns denotes not significant.

FACS, fluorescence-activated cell sorting.
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continuously recirculate between the bloodstream and

solid organs. In particular, effector T cells are required to

quickly adapt to the ever-changing microenvironments in

peripheral tissues during infectious, inflammatory or

malignant diseases. Thus, it is not surprising that T

lymphocytes employ a highly sophisticated and precisely

regulated migration machinery provided by the

actomyosin skeleton. While the intricacies of this

machinery have been studied in great detail in vitro, less is

known about the role of Arp3 subunits of the Arp2/3

complex in primary T cells. In this study, we provide

evidence that disturbance of the actin nucleator Arp2/3 has

remarkable effects on the migration mode of T cells,

namely, a switch from the ameboid to a less efficient

migratory mode accompanied by blebbing primarily

generated at the leading edge. In addition, we demonstrate

a role for Arp2/3 in CTL survival and cytotoxicity. These

findings underscore the importance of fine-tuning of the

actin nucleators such as Arp2/3 on the actin filament

assembly or length in T cell mechanobiology.

In a previous study, a critical role for Arp2/3 in T cell

survival has been inferred from ARPC2-deficient mice.25

ARPC2 subunit stabilizes the Arp2/3 complex, and

ARPC2 deficiency led to reduced numbers of peripheral

T cells without significantly affecting thymocyte

development.25 Consistently, we also observed a survival

defect in Arp3-depleted CTLs following their activation

in vitro and adoptive transfer in vivo. However, in

contrast to complete ARPC2 knockout, we did not

observe changes in TCR expression, T cell activation or

differences in proliferation kinetics of Arp3-knockdown

CTLs. This may be explained by the modulation of

different molecules in the two studies. Alternatively, Arp3

levels in our study were reduced by approximately 60%,

which may still allow for unaltered intracellular TCR

trafficking. Although mechanistic insight into the

decreased survival of Arp3 knockdown warrants further

investigation such as using late apoptosis markers, it is

conceivable that these cells are less resistant to cellular

stress, for example, suboptimal cytokine availability, shear

forces in the bloodstream, interstitial fluid pressure or

cytothripsis encountered particularly in vivo. Cytothripsis

(or catastrophic cell death) was observed in DOCK8-

deficient T and natural killer cells during migration in

collagen-dense tissues because of lack of coordination of

the cytoskeletal structures.54 Future studies will

investigate these possibilities in more detail.

Our experiments identify and explore the critical role

of Arp3 in the migration of primary effector T cells. Our

work is consistent with previous evidence indicating that

perinuclear Arp2/3 mediates fast-moving leukocyte

migration through complex 3D environments via nuclear

deformation and lamellipodia formation.55–57 We also

found that the exploratory behavior of Arp3-KD CTLs

was adversely affected, which may explain the slight

alteration in trafficking patterns of Arp3-KD T cells into

peripheral tissues in vivo. T cells can also migrate in an

integrin-dependent manner particularly in nonlymphoid

tissues; for example, blockage of integrin (b1) impaired

the migration of effector CD4+ T cell in the pancreas.58,59

Nevertheless, we showed in this study that homing, which

also requires integrins to function, is not affected by Arp3

knockdown in liver, lung, spleen or lymph nodes.

Previous studies also showed that cancer cells can evade

natural killer T-like and natural killer cells cytotoxic

attack by affecting the production of granzyme B.60 We

have previously shown that granzyme B promotes CTL

transmigration,61 thus the production of granzyme and

perforin in Arp3-KD cells with the transmigration would

warrant further investigation. Moreover, the association

of integrin-dependent migration and the function of

Arp2/3 on motility properties of CTLs remains to be

determined.

Many studies have shown that blebbing at the leading

edge and defects in migratory behavior occurs when cell

contractility regulators are manipulated. For example,

contractility was augmented as a result of increase in

local concentration of myosin light-chain kinase at the

leading edge of Walker carcinoma cells,62 fibroblasts and

Dictyostelium.33,63 It is also affected by Rho-kinase

localization at the rear of acute T lymphoblastic leukemia

cells64 or A375 melanoma cell line.65 In another study,

cell contractility and cortex integrity were manipulated by

knocking down Septin in murine CD4+ T helper cells.

This increased the transmigration and chemotaxis

capacity and reduced the migration speed.8 In our study,

we report that reduction in Arp3 levels in primary

cytotoxic T cells triggers formation of bleb protrusions.

This was in contrast to previous studies that reported

filopodial (spike-like) protrusions in the absence of

branched actin generated by the Arp2/3 complex in

fibroblasts.66 We only occasionally detected filopodial

features on the periphery of Arp3-KD CTLs (data not

shown). Although the morphology alteration was

expected in Arp3-KD cells, the formation of blebs was

surprising because T cells motility in extracellular

matrices almost exclusively exhibit lamellipodia/filopodia

protrusion locomotion mode.35

Blebbing has been suggested to be a more efficient

means of exploring the extracellular environment than

directional migration, at least in zebrafish mesendoderm

cells.29 In contrast to lamellipodia, blebs are generally

considered less energetically costly,28 such that a switch to

this mode may allow cancer cells to optimize their

migration in different environments67,68 and escape

antitumor treatments.69 Indeed, blebbing migration has
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been proposed to be a major mechanism by which cancer

cells enhance their invasive capability.70,71 In this study,

however, blebbing CTLs illustrated a restricted

exploratory behavior suggesting that Arp2/3 complex-

dependent lamellipodium is a more efficient means of

directional migration for T cells. The central role of

Arp2/3 is further exemplified by the involvement of all

seven subunits of Arp2/3 in cortical actin regrowth and

retraction of laser-induced blebs in HeLa cells in which

rapid reduction of actin was observed in the presence of

Arp2/3 inhibitor CK-666.72 The biphasic profile of bleb

expansion and retraction in cancer cells47,73 is similarly

shown in CTLs in this study (Figure 6c). Small-molecule

Arp2/3 inhibitors such as CK-666 and CK-869 have been

used to study the effect of Arp2/3 on actin.34,71,72,74

However, their precise effect and their mechanism of

action are still under investigation.74 Further comparisons

between these molecules, along with shRNA and

complete knockdown techniques, will shed more light on

the influence of individual subunits of Arp2/3 on the

actin filament network and their role in transition of

blebbing into movement.

The role of cortex tension seems to be particularly

important in 3D environments. Previous work by Chugh

et al. reported that cortex tension is myosin-II driven.9

Here we revealed that uncompromised Arp2/3 complex

also plays an important role in retaining and supporting

the cellular cortical network and potentially in the

membrane-to-cortex attachment in CTLs. The observed

reduction of membrane tension could be a result of shorter

filaments in the absence of a fully functional Arp2/3

complex. Nevertheless, our finding is thus in line with the

notion that actin filament length is as important as myosin

activity in cell-shape integrity.9 In addition, the strength of

membrane to cortex attachment has also been proposed to

be important in cellular shape, motility and function47,75

(reviewed in Hochmuth48). Together, these observations

are intriguing as even a moderate reduction of Arp3 leads

to a significant disturbance of the membrane integrity. Our

results thus suggest that the shape and function of the fast-

moving CTLs are highly affected by a precise equilibrium

of actin nucleators and actin filaments, which coordinate

the regulation of cell cortical tension, actin network to

membrane attachment and downstream functions

including migration and cytotoxicity. Although we have

observed the same motility properties in our zebrafish

model, the reduction of cortical tension might be

advantageous for migrating in high-density

microenvironment such as the tumor cores.

Finally, many functions in the cell are dictated by

changes in cellular morphology.76 Herein we also found

that the cytotoxicity function and CTL-to-target cell

interaction, as representative of initial steps in IS

formation, were compromised in Arp3-KD CTLs.

Although both phenomena are Arp2/3 complex dependent

and other actin nucleation-promoting factors such as

WAVE2, Wiskott–Aldrich syndrome protein and HS1 have

been reported to be important,77–79 Arp3’s role in synapse

formation and target cell lysis in primary mouse CTLs were

still obscure. Using single cell-to-cell interaction assays, we

now directly show that reduction in Arp2/3 levels led to

diminished membrane interactions with tumor target cells

expressing cognate antigen. Notwithstanding, the impaired

cytotoxic function of the Arp3-KD CD8+ T cells could also

arise from the potential role of the Arp2/3 complex in

many more steps, including early T cell death upon target

cell encounter, differentiation into effector memory T cells

during the in vitro stimulation, the strength of TCR

activation and/or polarization/docking of lytic granules.

Nevertheless, our result is consistent with the recent study

by Brigida et al., which concluded that ARPC1B is also

crucial for the Arp2/3 assembly and maintenance. They

showed that alteration in the protein structure of ARPC1B

hinders IS assembly.80 Together with our observations in

bulk cytotoxicity assays, we propose that certain CTL

functions as well as their adhesion to the target cells are

facilitated by Arp2/3-dependent cell morphology. The

formation of the IS could also be impaired, for example, as

a result of the regulation of intracellular trafficking of

organelles toward the immunological synapse. Approaches

such as confocal imaging or rescue assays, which

particularly enhance the TCR-driven signaling machinery,

can be used to further investigate this aspect.80

In summary, our study established that the type of

protrusion formed by CTLs is fine-tuned and optimized by

the Arp2/3 complex. We demonstrate that the Arp2/3

complex’s role is not redundant among the various

mechanochemical coordinators involved in the leading-edge

formation in CTLs. Given the importance of the regulation

of the actin network in T cell function, we hypothesize that

the reported malfunctions in CTLs are mainly a result of the

absence of a fully functional Arp2/3 complex and thus

shorter actin filaments. These unforeseen findings pave the

way for a deeper understanding of the contribution of the

Arp2/3 complex to efficient T-cell migration and function,

which is crucial for the development of improved therapies

for cancer and inflammatory diseases.

METHODS

Mice and reagents

Donor recombination-activating gene 1 (Rag1)�/� or OT-
I9GFP-Lifeact mice were maintained on the C57BL/6
background and bred in-house at the Centenary Institute.
GFP-Lifeact mice were kindly provided by Roland Wedlich-
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S€oldner, University of M€unster. Congenic C57BL/6-Ptprca

(CD45.1+) mice were obtained from the Australian
BioResources facility (NSW, Australia). All experiments
involving animals were conducted according to animal ethics
protocols approved by the Sydney Local Health District
Animal Welfare Committee (Sydney, Australia).

Cell culture

Mouse lymphoma cell line EL4 and its SIINFEKL peptide-
expressing derivative EG7-OVA were obtained from American
Type Culture Collection (Manassas, VA, USA). The cells were
maintained at 37°C in a humidified atmosphere of 5% CO2. The
cells were cultured in complete T-cell media (TCM) consisting
of Roswell Park Memorial Institute Medium-1640
supplemented with 10% fetal bovine serum, 1 mM sodium
pyruvate, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid, 100 U mL�1 penicillin, 100 lg mL�1 streptomycin and
50 lM b2-mercaptoethanol (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA).

In vitro differentiation of primary murine T cells

Splenocytes were isolated from 8- to 14-week-old (RAG1)�/� 9

OT-I or Lifeact-GFP 9 OT-I mice. OT-I T cells are specific
for the OVA257–264 peptide (SIINFEKL) in an H2-Kb major
histocompatibility complex class I context. Isolated splenocytes
were incubated with SIINFEKL peptide (1 lg mL�1, Sigma, St
Louis, MO, USA) for 2 h at 37°C, in the complete TCM. After
2 h, cells were washed and incubated in TCM containing
10 ng mL�1 recombinant mouse interleukin-2 (R&D Systems,
Minneapolis, MN, USA). The medium was changed every
alternate day and fresh cytokines were added. Cells were
used between days 5 and 10 post-harvest or 2 days post-thaw
(frozen down on day 4 post-harvest) or as specified in figure
captions.

Plasmid constructs

mCherry was amplified using ada233 and ada234 primers
(ada233: tgtccacaACCATGGTGAGCAAGG, ada234: cgcgttaatta
aCTACTTGTACAGCTCGTCC) and cloned into the BstXI and
PacI sites of pLMP to replace GFP. For retroviral transduction,
mouse ACTR3-target shRNA (50-TGCTGTTGACAGTGAGCG
CGCAGATGTAGAAGAGAGCTAATAGTGAAGCCACAGATG
TATTAGCTCTCTTCTACATCTGCATGCCTACTGCCTCGGA
-30) and nonsilencing shRNA (control) encoding sequences81

were cloned into the pLMP-puro-mCherry vectors. These novel
constructs were used to produce ACTR3-silencing retrovirus and
control retrovirus upon introduction into packaging cells.81

Cell transfection and retroviral transduction of primary

CD8 effector T cells

Plat-E packaging cells were transfected with pLMP-puro-
mCherry constructs encoding control shRNA or shRNA
against ACTR3 following manufacturer’s instructions.82

Transfection was performed using either FuGENE 6 (Promega,

Madison, WY, USA) protocol or calcium phosphate method83

(or consecutively). The supernatants containing the viral
particles were harvested and filtered after 48 and 72 h post-
transfection. The viral supernatants were either immediately
used or cryogenically stored; 24 h post-priming with
SIINFEKL peptide, T cells were transduced with viral particles
as described previously.84 In brief, the retroviral supernatant
was co-incubated with 1.5 9 106 cells mL�1 in TCM without
antibiotics using nontissue culture plates coated with
RetroNectin (15–20 lg mL�1). Spinoculation was performed
two times in which the plates were centrifuged at 2000g at
30°C before incubating them in a cell culture incubator
overnight. Transduction efficiency was assessed by the
expression of mCherry using flow cytometry on day 5 post-
isolation.

Flow cytometry

Expression of activation-associated surface molecules on OT-I
CTLs was evaluated on day 3 or 4 post-transduction or the
day that adoptive transfer was performed, which was usually
day 6 post-isolation. Cells were stained with anti-CD8a (53–
6.7, BD Biosciences, San Jose, CA, USA), anti-CD44 (IM7, BD
Biosciences), anti-CD25 (PC61, BD Biosciences), anti-CD69
(H1.2F3, BD Biosciences), anti-CD62L (MEL-14, eBioscience,
Vienna, Austria) and anti-Va2 (B20.1, BD Biosciences).
Antibodies were used at 1 lg mL�1 in running buffer (5%
fetal bovine serum and 2 mM ethylenediaminetetraacetic acid,
0.01% sodium azide in 1 9 phosphate-buffered saline) and
the cells were stained for 20 min at 4°C prior to washing two
times with running buffer. Cell viability was evaluated using
0.5 lg mL�1 4,6-diamidino-2-phenylindole (Thermo Fisher
Scientific) or the LIVE/DEAD Fixable near-IR (Thermo Fisher
Scientific). Data were collected on an LSR Fortessa flow
cytometer (BD Biosciences) and analyzed using FlowJo
software (TreeStar Inc., Ashland, OR, USA). For fluorescence-
activated cell sorting of medium to high mCherry expressing
CTL population, cells were resuspended in FACS buffer (5%
fetal calf serum, 2 mM ethylenediaminetetraacetic acid in
1 9 phosphate-buffered saline) and incubated with 4,6-
diamidino-2-phenylindole. Cells were either used fresh or
cryopreserved according to established methods.85

Western blot analysis

Transduced OT-I CTLs were sorted either on day 5 or 10
post-harvest or immediately post-thaw (frozen down on day 4
post-harvest). Sorted mCherry-positive and mCherry-negative
populations of both Arp3-KD and control OT-I CTLs were
lysed in cold radioimmunoprecipitation assay lysis buffer
containing 1:100 dilution of protease inhibitor cocktail and
separated on a 4–12% Tris–glycine gel by equally loading 10–
19 lg protein lysate per well/experiment. After protein
transfer, each polyvinylidene difluoride membrane was probed
with primary rabbit antimouse ACTR3 antibody (Sigma) and
the secondary antibody goat antirabbit conjugated to Alexa
Fluor 594 (Thermo Fisher Scientific) for protein detection.
The primary and secondary antibodies were used at 1:5000
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and 1:10000 dilutions, respectively. The stained membranes
were imaged with a ChemiDoc MP Gel Imaging System (Bio-
Rad, Hercules, CA, USA) and quantitatively analyzed using
ImageJ (NIH) freeware.

Total F-actin flow cytometry-based measurement

Total F-actin content in transduced and non-transduced OT-I
CTLs was measured using flow cytometry. Transduced OT-I
CTLs, on day 2 post-sort (day 7 post-harvest), were washed
with Hank’s Balanced salt solution at 3 9 105 cells mL�1

concentration and stained with 20 lM phalloidin (conjugated
to Alexa Fluor 647 dye; Cell Signaling Technology, Danvers,
MA, USA) during 20 min fixation (500 lL of 4%
paraformaldehyde, and 0.5% saponin in 1 9 phosphate-
buffered saline) at 37°C.

Annexin V apoptosis detection assay

Early apoptotic states of transduced T cells were evaluated
using the Alexa Fluor 647 conjugated Annexin V (Thermo
Fisher Scientific). In brief, a total of 1 9 106 cells were
incubated in 100 lL of annexin-binding buffer (10 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid, 140 mM NaCl
and 2.5 mM CaCl2, pH 7.4) and stained with 2 lL of the dye.
The cells were diluted in 400 lL of annexin-binding buffer
and analyzed on BD LSR Fortessa after 15 min incubation at
room temperature. Cells negative for Annexin V Alexa Fluor
647 nm and 4,6-diamidino-2-phenylindole were considered
viable cells. Data were analyzed using FlowJo software.

CFSE- and CellTrace violet-based proliferation assays

Proliferation assays were conducted as described previously.86

In short, freshly isolated, unstimulated splenocytes or
transduced T cells (5 9 104 cells) were labeled with 5 lM of
carboxyfluorescein diacetate succinimidyl ester dye (CellTrace
CFSE, Thermo Fisher Scientific). In experiment one, cells
were stained on day 5 post-harvest and the dilutions of
fluorescently labeled live cells were measured by flow
cytometry over 3 days post-staining. In experiment two, cells
were stained 2 days post-thawing on day 8 post-harvest. In
experiment three, we repeated experiment one with 1 lM of
CellTrace violet cell proliferation dye (CellTrace CTV,
Thermo Fisher Scientific) on days 9–11 post-harvest. In
experiment four, freshly isolated, unstimulated splenocytes
were labeled with CFSE. Data were analyzed with the FlowJo
software.

Flow cytometry-based cytotoxic assay

To evaluate the cytotoxic ability of the transduced OT-I
CTLs, cells were initially FACS sorted either from a freshly
isolated transduced OT-I CTL population or a cryopreserved
transduced CTL population (48 h of culture in the cell
growth medium is required, day 5 or 6 post-harvest).
Transduced and sorted CTLs derived from either OT-I or

OT-I9GFP-Lifeact mice were cocultured with EG7-OVA or
EL4 target cells using fixed numbers of target cells and
different effector-to-target cell ratios wherein a total of
2 9 105 effector cells were used at a 1:1 ratio. Approximately
10 min before coculturing, transduced OT-I CTLs and target
cells (EG7 and EL4) were labeled with 10 lM CellTrace CFSE
and CellTrace violet, respectively. Cells were mixed in 300 lL
of TCM and centrifuged at 233g for 3 min prior to
incubating for 3 h in 5% CO2 atmosphere at 37°C. The
target cell viability was analyzed using propidium iodide
staining (15 nM final concentration) and the specific cytotoxic
index (% of specific killing) was calculated using the
following formula:

Specific cytotoxic index

¼ experimental death � spontaneous death

maximum death � spontaneous death

� �
� 100

(1)

where “experimental death” is the designated numbers of

CellTrace violet- and propidium iodide-positive

population at the end of the experiment, the

“spontaneous death” is the experimental death obtained

from the population of target cells incubated alone and

“maximum death” indicates the highest number of deaths

detected in control negative (non-transduced) OT-I CTL

and EG7 cell mixture, respectively. For consistency, a

non-transduced OT-I CTL population served as the

negative control and was subjected to all the experimental

conditions similar to control positive and Arp3-

knockdown OT-I CTL population.

In vivo T cell survival, proliferation and homing assays

T cell survival, proliferation and their ability to traffic into
different organs were evaluated using the transduced T cells
(7 days post-isolation) harvested from OT-I or Lifeact-
GFP9OT-I mice. A total of 20 9 106 of transduced T cells
resuspended in 200 lL of phosphate buffered saline were
adoptively transferred via tail vein injection into B6.SJL/Ptprca

(CD45.1) mice. The peripheral blood samples were collected
24 h later and stained with anti-CD19 (1D3), anti-CD45.1
(A20), anti-CD3 (145-2C11) and anti-Va2 (B20.1),
immediately after lysis of red blood cells in ACK lysing buffer
(Thermo Fisher Scientific). Subsequently, on day 6 post-
injection mice were euthanized, and blood together with
major organs were harvested as described previously.87 To
obtain single-cell suspensions, all the tissues were passed
through a metal cell strainer (80 lm; Sefar filtration & Metal
Mesh, Huntingwood, New South Wales, Australia). Cells were
stained with a similar antibody panel as on day 1 and data
were collected on an LSR Fortessa and analyzed using FlowJo
software. The ratio between injected transduced T cells and
harvested T cells was calculated and expressed as the selective
homing index (equation 288), and mCherry+ normalized to
blood (equation 3):
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Homing index HIð Þ¼ ½%mcherryþtissue�=½%mcherryþinput�
� �

(2)

mCherryþnormalized to blood =

½% mcherryþtissue�=½%mcherryþbloodðday6Þ�
� � (3)

Confocal imaging of T cell migration behavior in 3D

collagen

OT-I CTL migration experiments were performed using either
transduced OT-I or OT-I9 Lifeact-GFP T cells at days 5–7
post-isolation (3–5 days post-transduction) as previously
described.85,89 In brief, a total of 5 9 105 cells resuspended in
phenol red-free TCM were embedded into neutralized liquid-
phase rat-tail collagen type I (Corning, NY, USA). The
mixture was kept on ice while a volume of 70 lL of a total
100 lL solution was rapidly transferred to a glass chamber.
The chamber was made by holding a coverslip in place with
vacuum grease on top of a 14 mm glass microwell in a
35 mm petri dish (MatTek, Ashland, MA, USA). To allow the
gel to polymerize into a 3D matrix, the cell mixture was
incubated for 30 min at 37°C and 5% CO2, prior to adding
2 mL phenol red-free TCM at 37°C to the dish. Cells were
imaged 3–4 h post-incubation. Time-lapse images were
obtained from an approximate 65 lm volume (avoiding 5 lm
immediately above the bottom glass coverslip) using a Leica
SP5 confocal microscope equipped with a humidified (5%
CO2) incubator chamber (37°C) and a 209 water immersion
objective (1.37 NA, Leica Microsystems, Wetzlar, Germany).
The step size was 1.6–1.8 lm every 20–24 s for 20 min while
the Lifeact-GFP and mCherry were excited at 488 and 561 nm
wavelengths, respectively. The resulting images were analyzed
with Imaris software (Bitplane, Zurich, Switzerland) to obtain
individual cell track data and multiple motility parameters
including the confinement ratio (track displacement divided
by track length) and mean speed of individual cell.

Time versus MSD and straightness Z-score

To further investigate the exploratory behavior of CTLs, we
measured the MSD over time and straightness Z-score as
previously described.90 In brief, for each individual track, we
calculated displacements for defined time intervals and then
calculated the average of all available time intervals. By
averaging the MSD of all tracks, we obtained the MSD for the
entire population. Based on linear regression, we then
computed in 3D, the motility coefficient of analyzed cell
populations.

Confocal imaging of OT-I CTLs migration behavior in

zebrafish model

For in vivo study of OT-I CTL migration, a mixture of
transduced and control (non-transduced) OT-I CTLs obtained

from OT-I or OT- I 9 Lifeact-GFP mice were
xenotransplanted into zebrafish embryos. Microinjections were
performed using standard procedures.91 In brief, a total of
60 � 20 OT-I CTLs were microinjected into the subcutaneous
tissue over the myotome capsule immediately above the
venous plexus92 of the 20 h post-fertilization zebrafish
embryos. To collect the cell migration motility parameters,
imaging of their distances from the injection site was
performed at two stages. The first session was conducted
10 min post-injection to define the injection site in each
embryo and the second session was performed approximately
3 h post-injection during this time embryos were incubated at
37°C and in 5% CO2. Transduced CTLs and zebrafish were
alive for more than 24 h post-microinjection in a 37°C
incubator. To obtain individual cell mean speed, images were
visualized and automatically analyzed using Imaris (Bitplane)
with a filter being imposed on cell track analysis to remove
smaller than 5 lm track length (to exclude blebbing cells with
no movement). To calculate each cell’s nearest distance from
the injection site, custom code was written in MATLAB
(MathWorks, Natick, MA, USA) and the initial injection site
was manually assigned. This code is provided in the
supplementary data. In brief, the user was prompted to use a
slider in a threshold interface to select the cells in each
channel by finding the local maxima in the fluorescent
intensity. Next, the observer who performed the injection was
prompted to locate the injection site in the image. The
shortest distance between the cells final position and the
injection site was calculated using the following standard
equation:

Distance from injection siteðlmÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2

q
� Pixel size (4)

where xi and yi are the cell final distance coordinates and

x0 and y0 represent the coordinates for the injection site.

Two-dimensional confocal single-cell imaging of OT-I

CTLs morphological parameters

The morphological parameters of OT-I CTLs were examined
by evaluating the aspect ratio (maximum/minimum length of
the ellipse fitted into the binary mask of cell perimeter) of T
cells in confocal images. For this experiment, a mixture of
neutralized liquid-phase rat-tail collagen type I with phenol
red-free TCM at 1:5 ratios was used to coat the bottom of a
96-well plates and incubated for 30 min at 37°C and 5% CO2.
A total of 5000 cells was then seeded on top of the mixture
and the plates were subsequently centrifuged at 900g for 3 min
and incubated at 37°C and 5% CO2 for 1 h. Following the
incubation, plates were gently transferred into the confocal
microscope humidified chamber and imaged using a 109 dry
objective (0.4 NA). Alternatively, adhered cells at the bottom
of the wells were imaged (with similar results). Cell edge was
detected and converted to binary images using MATLAB
software. The function “regionprops” was used to measure the
length of the major and minor axes of the ellipse fitted into
the binary mask.
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Three-dimensional confocal single-cell imaging of

morphological parameters

Morphological blebbing parameters of T cells were evaluated
in vitro and in vivo by imaging individual cells embedded in
collagen type I or injecting them into zebrafish embryos,
respectively. Every single cell was observed with a 209 water
immersion objective (1.37 NA) on a Leica SP5 confocal
microscope at 37°C and 5% CO2 with the step size of
approximately 0.8 lm every 9–11 s for 3 min (Lifeact-GFP
excited at 488 nm and mCherry at 561 nm wavelengths).
Images were visualized and semiautomatically (user prompted
to make the adjustment) analyzed using custom code written
in MATLAB (MathWorks).

Quantification of delay between actin cortex and

cytoplasm in blebs

The bleb membrane appears devoid of an actin cytoskeleton
during expansion and is filled with actin during retraction.93

To measure the percentage or mean fluorescence intensity in a
bleb during its expansion and retraction, a custom-written
MATLAB algorithm was used and a polygon region of interest
was drawn around individual blebs. Time intervals were
calculated by dividing the frame time intervals by the number
of z-steps in each z-stack and every single plane was used as
one frame. Subsequently, the average fluorescence intensity
within the region of interest for each channel, Lifeact-GFP and
mCherry, was measured at each time point as representative of
actin cortex and cell cytoplasm, respectively. Values were
exported and the percent fluorescence intensity of each
channel at each time point was expressed as a normalized data
set between 0 and 1. The number of replicates used for each
analysis is specified in the figure captions.

Quantification of bleb dynamic patterns (position,

expansion, retraction and size)

A semiautomated custom-written MATLAB algorithm was
developed to facilitate measuring properties of blebs on T
cells. Initially, the maximum intensity projection function was
used to compress 3D scenes into 2D images in ImageJ (NIH)
software. Then in the MATLAB algorithm, the compressed
images were analyzed by prompting the user to adjust the
automatically selected region of interest around the whole cell
periphery and then manually select a bleb edge using
CROIEditor algorithm written by Jonas Reber (http://www.ma
thworks.com/ matlabcentral/fileexchange/31388-multi-roi-mask-
editorclass/content/CROIEditor/CROIEditor.m). To ensure an
accurate bleb region of interest selection, the user was aided
by observing the cell with Lifeact-GFP, mCherry and bright-
field channels simultaneously in ImageJ software while making
the decision in MATLAB interface. All the selected features
including blebs and whole-cell boundary were segmented into
binary masks and each mask’s morphological features were
extracted using the “regionprops” function in MATLAB.

Given that defining the protrusion/retraction region was a
difficult procedure, we used two users to select the region of
interest for reproducibility reasons. The feature for each cell
includes bleb number per frame, bleb size (percentage of the
whole cell area compared with each bleb area) and bleb
diameter [length of a major axis (lm) of an elliptical mask
created over the binary bleb mask] were measured. Bleb
retraction and expansion times were calculated by manually
tracking each bleb in consecutive frames and extracting the
time intervals between the beginning and the end of
expansion and retraction. Bleb positions were also displayed
by overimposing the bleb boundary masked on top of each
other using “HOT” colormap in MATLAB, where the first
and last frames are indicated by white and red, respectively
(“+” indicates each bleb center). The number of replicates is
reported in the figure captions.

Measurement of single-cell cortical tension

The single-cell cortical tension was measured by the
micropipette aspiration method as previously described.94

Observations were made with a 609 objective on an
Olympus IX70 microscope through a camera (GC1290,
Prosilica). In short, at day 2 post-FACS sorting, transduced
OT-I CTLs were injected into an open-sided chamber
wherein a single cell was held in place with a micropipette.
The micropipette aspiration pressure was controlled through
a homemade manometer as previously described.48,51 Cortical
actin layer tension pulls the cell into a spherical shape (with
a radius Rc). By fine-tuning the suction pressure (Dp) of the
micropipette, the cell is maintained in a spherical shape while
the aspirated region is a hemisphere such that the aspiration
length (Lp) approximates the micropipette inner radius (Rp).
Therefore, according to the law of Laplace,48 the cortical
tension (Tc, with units of force per length) can be calculated
with the following equation:

Tc ¼ RcRp

2ðRc � RpÞDp (5)

Micropipette adhesion frequency assay

The capability for a T cell to form a synapse with a target cell
(EG7) was measured with the micropipette adhesion
frequency assay at room temperature in TCM media as
previously described.46,53,95 In brief, an OT-I T cell and an
EG7 cell were gently aspirated by two opposing micropipettes,
where the EG7 target cell driven by a piezoelectric translator
connected to the micropipette was pushed to make a firm
touch with the T cell for 20 s and then retracted. Upon
retraction, adhesion, if present, was visualized by the T cell
membrane pinch-off. Adhesion frequency is defined as the
number of adhesion events divided by the total number of
touches (ten touches for each individual T cell–EG7 pair). For
each condition, adhesion frequencies ≥ 10 cell pairs in two
independent experiments, taking into account the cellular
variability, were measured.
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Statistical analysis

Data analysis was mainly performed in Prism software
(GraphPad Software Inc, La Jolla, CA). Further statistical
details including number of replicates for each experiment are
provided in the figure captions.
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