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Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and ar-

chitecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic under-

standing of many biological processes in both health and disease that cannot be obtained by using traditional technologies.

The development of computational methods plays important roles in extracting biological signals from raw data. Various

approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sen-

sitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell–cell communications as

quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple

tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize

the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different

technological platforms.

Multicellular organisms consist of tissues and organs, each special-
izing in a subset of biological processes and performed by the coor-
dinated activities ofmany cells. Although all normal cells share the
same genome, their gene expression patterns andmorphology can
be drastically different. This variation is caused not only by inter-
nal gene regulatory circuitry differences but also by signaling from
the external tissue environment. Whereas decades of genome-
wide studies have accumulated large amounts of information
about cell type–specific gene regulatory circuitries, our under-
standing of the external cell–tissue environment interactions re-
mains limited.

Recent years have witnessed an explosion of technological
advances that collectively enable system-level characterization of
cellular heterogeneity and spatial organization of tissues/organs.
Perhaps most notably is the rapid development of single-cell
RNA-seq technology (scRNA-seq) applications that made it possi-
ble to profile and compare the gene expression patterns of a large
number of individual cells within a tissue/organ (Svensson et al.
2018b). Together with the development of a rich set of computa-
tional methods for data analysis (for review, see Yuan 2019; Hie
et al. 2020), the scRNA-seq field has fulfilled a key role in the dis-
covery of novel cell types and laid the foundation for the creation
of comprehensive cell atlases in different species (Han et al. 2018,
2020; Sebé-Pedrós et al. 2018; Spanjaard et al. 2018; Tabula Muris
Consortium et al. 2018; Cao et al. 2019; Packer et al. 2019; Pijuan-
Sala et al. 2019). However, a key step in the experimental process is
the creation of a single-cell suspension through mechanical and
enzymatic dissociation steps, which inherently destroys the origi-
nal tissue architecture.

As such, reconstructing the structure of a tissue from its cellu-
lar components alone is extremely difficult, if not impossible. Just

like putting together a complex jigsawpuzzle from individual piec-
es, the precise position and organization of the cells matter. The
tissue environment plays a critical role during development in
which, for example, it defines asymmetric cell fate decisions and
instructs cell movement. Positional information continues to be
crucial at the adult stage to exert tissue-specific functions, tomain-
tain tissue homeostasis, and to respond to external cues or pertur-
bations. Notably, in diseases such as cancer, the normal tissue
environment can be reprogrammed and manipulated to promote
malignant cell expansion, which is normally suppressed (White-
side 2008), whereas deep understanding of the tumor immune
environment is essential for developing effective immunothera-
peutic approaches (Binnewies et al. 2018).

During the past few years, various technologies have been de-
veloped for transcriptomic profiling while preserving spatial infor-
mation. Collectively, these technologies have been named as the
method of the year of 2020 by Nature Methods (Marx 2021) to rec-
ognize their importance and are expected to rapidly transform bi-
ological research in the coming years. Currently, there exist three
major approaches that are engaged to spatially explore large pieces
of tissue and aim to perform this at single-cell resolution and on a
genome-wide scale. First, sequential fluorescent in situ hybridiza-
tion (FISH)–basedmethods use a targeted approach, which is based
on predesigned probes. By introducing clever barcoding strategies
combined with sequential hybridization and imaging, they can
identify the exact position of tens to thousands of individual tran-
scripts within a fixed tissue specimen (Lubeck et al. 2014; Chen
et al. 2015; Shah et al. 2016; Codeluppi et al. 2018; Moffitt et al.
2018; Eng et al. 2019; Kishi et al. 2019; Goh et al. 2020). Second,
spatial labeling technologies use ingenious ways to link all tran-
scripts within a spatial unit with known coordinates. This in situ
capturing step is subsequently followed by an unbiased standard
sequencing approach (Ståhl et al. 2016; Rodriques et al. 2019;
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Vickovic et al. 2019; Liu et al. 2020; Merritt et al. 2020; Chen et al.
2021; Cho et al. 2021; Stickels et al. 2021). Third, select genes can
be targeted for in situ sequencing (ISS), with the synthesized cDNA
products labeled by fluorescent nucleotides and detected by imag-
ing (Lee et al. 2014; Wang et al. 2018; Qian et al. 2020; Hu et al.
2020b; Alon et al. 2021; Fu et al. 2021). For more detailed informa-
tion about the different spatial units and the capturing and linking
strategies, the reader is referred to spatial technology reviews (Asp
et al. 2020; Liao et al. 2021). Here we use four data sets to illustrate
the outcome or methodology of different spatial transcriptomic
analysis steps: (1) a genome-wide spatial transcriptomics data set
generated from multiple slices of a breast tumor biospecimen
(Andersson et al. 2020b), (2) a subcellular spatial data set from a
whole-mouse coronal brain slice with approximately 500 genes
across about 78,000 generated by VIZGENwithMERFISH technol-
ogy (https://info.vizgen.com/mouse-brain-data), (3) a genome-
wide spatial data set from the human heart created by the Visium
platform from 10x Genomics (https://support.10xgenomics.com/
spatial-gene-expression/datasets/1.1.0/V1_Human_ Heart), and
(4) another subcellular spatial data set covering 10,000 genes
from hundreds of cells within the mouse somatosensory cortex
and generated by the seqFISH+ technology (Fig. 1; Eng et al. 2019).

Obtaining a gene expression matrix and corresponding spa-
tial coordinates from a raw ST data set is generally not a trivial pro-
cess and consists of a number of preprocessing steps. These steps
are typically technology or platform dependent, but there are a
few recurring preprocessing steps that are inherent to some or all
technologies, such as image registration, stitching, and cell seg-
mentation for data based on imaging (Fig. 2).

For imaging-based ST data, such as the FISH and ISS technol-
ogies, the most frequent image processing steps are image correc-
tion, stitching, registration, segmentation, followed by locating
and decoding individual spots that usually correspond to a single
transcript. Initial corrections to the obtained images are almost al-
ways needed to adjust for technological artifacts and are often de-
pendent on the experimental assay. The main goal here is to
increase the signal-to-noise ratio and create normalized intensities
for further downstream steps. Multiple overlapping fields of view,
or tiles, are neededwhen the tissue to be analyzed is too big in size,
and they need to be stitched back together (Fig. 2A). Similarly, im-
ages that consist of multiple z-stacks can be misaligned because of
technical or experimental procedures. For example, this occurs
when multiple hybridization rounds are sequentially imaged or
when creating a 3D data set by using adjacent 2D slices. The pro-
cess to correct for this misalignment is often referred to as image
registration and can be performed using a variety of different trans-
formation algorithms and strategies (Fig. 2B; Borovec et al. 2020).
As a demonstrating example, registration transformation is ap-
plied to a ST breast cancer data set (Andersson et al. 2020b), in
which six sectionswere taken seriallywith a distance of 48microns
from each other. Applying registration transformation on all sec-

tions results in a clear visual improvement of the vertical align-
ment of the spatial expression data (Fig. 2B).

Both FISH- and ISS-based techniques provide single-cell or
even subcellular resolution; however, this depends on proper iden-
tification of cell morphology. Tracing the cell boundaries—and
other cellular structures such as the nucleus—is often referred to
as cell segmentation (Fig. 2C). Although cell segmentationmayap-
pear rather simple to human eyes, it has been proven hard to auto-
mate. Segmentation difficulties are further aggravated by factors
such as cell density (e.g., solid tumors) or complex cell shapes
(e.g., neurons). A large number of methods have already been de-
veloped with gradual improvements in the accuracy and quality
(for reviews, seeDimopoulos et al. 2014; Vicar et al. 2019).More re-
cently, with the surge in deep learning frameworks and applica-
tions, there have been some considerable improvements in the
creation of generalizable cell segmentation and image registration
tools (Schmidt et al. 2018; Berg et al. 2019; Falk et al. 2019; Perkel
2019; Greenwald et al. 2021; Stringer et al. 2021). Finally, each
spotneeds tobe identified anduniquely assigned toa gene. Thisde-
coding strategy is typically intertwined with the technological
setup and design, but there are efforts to make this more generaliz-
able and available to the broad community (Fig. 2C; Perkel 2019).

On the other hand, there are data that do not necessarily re-
quire imaging but rather operate through capturing transcripts
within a defined spatial unit and linking themwith a known coor-
dinate systembefore the sequencing step. As such, these approach-
es are typically less—or not—dependent on the raw image
processing steps described above. However additional steps are
needed after sequencing to map the transcript back to their spatial
coordinates.When accompanying tissue images are available, they
may be overlaid with the spatial coordinate system. The readers are
referred to the original protocols for more information about the
data preprocessing procedures.

Regardless of technological differences, a common goal in ST
analysis is to connect and integrate information from both gene
expression and cellular or transcript locations. This is crucial for
extracting useful biological information, allowing linking with
cell morphology and generating new hypotheses (Fig. 3). In the
following sections wewill review the state-of-the-art computation-
al methods and tools for these analyses. A curated list with addi-
tional details for all discussed methods is also provided at GitHub
(https://github.com/drieslab/awesome-spatial-data-analysis).

Identification of cell types from ST data

Cell type identification and localization is probably themost basic
task for ST data analysis. If the data has single-cell resolution, such
as in multiplexed FISH approaches (Lubeck et al. 2014; Chen et al.
2015; Shah et al. 2016; Codeluppi et al. 2018; Moffitt et al. 2018;
Eng et al. 2019; Kishi et al. 2019; Goh et al. 2020), unsupervised
clustering combined with manual or automatic annotation is a
common approach to identify cell types in an unbiased manner
(Fig. 4A). Because the spatial information is not needed for cell
type identification, the task is highly similar to scRNA-seq analysis,
for which numerous methods have been developed (for a bench-
mark study, see Abdelaal et al. 2019). For example, community-
based methods such as Louvain (Blondel et al. 2008) and Leiden
clustering (Traag et al. 2019) are popular choices for cell type iden-
tification, in which the clustering results are used as initial guide
followed by often tedious manual biological annotations or
through automated workflows as recently discussed by Pasquini
et al. (2021). To show this approach, we used theMERFISH coronalFigure 1. Data sets used in this Perspective.
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slice data set and applied Leiden clustering, resulting in a total of
19 distinct clusters. These clusters are then annotated andmapped
back to the spatial coordinates (Fig. 4B).

Although it is possible to use a sequential FISH approach to
generate transcriptome-scale profiles (Eng et al. 2019; Xia et al.
2019), owing to the additional technical challenge, the common
practice is to target a limited number of genes (typically only a
few hundreds), which are often selected based on prior biological
knowledge. As a consequence, the data are insufficient to discover
unknown cell types in an unbiased manner but allow the biolo-
gists to annotate cell types whose gene signature is already known,
often through external scRNA-seq analysis. Although the simplest
approach is to identify the cell type whose gene signature has the
highest correlation, a drawback is that it does not distinguish cell
type marker genes from the transcriptome-wide background.
Numerous computational approaches have been developed to op-
timize accuracy. For example, one approach is to build a support
vector machine classifier based on the scRNA-seq data but only
use information from the subset of genes that is also profiled in
seqFISH (Zhu et al. 2018). A likelihood ratio test can also be used
(Vickovic et al. 2019). Importantly, cross-platform normalization
is needed to calibrate signals detected from different technologies.
More generally, platform-specific technical variations can be esti-
mated and reduced (Butler et al. 2018; Haghverdi et al. 2018;
Barkas et al. 2019; Hie et al. 2019; Korsunsky et al. 2019; Stuart
et al. 2019; Welch et al. 2019). Furthermore, Bayesian models
have been developed to incorporate the impact of cell segmenta-
tion uncertainty on cell type annotations (Qian et al. 2020).

Apart from cell type annotation, meth-
ods have also been developed to impute
transcriptome-wide gene expression lev-
els by integration with scRNA-seq data
(Lopez et al. 2019; Lohoff et al. 2020).

Commercially available, array-
based ST technologies (such as 10x Ge-
nomics Visium and NanoString GeoMx)
typically do not have single-cell resolu-
tion. Because the variation of gene ex-
pression profiles may be associated with
changes of cell type composition rather
than new cell types, it is not appropriate
to apply a clustering algorithmdirectly to
such data and interpret the resulting
clusters as cell types. Furthermore, it is
possible to estimate cell type composi-
tion only if the underlying gene expres-
sion signatures are known. There are
two general approaches for estimating
cell type composition (Fig. 4C). The first
approach is to evaluate the enrichment
of cell type–specific markers among the
expressed genes at each spot (Moncada
et al. 2020; Dries et al. 2021). This ap-
proach is fast and can be performed one
cell type at a time. However, the results
are qualitative, indicating the presence
or absence of a cell type. The second
approach, deconvolution, aims to quan-
titatively estimate the proportion of
different cell types at each location.
Many deconvolution methods have
been developed and benchmarked for

RNA-seq data analysis (Avila Cobos et al. 2020). In principle, these
tools can also be applied to ST analysis. On the other hand, ST data
have certain distinct properties; for example, the number of cells
associated with each location is often small. Therefore, it is often
more accurate to use methods that are tailored for ST analysis
(Andersson et al. 2020a; Biancalani et al. 2020; Kleshchevnikov
et al. 2020; Cable et al. 2021; Dong and Yuan 2021; Elosua-Bayes
et al. 2021; Lopez et al. 2021; Song and Su 2021). Among these
methods, RCTD uses a linear regression model for gene counts,
which further incorporates a random-effect term for platform-spe-
cific variations (Cable et al. 2021). The gene expression levels are
modeled by a Poisson distribution. A similar approach is used in
stereoscope (Andersson et al. 2020a). Cell2location uses a similar
approach but models gene expression using the negative binomial
distribution (Kleshchevnikov et al. 2020). It can also model plat-
form- and location-specific effects. SpatialDWLS uses a two-step
procedure to reduce noise (Dong and Yuan 2021). The first step
identifies cell types that are likely to be present, by using an en-
richment analysis as described above, and then the second step
quantifies the relative proportion of each cell type by using a
dampened weighted least-square procedure previously developed
for RNA-seq data deconvolution (Tsoucas et al. 2019). SPOTlight
uses a seeded nonnegative matrix factorization (NMF) regression,
initialized using cell type marker genes and nonnegative least
squares (NNLS) for subsequent deconvolution (Elosua-Bayes
et al. 2021). DSTG uses a graph-based convolutional network ap-
proach (Song and Su 2021). DestVI uses a variational inference ap-
proach for deconvolution (Lopez et al. 2021). As an illustrating

BA C

Figure 2. Preprocessing of raw spatial transcriptomic data. (A) For spatial transcriptomics data paired
with images, processing begins with correction and stitching of multiple captures or fields of views
(FOVs) to form a clear composite image. (B) Images from multiple stacked sections of the same tissue
can be registered and the resulting spatial transformations mapped back to the transcriptomic data in
order to create an aligned 3D gene expression data set. This is illustrated with the breast cancer spatial
transcriptomics data set from Andersson et al. (2020b). (C) Several methods exist to provide expression
data with spatial context. For technologies such as FISH and ISS that do not have clearly defined read
spots or boundaries, cell segmentation (upper panel) is required in order to assign reads to individual cells.
In situ capture or array-basedmethods, on the other hand (lower panel), assign reads to read spots based
on a spatial barcode unique to each spatial unit (e.g., spot).
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example, we use the Visium heart data set and matching scRNA-
seq data (Litviňuková et al. 2020) to perform both cell
type enrichment (Fig. 4D) and spatial deconvolution (Fig. 4E). Vi-
sualizing cell type enrichment is performed for each set of signa-
ture genes, whereas deconvolution results in a quantitative
assessment of cell type composition for each spot.

A complementary approach to study cell type localization is to
use scRNA-seq data as the starting point and then reconstruct spa-
tial information based on similarities with spatial expression pro-
files. Before the explosion of ST technologies, it was possible to
obtain spatial information only for a handful of landmark genes
using traditional methods. Using such limited information, two
groups were able to reconstruct transcriptome-wide spatial patterns
using clever computational modeling (Achim et al. 2015; Satija
et al. 2015). Around the same time, tomo-seq and Geo-seq technol-
ogies were developed to reconstruct 3D patterns from gene expres-
sion profiles obtained from 2D slices (Junker et al. 2014; Peng et al.
2016). A key missing link is that the spatial information is not
directly measured from data; therefore, the patterns inferred from
these analyses remain speculative. With the rapid development
of ST technologies in the past few years, it is now possible to mea-
sure spatial information directly and further integrate with scRNA-
seq data for additional refinement. Therefore, newer approaches in-
tegrate scRNA-seq and ST data in a more balanced manner. For ex-
ample, a platform-agnostic, mutual nearest neighbor (MNN)
approach has been used to align these data types, which results
in cell locations mapping (Haghverdi et al. 2018; Hie et al. 2019;
Stuart et al. 2019). DEEPsc uses an artificial neural network to pre-
dict spatial locations (Maseda et al. 2021). GLUER combines joint
NMF, MNN algorithm, and deep neural network to align data
(Peng et al. 2021). Tangram aligns scRNA-seq and ST data sets while
optimizing the spatial correlation between each gene in the scRNA-
seq data and in the spatial data (Biancalani et al. 2020). A similar
idea is also implemented in NovaSparc (Nitzan et al. 2019) and
D-CE (Zhao et al. 2021b). Of note, the alignment can be either
probabilistic or deterministic. With the additional assumption

that the total number of cells is known
(which can be extracted from the H&E
staining information), the deterministic
mode of Tangram alignment also serves
as a deconvolution method.

Characterizing spatial

patterns of transcriptomic

profiles

The key contribution of ST analysis is to
characterize not just the cell types but
also how they are spatially organized.
This is fundamentally important for
studying the impact of tissue architecture
and cell–cell interactions (Fig. 5A,C,E).
To study the spatial patterns associated
with gene expression and cell states, pair-
wise enrichment analysis can be used to
identify cell type pairs that are likely to
be next to each other (Schapiro et al.
2017; Dries et al. 2021). Cell neighbor-
hood motif analysis identifies recurrent
patterns of multiple cell type neighbor-
hoods (Goltsev et al. 2018). An alterna-

tive approach to identify enriched patterns is to use topic models
(Chen et al. 2020). Furthermore, the continuity of cell states can
be incorporated into a hiddenMarkov random field (HMRF)model
to identify coherent spatial domains (Zhu et al. 2018). This ap-
proach has been extended in more recent studies (Chidester
et al. 2021; Zhao et al. 2021a). BayesSpace (Zhao et al. 2021a)
uses a Bayesian formulation of HMRF, and the model parameters
are estimated by aMarkov chainMonte Carlo (MCMC) algorithm,
whereas SPICEMIX (Chidester et al. 2021) combines HMRF with
NMF. staNMF combines NMF with a stability criterion study to
identify spatial patterns (Wu et al. 2016). To illustrate how spatial
network patterns and cellular neighborhoods are studied, we used
the MERFISH coronal slice data and created a cell–cell proximity
network based on the physical coordinates of each cell that are
connected through Delaunay triangulation. The cell–cell proxim-
ity network along with the heatmap shows the closeness and con-
nectivity between different cell types and informs users about the
spatial topology of the studied tissue (Fig. 5B). A detailed explora-
tion of individual niches is shown in Figure 5D. Here, specific cells
are identified as “source,” and then their connectivity with other
neighboring cell types is depicted.

A number of groupsmodel spatial patterns of gene expression
as derived frompredefined processes. For example, spatialDE uses a
random effect model that contains two terms, corresponding to
the spatial and nonspatial component, respectively (Svensson
et al. 2018a). The spatial component can be specified as various
forms such as linear, periodic, or a Gaussian process. The degree
of spatial variability is then quantified by the ratio of the variance
explained by these two terms. SOMDE uses a similar approach but
increases computational efficiency by first compressing spatial in-
formation by using a self-organizing map-based transformation
(Hao et al. 2021b). Trendsceek models spatial patterns as a marked
point process (Edsgärd et al. 2018). SPARK models spatial count
data through generalized linear spatial models with an additional
step to calibrate P-value calculation (Sun et al. 2020). Some meth-
ods are mainly concerned about local continuity. As an example,

BA C
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Figure 3. Overview of spatial transcriptomics analysis methods. A variety of analyses can be performed
on spatial transcriptomics data. (A) Analysis can be performed on the image itself, ranging from early
tasks such as cell segmentation to support of subcellular analysis through cell shape and size classification.
(B) Cell types can be identified through clustering and annotation. Additional integration with external
scRNA-seq data or deconvolution of spatial units that cover multiple cells (C) can be performed to fine-
tune cell type mapping. (D) The spatial distribution of cell types and the underlying cell-to-cell commu-
nication (E) can be computed. (F) Spatial expression patterns are identified and visualized based on in-
formation of gene expression and spatial coordinates. (G) Data at subcellular resolution can be used to
identify spatial and temporal dynamics of transcripts within a single cell.
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binSpect detects spatially coherent genes as those that tend to be
coexpressed in neighboring cells, using a spatial network formula-
tion (Dries et al. 2021). Yet another approach is to quantify spatial
structure in terms of diffusive steps it takes to reach a homoge-
neous configuration (Anderson and Lundeberg 2021). The identi-
fication of spatially coherent genes can in turn inform cell-state
spatial pattern detection (Zhu et al. 2018). Alternatively, the spatial
gene and domain detection steps are inferred simultaneously (Hu
et al. 2020a). As a concrete example, binSpect was used to identify
genes with a spatial coherent pattern in the MERFISH coronal
brain slice data, and top-ranked genes are shown in Figure 5F.

Subcellular structure analysis

With the advancement of newer technologies, it is nowpossible to
study subcellular transcript organizations. In addition to FISH-

based methods (Lubeck et al. 2014; Chen et al. 2015; Shah et al.
2016; Codeluppi et al. 2018; Moffitt et al. 2018; Eng et al. 2019;
Kishi et al. 2019; Goh et al. 2020), which are well known to have
single-molecule resolution, ISS approaches (Lee et al. 2014; Wang
et al. 2018; Qian et al. 2020; Hu et al. 2020b; Alon et al. 2021; Fu
et al. 2021) also offer very high resolution. In addition, high-densi-
ty arrayor bead-based technologies (Vickovic et al. 2019; Alon et al.
2021; Chen et al. 2021; Stickels et al. 2021) have also enabled sub-
cellular resolution. Here we use the seqFISH+ mouse somatosen-
sory cortex data set to illustrate some key concepts of subcellular
data analysis (Fig. 6). In a data set with subcellular resolution,
each point typically represents a single transcript (Fig. 6A). Analyz-
ing the subcellular gene expression patterns can be used as an alter-
native approach for spatial analysis but also canbe used to enhance
the accuracy of cell segmentation (Fig. 6B). Finally, subcellular lo-
calization of RNA transcripts can also be used to gain biological

E
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D

Figure 4. Strategies for cell type identification with spatial transcriptomic data. (A) Spatial transcriptomics data at single-cell resolution can be directly
used to identify cell types in an analogous manner to scRNA-seq. In addition, external scRNA-seq from matching tissue can also be integrated to increase
the number of available features and aid in the identification of detected cell types. (B) An example of cell type annotation is shown on theMERFISHmouse
coronal brain slice data set. Each single dot represents a single cell, and colors indicate different cell types identified through clustering. A zoomed-in subset
shows the spatial cell type composition at a higher resolution. (C) Cell types in non-single-cell spatial transcriptomic data are identified through deconvo-
lution approaches that make use of external information or through gene enrichment strategies using sets of known marker genes or scRNA-seq informa-
tion. (D) Enrichment scores for two cell types within the human heart 10x Genomics Visium data set are overlaid on top of the spots within a region of
interest. (E) Pie charts depict the proportion of identified cell types within each selected spot used in D.
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insights that arenotpossible throughcell-level analyses. Individual
spatial relationships between genes or between genes and subcellu-
lar structures are found through analysis of colocalization patterns
(Fig. 6C) and transcription dynamics within each cell (Fig. 6D).

A number of methods have been de-
veloped to use subcellular gene ex-
pression patterns to circumvent cell
segmentation,which can be challenging.
For example, SSAM assigns cell type la-
bels directly to pixels without cell seg-
mentation (Park et al. 2021). stLearn
uses a similar approach but further clus-
ters spatially proximal pixels that are as-
signed to the same cell type (Pham et al.
2020). Spage2vec also uses a similar ap-
proach but adapts a neural network for-
mulation (Partel and Wählby 2021).
Alternatively, supervised cell type map-
ping strategies based on known cell
type–specific signatures have been devel-
oped. For example, a naive Bayes model
is used to assign cell types for HDST
data (Vickovic et al. 2019). Subcellular
gene expression patterns can in turn be
used to improve cell segmentation. For
example, Baysor models the subcellular
gene expression patterns by using a Mar-
kov random fieldmodel and further inte-
grates cell shape labeling information
(such as DAPI) to improve cell segmenta-
tion accuracy (Petukhov et al. 2020).
Sparcle (Prabhakaran et al. 2021) uses a
Dirichlet process mixture model instead
as well as the transcripts’ distance be-
tween neighboring cells and adjacent
transcripts to enhance cell segmentation.
JTSA uses an EM algorithm to iteratively
improve pixel-level gene expression pro-
file classification and cell-boundary an-
notations (Littman et al. 2021).

Analysis of the subcellular patterns
of gene expression can also provide new
biological insights. For example, an in
situ RNA velocity approach has been
developed to use subcellular RNA locali-
zation information to infer the transcrip-
tion rates (Xia et al. 2019). Because newly
transcribed RNAs are cumulated in the
nucleus, whereas mature mRNA needs
to be transported to the cytoplasm for
translation (Fig. 6D), the relative compo-
sition of nuclear versus cytoplasmic tran-
scripts associated with each gene can be
used to estimate the transcriptional ac-
tivity. This is performed by using a simi-
lar mathematical formulation as in the
original RNA velocity paper (La Manno
et al. 2018).

In addition, colocalized mRNA spe-
cies in the cytoplasm can be identified
with high resolution by using direct
proximity labeling of RNA using the per-

oxidase enzyme APEX2, a method called APEX-seq (Fazal et al.
2019). Analysis of the resulting data identifies a remarkable corre-
spondence between colocalized RNA with known protein colocal-
ization patterns (Fazal et al. 2019), suggesting RNA colocalization
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Cell–Cell Proximity 
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Other
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Figure 5. Spatial pattern analyses. (A) Spatial distribution analysis of neighboring cell types. Network
represents the likelihood of two cell types being found in close physical proximity to each other. (B) A
subset of cells from the MERFISH mouse coronal brain slice data set shows the spatial network connec-
tivity and cellular proximities between different cell types. (C ) At the single-cell level, cellular niches
can be identified based on a target cell (yellow) and its direct neighboring cells (blue). The composition
and position of the neighboring cell types create a niche for the target cell (bottom). (D) Source and
neighboring cells are depicted within a small subset of the MERFISH mouse coronal brain slice data
set. (E) Patterns based on spatial gene expression information are based on single or multiple genes
and are continuous (top) or discrete (bottom). (F) Individual genes with unique spatial coherent expres-
sion patterns in the MERFISH mouse brain coronal data set are shown on the right.
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mayfacilitate localprotein translationandcomplex formation (Fig.
6C). Also, mRNAs enriched in nuclear locations tend to code for
proteins enriched in nuclear speckles and nucleoplasm. Alterna-
tively, subcellular RNA colocalization can also be detected by AT-
LAS-seq, which uses sucrose density gradient ultracentrifugation
followed by RNA sequencing (Adekunle
and Wang 2020). In this study, it was
also found that RNAs tended to colocalize
with other RNAs in similar protein com-
plexes, in cellular compartments, or
with similar biological functions.

Understanding how cells

communicate with the tissue

environment

An important goal of ST analysis is to
study how cells communicate with the
tissue environment (Fig. 7). Cellular
behavior can be significantly affected by
the tissue environment through direct
physical interactions, secretedmolecules,
or interactions with the extracellular
matrix (Fig. 7A). For example, the devel-
opment of tumor vasculature can signifi-
cantly promote tumor growth, whereas
enriched immune cells in tumor micro-
environments could significantly control
its proliferation. Cell–cell communica-
tions are often spatially coordinated and
can be highly cell type–specific (Armin-
gol et al. 2021). Thus, the variation of

cell type compositions could lead to sig-
nificant changes of gene expression
evenwithin the samecell type (Fig. 7B,C).

Giotto introducesatwo-waycompar-
ison method to identify interaction
changed genes by comparing the gene ex-
pression pattern between subsets of cells
within the same cell type but surrounded
by different neighboring cells (Dries et al.
2021). Of note, using the spatial informa-
tion can significantly reduce the number
of false-positive ligand–receptor activity
predictions compared with using gene
expression information alone. A similar
approach is used in CellPhoneDB v3.0
(Garcia-Alonso et al. 2021). In this
study, the ST data do not have single-cell
resolution. To overcome this challenge,
the investigators applied Cell2location
(Kleshchevnikov et al. 2020) to infer the
location of different cell types before
comparing gene expression patterns asso-
ciated with different cell neighborhoods.
Alternative approaches have been used to
quantify the effect of neighboring cell
types, including convolutional neural
networks (Li et al. 2020; Yuan and Bar-Jo-
seph 2020), optimal transport (Cang and
Nie 2020), and multioutput regression

(Li et al. 2021). Another approach is to explicitly decompose a
gene expression profile into spatial and nonspatial components
and then use the cell type composition in the neighborhood to
estimate the spatial components (Arnol et al. 2019). The analysis
of ligand–receptor interactions has also been extended to include

BA

C D

Figure 6. Schematic diagram for spatial transcriptomics analysis at subcellular resolution. (A) For spa-
tial data at subcellular resolution, each dot typically represents a single transcript or, alternatively, a spatial
unit that is well below the cell size. (B) The location of each transcript, along with its gene identity, can be
used as input to try and segment each cell. (C) Individual transcripts can be colocalized with other tran-
scripts (orange and blue) or with itself (green) or can be found at specific subcellular structures (pink at
membrane). (D) Transcription dynamics from individual or multiple genes can be inferred from the loca-
tion of transcripts. Here nascent transcripts are typically found in the nucleus (blue), whereas processed
transcripts are found in the cytoplasm (orange). The ratio between the two can provide an estimate for
the RNA velocity. Examples for each analysis are provided on the right of each panel using the seqFISH+
data set from the mouse somatosensory cortex.

B

A

C

Figure 7. Cellular communication inferred from ligand–receptor interactions. The known ligand–re-
ceptor interaction pairs are first explored using their gene expression profiles and then passed to a com-
putational tool to generate communication scores that explain connectivity between andwithin each cell
type as shown in A. A spatial graph can be constructed with these scores between different cell types as
shown in B and C.
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theeffectof cofactors in themultiunitproteincomplexes toenhance
prediction accuracy (Jin et al. 2021). Of note, algorithms have also
been developed to reconstruct spatial locations from cell–cell inter-
action patterns (Ren et al. 2020).

Integrative exploratory tools for spatial data analysis

and visualization

To effectively use and disseminate newmethods that are being de-
veloped to achieve a specific spatial data analysis task, it becomes
increasingly important to develop the necessary data structures
and tools to work with them at a larger scale. Biologists will benefit
from having integrative and interactive pipelines that allow them
to conduct various analysis steps, from importing raw data (Fig.
8A) to image analysis (Fig. 8B), followed by the production of final
analysis results and figures ready for publication (Fig. 8C), ideally
on their personal computer. Method developers can build on pre-
vious spatial structures or make their newmethods easily available
to a larger audience. Currently, there are a number of comprehen-
sive toolboxes available, as described below. Here we will not dis-
cuss the specific steps necessary to process raw data, such as

images or sequence reads, because they are typically specific for
each technology, but we limit the survey to tools that are designed
for downstream exploratory data analysis. Most of the code for
these tools is written in the popular programming languages R
(R Core Team 2020) or Python or with a combination of both by
making use of recently developed interfaces such as reticulate
(https://github.com/rstudio/reticulate) or basilisk (http://basilisk
.fr), which allow developers to fully benefit from the strengths of
both worlds.

Giotto (Dries et al. 2021) is an R package that implements this
latter strategy and has been shown to work on a large variety of ST
technologies. It can also be applied to antibody-based proteinmul-
tiplexed imaging technologies, although the latter is beyond the
scope of this review. At its core, Giotto consists of an object specif-
ically designed for spatial data. At minimum, this object stores
both the count matrix and the accompanying 2D or 3D coordi-
nates of the spatial units, either individual cells or spatial aggre-
gates as explained earlier. It provides routine analyses such as
filtering, clustering, and cell type annotation and presents spatial
relationships as a network graph or through a spatial grid. This net-
work forms the starting point for many new specific spatial analy-
ses and facilitates the integration of other established algorithms
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through the creation of simple wrappers. For visualization purpos-
es, raw images of the profiled tissue can be stored and used to over-
lay the obtained spatial results. In parallel, Giotto offers a browser-
based visualization tool, Giotto Viewer, that allows users to export
their obtained results and explore the spatial data set in an interac-
tive manner.

Seurat is better known as a popular R package for scRNA-seq
analysis, but it commenced to offer some advanced functionalities
through its spatial branch (Hao et al. 2021a). The functions are spe-
cific to spatial data visualization and the identification of spatial
expression patterns through the usage of established methods.
Furthermore, other tools such as STUtility (Bergenstråhle et al.
2020) and SPATA (Kueckelhaus et al. 2020a) have built on top of
the rich and performant data structure of Seurat to create more
comprehensive pipelines that are currently specific for the ST tech-
nology. STUtility (Bergenstråhle et al. 2020) was developed specif-
ically for the ST technology and offers a wide variety of imaging
and data analysis methods that are targeted for this approach.
Similarly, SPATA (Kueckelhaus et al. 2020) focuses on ST data
and was developed to facilitate integration with the popular R
packages Seurat and Monocle. Besides visualization and common
data analysis functions, SPATA also has a rich repertoire of interac-
tive methods to identify or delineate spatial trajectories.

Squidpy (Palla et al. 2021) is the spatial counterpart of
SCANPY (Wolf et al. 2018), the popular Python library for
scRNA-seq analysis, and was created by the same laboratory.
Similar to Giotto, it starts by representing the spatial information
through a spatial network and offers a large variety of downstream
spatial analysis. In contrast to other toolboxes, it also provides
analysis at the image level, which ranges from typical tasks such
as segmentation or registration to more advanced ways of extract-
ing and using morphology information in downstream analysis.
Stlearn (Pham et al. 2020) is another Python library for ST data
analysis with a specific focus on integrating both gene expression
and image information through a joint representation.

Most of these packages or toolboxes are developed in inde-
pendent laboratories, which results in multiple different data
structures that do not necessarily share the same data format. To
overcome some of these challenges, the R/Bioconductor commu-
nity is engaged in the careful design of generally applicable data
structures and has recently published the first version of the
spatialExperiment class (Righelli et al. 2021). This is a new S4 class
that extends the popular singleCellExperiment class (Amezquita
et al. 2020) and is designed to operate with several types of ST
data sets, including at both multi- and subcellular resolution.
Several spatial R packages already exist that use this data structure,
such as SpatialLIBD (Pardo et al. 2021) and Spaniel (Queen et al.
2019), which both excel in the creation of interactive R/Shiny
apps to visualize ST data sets. All together, these efforts could con-
tribute to the promotion of interoperability between these differ-
ent toolboxes in the future.

Discussion

The rapid development of ST technologies has provided new op-
portunities and challenges for data analysis. As summarized above,
there has been a lot of progress in this domain in recent years.
Novel methods have been developed for attacking various ST-spe-
cific challenges. Integrative software packages have enabled biolo-
gists to easily analyze their own data from beginning to the end
and to interactively explore the data via interactive visualization.

Together, these tools play important roles for making the ST tech-
nologies broadly applicable.

Since the pioneering work by Ramón yCajal, it has been stan-
dard practice to classify different cell types based on morphologi-
cal changes. In recent years, there has been a paradigm shift by
classifying cell types based on transcriptomic profiles, sometimes
complemented by additional molecular modalities. Owing to the
rapid development of ST technologies, it is now possible to per-
form both transcriptomic profiling and morphology analyses for
the same cells, thereby providing a great opportunity to systemati-
cally investigate the relationship between these two fundamental-
ly different approaches. A few methods have recently been
developed that focus on integration of both modalities (He et al.
2020; Tan et al. 2020; Gerbin et al. 2021). Although not directly re-
lated to spatial transcriptomics, an interesting finding from living
imaging analysis indicates that changes in morphology might
even predict cell fate or state before this can be observed in the
transcriptomic output (Buggenthin et al. 2017). Future work, in-
cluding the reconstruction of complete 3D tissues using CODA
(Kiemen et al. 2020), in this direction will help in bridging the
gap between communities.

An exciting new direction that is not covered here is spatial
multiomics. New technology development has made it possible
to profile multiple modality information in the same cells while
preserving information, such as protein and RNA (Saka et al.
2019; Liu et al. 2020; Merritt et al. 2020; Takei et al. 2021), intron
and mature mRNA (Shah et al. 2018; Mateo et al. 2019; Su et al.
2020), DNA, and RNA (Mondal et al. 2018; Mateo et al. 2019; Su
et al. 2020; Takei et al. 2021). These technologies havemade it pos-
sible to analyze the correlationbetweendifferentmolecularmodal-
ities and offer mechanistic insights. Analyzing such data requires
development of novel computational methods and toolboxes. In
fact, a number of multiomic analysis methods have already been
developed for sequencing-based assays (Argelaguet et al. 2018; But-
ler et al. 2018; Haghverdi et al. 2018; Barkas et al. 2019; Hie et al.
2019; Korsunsky et al. 2019; Stuart et al. 2019; Welch et al. 2019;
Biancalani et al. 2020; Peng et al. 2021). The readers are referred
to published reviews to learnmore about this topic (Stuart and Sat-
ija2019;Maet al. 2020; Forcatoet al. 2021).However, furtherdevel-
opment is needed to incorporate the spatial context.

In sum, spatial technologies have brought many new chal-
lenges and opportunities. We believe that computational
method development will continue to play a critical role in trans-
lating the promise of spatial technologies to reality by providing
important tools for the analysis, visualization, and interpretation
of new data.
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