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This paper brings forth a learning-based visual saliency model method for detecting diagnostic diabetic macular edema (DME)
regions of interest (RoIs) in retinal image. The method introduces the cognitive process of visual selection of relevant regions that
arises during an ophthalmologist’s image examination. To record the process, we collected eye-tracking data of 10 ophthalmologists
on 100 images and used this database as training and testing examples. Based on analysis, two properties (Feature Property and
Position Property) can be derived and combined by a simple intersection operation to obtain a saliency map.The Feature Property
is implemented by support vector machine (SVM) technique using the diagnosis as supervisor; Position Property is implemented
by statistical analysis of training samples. This technique is able to learn the preferences of ophthalmologist visual behavior while
simultaneously considering feature uniqueness. The method was evaluated using three popular saliency model evaluation scores
(AUC, EMD, and SS) and three quality measurements (classical sensitivity, specificity, and Youden’s 𝐽 statistic). The proposed
method outperforms 8 state-of-the-art saliency models and 3 salient region detection approaches devised for natural images.
Furthermore, our model successfully detects the DME RoIs in retinal image without sophisticated image processing such as region
segmentation.

1. Introduction

Diabetes is a chronic disease that can cause many serious
complications including diabetic retinopathy (DR, damage
to the retina). DR is an important cause of blindness. One
percent of global blindness can be attributed to DR [1].
Diabeticmacular edema (DME) is themost common cause of
visual loss in DR, which is due to leaking of fluid from blood
vessels within the macula. Fortunately, the Early Treatment
Diabetic Retinopathy Study (ETDRS) has been able to reduce
moderate vision loss in patients with clinically significant
macular edema (CSME) by approximately 50% [2]. Hence to
prevent vision loss, early diagnosis of DME is very important.
Because there are no visual symptoms in the early stages of
DME, the retinal fundus images are recommended in the
diagnosis and treatment.The fundus image analysis helps the
ophthalmologists in understanding the onset and assessment
of the diseases. A reliable determination of clinically mean-
ingful regions of interest (RoIs) in retinal image is at the very

base of strategies for DME diagnosis. The advent of new
inexpensive fundus cameras and rapid growth in information
technology has made the automated system for DME RoIs
selection possible. Such a tool is going to be notably useful
in health camps particularly, especially in rural areas in
developing countries wherever an outsized population laid
low with these diseases goes unknown.

Exudates are the single most important retinal lesion de-
tectable in retinal images. However, hard and yellow exudates
within 500 𝜇m of the center of the fovea with adjacent retinal
thickening indicate the presence of clinically significant mac-
ular edema (CSME), as defined by ETDRS [2]. But automatic
DME RoIs finding in retinal images is a very challenging
task. Because other retinal features such as blood vessels and
outside diameter (OD) of bulbus oculi also have the similar
brightness patterns and gray level variations, the naive use of
current low-level-RoI-extraction methods for retinal images
would probably fail.
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Nevertheless, the ophthalmologists are always capable of
figuring out a very precise diagnosis. When they search for
CSME in retinal image, attention helps them rapidly disre-
gard the “usual” and find the “unusual” visual elements. Some
computational models of attention have been proposed to
predict where people look in natural scenes [3–5].Though the
existing saliencymodels dowell qualitatively, themodels have
limited use inDMERoIs detection because they frequently do
notmatch actual ophthalmologists’ precise diagnosis (ground
truth, GT).

In this paper, we propose three contributions to DME de-
tecting. First, we introduce the computational visual saliency
models in retinal images in the context of DME detection.
Through this model, we emulate the ophthalmologists’ first
examination step where she/he defines and separates high
informative DME diagnostic regions. Second, by analyzing
the precise diagnosis, we choose only a few concepts that
encompass comprehensive ophthalmologists’ visual behav-
iors, clarify the interactions among them, and develop a
method for implementing the visual saliency. The method
combines the advantages of a low-level image characteri-
zation with a high discriminant power in terms of DME
tissular and spatial properties, information learned from the
ophthalmologists. Third, we show that our model which is
able to detect the DME RoIs in retinal images outperforms
the mainstream salient region detection schemes.

This paper is organized as follows. Section 2 provides
a brief description and discussion of some previous works.
Section 3 is devoted to description of the implementation of
themodel. In Section 3.1, we present the images, eye-tracking
data, and ground truth data for saliency model research.
Section 3.2 describes the properties, derivations, and rela-
tionships of salience concepts. The detailed description of
our model is in Section 3.3. Section 4 evaluates our approach
using three popular saliency model evaluation scores (AUC,
EMD, and SS) and three quality measurements (classical
sensitivity, specificity, and Youden’s 𝐽 statistic) with 8 state-
of-the-art saliency models and 3 salient region detection
approaches. The conclusions and perspectives are discussed
in Section 5.

2. Related Work

The problem of automatically detecting DME RoIs in retinal
image has been approached using many techniques [6].
Phillips et al. [7] have proposed a method for the quantifica-
tion of diabetic maculopathy using fluorescein angiograms.
A combination of shade correction and thresholding tech-
niques was used for preprocessing. The exudates were then
detected by thresholding which was calculated based on the
distribution of gray levels in the image. Hunter et al. [8]
used feature extraction and classification techniques for the
automated diagnosis of referablemaculopathy.The technique
detects and filters the candidate points with strong local
contrast. Segmentation of candidate regions was carried out
next in order to find the location of lesions. The lesions
were distinguished from nonlesions by feature extraction
technique. Authors have used shape, color, and texture of

the candidate and the contrast between it and the surround-
ing retinal background. A multilayer perceptron (MLP) was
used as classifier which classifies the lesions as dark or bright.
A two-stage methodology was used for the detection and
classification of DME severity of fundus images [9]. The
first step was a supervised learning approach by which the
fundus images were classified as normal or abnormal. By
examining the symmetry ofmacular region using a rotational
asymmetry metric the abnormal fundus images were further
classified into moderate and severe DME. Osareh et al.
[10] used an automatic method for the classifications of
the regions into exudates and nonexudates patches using a
neural network. The fundus images were preprocessed using
color normalization and contrast enhancement techniques.
The images were segmented next into homogenous regions
using fuzzy C-means clustering. Based on the location of the
exudates at the macular region Lim et al. [11] have classified
the fundus images into normal, stage 1, and stage 2 of DME.
The exudates were extracted from the fundus images using a
marker controlled watershed transformation.

A DME pathologic diagnosis is the result of a complex
series of activities mastered by the ophthalmologists. Classi-
cal psychophysical theories suggest that complex visual tasks,
such as ophthalmologist examination, involve high degrees of
visual attention [12].

Today, many saliency models based on a variety of
techniques with compelling performance exist. One of the
most influential ones is a pure bottom-up attention model
proposed by Itti et al. [3], based on the feature integration
theory [13]. In this theory, an image is decomposed into
low-level attributes such as color, intensity, and orientation.
Based on the idea of decorrelation of neural responses, Diaz
et al. [14] proposed an effective model of saliency known
as Adaptive Whitening Saliency (AWS). Another class of
models is based on probabilistic formulation. Torralba [4]
proposed a Bayesian framework for visual search which
is also applicable for saliency detection. Similarly, Zhang
et al. [5] proposed SUN (Saliency Using Natural statistics)
model in which bottom-up saliency emerges naturally as
the self-information of visual features. Graph Based Visual
Saliency (GBVS) [15] is another method based on graphical
models. Machine learning approaches have also been used in
modeling visual attention by learning models from recorded
eye-fixations. For learning saliency, Kienzle et al. [16] and
Tilke et al. [17] used image patches and a vector of several
features at each pixel, respectively.

These computational models have been used to charac-
terize RoIs in natural images, but their use in medical images
has remained very limited. Jampani et al. [18] investigate
the relevance of computational saliency models in medical
images in the context of abnormality detection. Saliency
maps were computed using three popular models: ITTI
[3], GBVS [15], and SR [19]. Gutiérrez et al. [20] have
developed a visual model for finding regions of interest in
basal cell carcinoma images that has three main components:
segmentation, saliency detection, and competition. The key
insight from these studies is that saliency continues to play a
predominant role in examining medical images.
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3. Learning a Saliency Model for
DME RoIs Detection

3.1. Database of Eye-Tracking Data. For learning the prefer-
ences of ophthalmologist visual behavior and recording their
eye-tracking data, we established an eye-tracking database,
called EDMERI database (eye-tracking database for detecting
diabetic macular edema in retinal image). The EDMERI
allows quantitative analysis of fixation points and provides
ground truth data for saliency model research. Compared
with several eye-tracking datasets that are publicly available,
the main motivation of our new dataset is for detecting
diabetic retinopathy region in retinal images.

The purpose of the current analysis was to model the
cognitive process of visual selection of relevant regions that
arises during detecting diabetic macular edema in retinal
image. This reinforces our assumption that DME is a visible
CSME feature. Under this constraint, we collected 100 images
withDME (e.g., Figure 1(a)) fromDIARETDB0 [6], DIARET-
DBI1 [6], MESSIDOR [21], and STARE [22], which are four
standard diabetic retinopathy databases.These images stored
in JPEG format were resized to 1152× 1500 resolution. Andwe
recorded eye-tracking data from ten expert ophthalmologists,
with at least six years of experience, who were asked to view
these images to find diabetic retinopathy regions. We used
a Tobii TX300 Eye Tracker device to record eye movements
at a sample rate of unique combination of 300Hz. It has
very high precision and accuracy and robust eye tracking
and compensation for large head movements extends the
possibilities for unobtrusive research of oculomotor func-
tions and human behavior. A variety of researcher profiles,
including ophthalmologists, can use the system without
needing extensive training.

In the experiments, each image was presented for 10 s
and followed by a rapid and automatic calibration proce-
dure. To ensure high-quality tracking results, we checked
camera calibration every 10 images. During first 1 s viewing,
ophthalmologists maybe free viewed the histopathological
image, so we discarded the first 1 s viewing tracking results
of each ophthalmologist. In order to obtain a continuous
ground truth of an image from the eye-tracking data of a
user, we convolved a Gaussian filter across the user’s fixation
locations, similar to the “landscape map.” We overlapped the
eye-tracking data collected from all ophthalmologists (e.g.,
Figure 1(b)) and then generated ground truth of the average
locations (e.g., Figure 1(c)).

3.2. Relevant Properties and Bayesian Formulation. In this
subsection, we will discuss the relevant properties of the
visual saliency concepts in DME RoIs detection we have
considered and the relationship among them.We assume that
saliency values in a retinal image are relative to at least two
properties, as described below.

Feature Property (FP) (Saliency Is Relative to the Strength
of Features in the Pixel). In nature scene, features are
traditionally separated into two types, high- and low-level
features. High-level features include face, text, and events.
Low-level features include intensity, color, regional contrast,

and orientations. Since high-level features are more complex
to define and extract in a retinal image, we only consider
low-level features in this paper. For example, when the
ophthalmologists are diagnosing the presence ofDME, a pixel
with strong yellow color feature tends to be more significant
than one with weak ones.

Position Property (PP) (Saliency Is Relative to the Location
of the Pixel in the Image). Actual ophthalmologists’ precise
diagnoses have shown that DME always appears within
500𝜇m of the center of the fovea. That means the probability
distribution of saliency for every pixel in a retinal image has a
strong center bias property, so locational preferences in DME
RoIs detection will be considered in our approach.

Considering the properties described above, the saliency
of a pixel can be defined as the probability of saliency given
the features and positions. Denote 𝐹
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(1)

In (1), the term 𝑃(𝑋 | 𝑆) is the probability of saliency given a
position𝑋 and it corresponds to Position Property (PP).𝑃(𝑆 |
𝐹
𝑋
) is the probability of saliency of the features appearing in

location 𝑋 and it corresponds to Feature Property (FP). As
a result, the probability of saliency is clearly relative to two
terms: PP and FP.

3.3. Learning-Based Saliency Model. In contrast to manually
designed measures of saliency, we follow a learning approach
by using statistics and machine learning methods directly
from eye-tracking data. Based on (1), when the ophthalmolo-
gists are diagnosing the presence of DME, there are two terms
that affect saliency value in a pixel of a retinal image: FP and
PP. Between these, FP can be learned from training samples
using SVM; PP can be learned from ground truth of training
images using statistical method. As shown in Figure 2, a set
of low-level visual features are extracted from some training
images. After the feature extraction process, the features of
the top 20% (bottom 50%) points in the ground truth are
selected as training samples in each training image. All of
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(a) Original image

(b) Eye tracking

(c) Ground truth

Figure 1: We collected eye-tracking data on 100 retinal images with diabetic macular edema from 10 ophthalmologists. Gaze tracking paths
and fixation locations are recorded in (b). A continuous ground truth (b) is found by convolving a Gaussian over the fixation locations of all
users.
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Figure 2: Illustration of learning process and saliency computing process. Feature Property: a set of low-level visual features are extracted
from some training images. Feature vectors corresponding to the top 20% (bottom 50%) of the ophthalmologists’ precise diagnoses (ground
truth) are assigned +1(0) labels. Then a SVM classifier is trained from these features and is used for predicting DME on a test image. Position
Property: we used a statistical analysis method to obtain it from ground truth. Finally, we combine Feature Property and Position Property
adopting.

the training samples are sent to train a SVM model. Then,
a test image can be decomposed into several feature maps
and imported into SVMmodel to predict the FP. At the same
time, PP also can be obtained from training images and their
ground truth by statistical analysis. Finally, the two parts are
combined, and a saliency map can be obtained after being
convoluted with a Gaussian filter.

Features Extraction. After analyzing the DME dataset, we first
extract a set of features for every pixel in each image including
𝑚 × 𝑛 pixels. Here, we use low-level features as they have
already been shown to correlate with visual attention and
have underlying biological plausibility [13, 23].

These features are listed below:
(i) Because they are physiologically plausible and have

been shown to correlate with visual attention, we use

the local energy of the steerable pyramid filters [24] as
features. We currently find the pyramid subbands in
four orientations and three scales, altogether thirteen
images.

(ii) Traditionally, intensity, orientation, and color have
been used as important features for saliency, deriva-
tion over static images. We include the three channels
corresponding to these image features as calculated by
Itti’s saliency method [12].

(iii) We include three values of the red, green, and blue
color channels as well as three features corresponding
to probabilities of each of these color channels andfive
probabilities of each color as computed from 3D color
histograms of the image filtered with a median filter
at six different scales.
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Eventually, all features are augmented in a 27D vector and
are fed to classifiers explained in the next subsection. Each
feature map is linearized into a 1 × 𝑚𝑛 vector (similarly for
class labels).

Feature Property. In (1), FP is the relationship between a given
feature set 𝐹

𝑋
appearing in position 𝑋 and saliency value

𝑆. One of the simplest methods to determine saliency is to
average all the feature values. However, some features may be
more important than others, so giving the same weight to all
features is not appropriate and will give poor results. Instead,
we use SVM to implement Feature Property.

We compile a large training set by sampling images at
diagnosis. Each sample contains features at one point along
with a +1/−1 label. Positive samples are taken from the top
𝑝 percent salient pixels of the precise diagnosis and negative
samples are taken from the bottom 𝑞 percent. We chose
samples from the top 20% and bottom 50% in order to have
samples that were strongly positive and strongly negative.
We avoided samples on the boundary between the two. We
did not choose any samples within 10 pixels of the boundary
of image. We trained models using ratios of negative to
positive samples ranging from 1 to 5 and detected no change
in the resulting ROC curves, so we chose to use a ratio of
1 : 1. Training feature vectors were normalized to have zero
mean and unit standard deviation and the same parameters
were used to normalize test data. To evaluate our model, we
followed the 10-fold cross validation method. The method
partitions the database into ten subsets randomly, each with
𝑀 images. Every subset is selected sequentially as a test
set and the remainders serve as the training set. Each time
we trained the model from 9 parts and tested it over the
remaining part. Results are then averaged over all partitions.

We used the LIBLINEAR support vector machine [25],
a publicly available MATLAB version of SVM, to implement
FP. We adopted linear kernels as they are faster and perform
as well as nonlinear polynomial and RBF kernels for our
specific task. In testing, instead of predicted labels (i.e.,
+1/−1), we use the value of 𝑊𝑇𝑓 + 𝑏, where 𝑊 and 𝑏 are
learned parameters.We set themisclassification cost 𝑐 at 1 and
found that performance was the same for 𝑐 = 1 to 𝑐 = 10,000
and decreased when smaller than 1.

Position Property. As shown in (1), PP presents precise diag-
nosis preference for locations in an image. We implemented
PP using a simple statistical method: sum up the values in
the same position of density maps of database images, and
normalize the result from zero to one. In the experiments, we
denoted𝑀

𝑖
as the 𝑖th ground truth image.Then the PPmatrix

𝑀
𝑝
can be computed in

𝑀
𝑝
=
∑
𝑖∈dataset𝑀𝑖 −min (∑

𝑖∈dataset𝑀𝑖)

max (∑
𝑖∈dataset𝑀𝑖) −min (∑

𝑖∈dataset𝑀𝑖)
. (2)

Based on the finding, the center prior in which the
majority of fixations happen near the center of the image can
be observed in𝑀

𝑝
.

Property Combination. The two matrices FP and PP, which
are denoted as 𝑀

𝑓
and 𝑀

𝑝
, respectively, are combined in

the saliency map 𝑀
𝑠
by an intersection operation and a

convolution operation, as shown in

𝑀
𝑠
= (𝑀

𝑓
∙𝑀
𝑝
) ∗ GF. (3)

Here ∙ denotes a Hadamard product and ∗ denotes
convolution operation. We set the parameter of the Gaussian
filter 𝛿 at 10 in the EDMERI database.

4. Experiment and Result

We validate our model by applying it to two problems: (1)
DME RoIs prediction and (2) segmentation of the DME RoIs
in a retinal image. We used EDMERI databases to evaluate
our results; the size of each image was 1152 × 1500 pixels. We
chose 100 training samples from each of the training images,
for a total of 10,000 training samples. The database provided
ophthalmologists’ eye-tracking data as ground truth.

Since there is no consensus over a unique score for
saliency model evaluation, we report results over three,
including Area Under the ROC Curve (AUC), Earth Movers
Distance (EMD), and Similarity Score (SS). A model that
performs well should have good overall scores.

AUC. It is the most widely used metric for evaluating visual
saliency. Using this score, the model’s saliency map is treated
as a binary classifier on every pixel in the image; pixels
with larger saliency values than a threshold are classified as
fixated while the rest of the pixels are classified as nonfixated
[26]. Precise diagnoses are used as ground truth. By varying
the threshold, the ROC curve is drawn as the false positive
rate versus true positive rate, and the area under this curve
indicates how well the saliency map predicts actual DME
diagnoses.The two distributions are exactly equal when AUC
is equal to 1, not relative when AUC is equal to 0.5, and
negatively relative when AUC is equal to 0.

EMD. It represents the minimum cost of change of a dis-
tribution to another distribution. In this study, we use the
fast implementation of EMD provided by Pele and Werman
[27, 28]. EMD equal to zero means the two distributions are
identical; a larger EMDmeans the two distributions are more
different.

SS. It is another metric for measuring the similarities of two
distributions. It first normalizes two distributions to let the
sum equal one and then to sum the minimum values in each
position. SS is always between zero and one. SS equal to one
means two distributions are identical and SS equal to zero
means two distributions are totally different.

Then, three quality measurements, classical sensitivity,
specificity, and Youden’s 𝐽 statistic, were computed. The
sensitivity and specificity were calculated for the whole set
of classified pixels, that is, whether or not a pixel belonged
to a RoI. Classically, the performance of a method is well
described using sensitivity and specificity; they account for
the individual result of hits or misses. However, we are
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Table 1: Performance comparison of nine models in the EDMERI dataset.

Metrics GT Ours AIM AWS GBVS ITTI STB Judd SUN Torralba Average
AUC 1.0000 0.8275 0.5610 0.6081 0.6748 0.6419 0.4723 0.7945 0.6449 0.6235 0.6498
EMD 0.0000 8.1524 13.4767 13.2513 12.3116 12.8744 17.9996 12.3079 12.4320 12.701 12.8341
SS 1.0000 0.1930 0.0853 0.0987 0.1066 0.1044 0.0055 0.1033 0.0932 0.0988 0.0991

Image GT Ours AIM AWS GBVS ITTI STB Judd SUN Torralba

Figure 3: Some saliency maps produced by 9 different models from the EDMERI database along with predictions of several models using
ROC. Each example shown by one row. From left to right: original image, ground truth, Ours, AIM, AWS, GBVS, ITTI, STB, Judd, SUN, and
Torralba. It is obvious that Ours is more similar to the ground truth than other saliency maps.

interested in finding regions of interest, that is, collections of
pixels with semanticmeaning. Hence, the numbers of regions
found by eachmethodwere also compared and the sensitivity
of each method, regarding the number of RoIs, was also
calculated.

Sensitivity. It is also called the true positive rate, or the recall
in some fields, which measures the proportion of positives
which are correctly identified, and is complementary to the
false negative rate. The higher the sensitivity is, the more
sensitive the diagnostic test is.

Specificity. It is also called the true negative rate, which
measures the proportion of negatives which are correctly
identified, and is complementary to the false positive rate.The
higher the specificity is, the more precise the diagnostic test
is.

Youden’s 𝐽 Statistic. It is also called Youden’s index; this can be
written as formula (4). Its value ranges from 0 to 1. The index
gives equal weight to false positive and false negative values.
The higher Youden’s index is, the higher the authenticity the
test has is. Consider

Youden’s index = sensitivity + specificity − 1. (4)

4.1. DME ROIs Prediction

4.1.1. Analysis of AUC, EMD, and SS. As far as we know,
this is the first investigation devoted to extraction of DME
RoIs information from retinal images, using a bioinspired
model.The developedmethodwas comparedwith eight well-
known techniques which had to deal with similar challenges,
but in natural scene. We used them as the baseline because
they also emulate the visual system, even though they are

not specifically devised to detect relevancy inmedical images;
these eight models were AIM [29], AWS [14], Judd [17], ITTI
[5], GBVS [15], SUN [5], STB [30], and Torralba [4]. We
trained and tested our model over the dataset following 10-
fold cross validation. For EDMERI, 𝑀 = 10. The statistical
results are shown in Table 1.

Table 1 shows the comparison of evaluation performances
of the 9 models in the EDMERI database. In this experiment,
the average values of 10 times 10-fold cross validation in
Table 1 are used for comparison. In the results, Ours has the
best value in AUC, EMD, and SS. The AUC of our model
is highest (0.8275), followed by Judd (0.7945). However, the
average is only 0.6498. And the lowest value of EMD is
shown in our model (8.1524), which is less than the average
12.8341. It means the results of Ours are more identical
with ground truth than other models. Ours also has the
best performance in SS with a value of 0.1930. The average
value of SS is 0.0991, which just approximates half of Ours.
Generally speaking, Ours has good performance in these
three metrics. And Figure 3 presents some examples of the
saliency maps produced by our approach and the other eight
saliency models.

In Figure 4, we see the ROC curves of three examples
in Figure 3 describing the performance of different saliency
models. The size of the salient region plays an important
role in the ROC method. Since it cannot separate salient
regions frombackgrounds using a certain threshold, the ROC
method treats a saliency map as a binary classifier for ground
truth under various thresholds. As shown in Figure 4, ROC
of Ours was higher than other models from the 5% to 20%
salient region; GBVS, Judd, and ITTI2 got higher ROC when
the salient region was larger than 60%. This means that
when the definition of the salient region changes, the rank of
performance using the ROC method may change. However,
the salient DME RoIs in a retinal image region are generally
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Figure 4: Some ROC curves produced by 9 different models from the three examples in Figure 3. ROC of Ours was higher than other models
from the 5% to 20% salient region; GBVS, Judd, and ITTI2 got higher ROC when the salient region was larger than 60%. The salient DME
RoIs in a retinal image region are generally under 20%. As a result, the performance of our method is better than other models when the
salient region is small.

under 20% and even smaller in many cases. As a result, the
performance of ourmethod is better than othermodels when
the salient region is small.

4.1.2. Analysis of Sensitivity and Specificity. The ability of the
different methods to extract DME RoIs information from
retinal images was evaluated using conventional sensitivity

and specificity measurements. These results are shown in
Table 2.

Table 2 shows sensitivities and specificities of the 9models
in 50% salient region. Overall, all sensitivity, specificity, and
Youden measurements evidence that our model outperforms
the other models. The sensitivity of our model is 83.7%,
which surpasses the average sensitivity 18.2%, followed by
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Table 2: Sensitivities and specificities of nine models.

Ours AIM AWS GBVS ITTI STB Judd SUN Torralba Average
Sensitivity (%) 83.7 50.7 57.0 80.1 69.6 81.6 37.2 65.6 63.7 65.5
Specificity (%) 77.7 59.2 64.5 57.0 58.1 74.1 60.1 60.0 55.4 62.9
Youden 0.614 0.099 0.215 0.371 0.277 0.557 −0.027 0.256 0.191 0.356

STB with 81.6% and GBVS with 80.1%. However, Judd had
the lowest rate (only 37.2%), less than half of Ours. And the
larger value of specificity (77.7%) is also shown in our model,
which exceeds the average specificity 14.8%. Although the
sensitivities of STB andGBVS are over 80%, their specificities
are 74.1% and 57.0%, respectively; both are under Ours.
The sensitivity of GBVS especially is even lower than the
average. Owing to having the highest value of sensitivity
and specificity, Youden’s index (0.614) of our model is the
highest among the 9 models, followed by STB with 0.557 and
GBVS with 0.371. Average Youden’s index is 0.356, which is
only higher than half of Ours. The indisputable fact is that
the higher Youden’s index is, the higher the authenticity the
test has is, and our model outperforms the other models in
all sensitivity, specificity, and Youden measurements based
on Table 2. Thus, Ours is suitable for extracting DME RoIs
information from retinal images.

4.2. DME ROIs Detection. Almost all salient region detection
approaches utilize a saliency operator, where from there
they start to segment the most salient object. Because they
are not specifically devised to detect relevancy in medical
images, there is little study investigating the relevance of
computational saliency models in medical images in the
context of abnormality detection. Here, we used three well-
known techniques as the baseline and showed that our
approach could provide a good such starting point; these
three models were ITTI [3], SR [19], and Achanta’s [31].

We calculate ROC curves in Figure 5 by binarizing the
saliency map using every possible fixed threshold, similar to
the fixed thresholding experiment in [31]. As seen from the
comparison (Figure 5), our saliency model performs better
while competing with the other three state-of-the-art models
tailored for this task. Figure 6 shows examples with diagnosis
and detections of our model and the other three salient
region detection models. As can be seen, our model is able to
successfully detect the DME ROIs, ITTI’s RoIs, and SR’s RoIs
mismatching the ground truth, and even worse, Achanta’s
cannot detect the DME ROIs.

5. Discussions and Conclusions

The present paper has introduced a novel strategy, a new
visual saliency model using the Bayesian probability theory
and machine learning techniques, for selecting DME RoIs
in retinal images. The model is inspired in the first phase of
a DME pathological examination, a process largely studied
which starts by scanning the retinal images.

So far the underlying mechanism that controls a DME
RoIs selection in retinal image has been poorly studied.
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Figure 5: ROC curves for comparison of our model with ITTI, SR,
and Achanta’s.

Recent studies suggest that some visual mechanisms, such
as the one that allows highlighting an object from the
background and the visual attentional process, are connected.
This fact suggests that the visual system is able to selectively
focus on specific areas of the image, which besides are
entailed with a high relevant meaning. Yet the idea is far from
being fully exploited; our approach has been able to capture
some basic facts; that is to say, that relevancy is a global
property somehow constructed by integrating local features.

The proposed strategy is based on the interaction of Posi-
tion Property and Feature Property and combined by a simple
intersection operation using the Bayesian probability theory
and machine learning techniques to obtain saliency maps.
Our model is unlike traditional contrast-based bottom-up
methods in that its learning mechanism has the ability to
automatically learn the relationship between saliency and
features. Moreover, unlike existing learning-based models
that only consider the components of features themselves,
our model simultaneously considers appearing frequency of
features and the pixel location of features, which intuitively
have a strong influence on saliency. As a result, our model
can determine saliency regions and detect DME ROIs more
precisely. Experimental results indicate that the proposed
model has significantly better performance than other state-
of-the-art models.
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Image GT Ours ITTI SR Achanta’s

Figure 6: Some unnormalized saliency map for DME ROIs detection produced by 4 different models from the EDMERI database. Each
example shown by one row. From left to right: original image, GT, Ours, ITTI, SR, and Achanta’s. It is obvious that Ours is more similar to
the ground truth than other saliency maps.
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“Frequency-tuned salient region detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR ’09), pp. 1597–1604, IEEE, Miami, Fla, USA, June
2009.


