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Machine learning to predict end 
stage kidney disease in chronic 
kidney disease
Qiong Bai1, Chunyan Su1, Wen Tang1* & Yike Li2*

The purpose of this study was to assess the feasibility of machine learning (ML) in predicting the risk of 
end-stage kidney disease (ESKD) from patients with chronic kidney disease (CKD). Data were obtained 
from a longitudinal CKD cohort. Predictor variables included patients’ baseline characteristics and 
routine blood test results. The outcome of interest was the presence or absence of ESKD by the end 
of 5 years. Missing data were imputed using multiple imputation. Five ML algorithms, including 
logistic regression, naïve Bayes, random forest, decision tree, and K-nearest neighbors were trained 
and tested using fivefold cross-validation. The performance of each model was compared to that of 
the Kidney Failure Risk Equation (KFRE). The dataset contained 748 CKD patients recruited between 
April 2006 and March 2008, with the follow-up time of 6.3 ± 2.3 years. ESKD was observed in 70 
patients (9.4%). Three ML models, including the logistic regression, naïve Bayes and random forest, 
showed equivalent predictability and greater sensitivity compared to the KFRE. The KFRE had the 
highest accuracy, specificity, and precision. This study showed the feasibility of ML in evaluating the 
prognosis of CKD based on easily accessible features. Three ML models with adequate performance 
and sensitivity scores suggest a potential use for patient screenings. Future studies include external 
validation and improving the models with additional predictor variables.

Chronic kidney disease (CKD) is a significant healthcare burden that affects billions of individuals worldwide1,2 
and makes a profound impact on global morbidity and mortality3–5. In the United States, approximately 11% of 
the population or 37 million people suffer from CKD that results in an annual Medicare cost of $84 billion6. The 
prevalence of this disease is estimated at 10.8% in China, affecting about 119.5 million people7.

Gradual loss of the kidney function can lead to end stage kidney disease (ESKD) in CKD patients, precipitat-
ing the need for kidney replacement therapy (KRT). Timely intervention in those CKD patients who have a high 
risk of ESKD may not only improve these patients’ quality of life by delaying the disease progression, but also 
reduce the morbidity, mortality and healthcare costs resulting from KRT8,9. Because the disease progression is 
typically silent10, a reliable prediction model for risk of ESKD at the early stage of CKD can be clinically essen-
tial. Such a model is expected to facilitate physicians in making personalized treatment decisions for high-risk 
patients, thereby improving the overall prognosis and reducing the economic burden of this disease.

A few statistical models were developed to predict the likelihood of ESKD based on certain variables, 
including age, gender, lab results, and most commonly, the estimated glomerular filtration rate (eGFR) and 
albuminuria11,12. Although some of these models demonstrated adequate predictability in patients of a specific 
race, typically Caucasians13–15, literature on their generalizability in other ethnic groups, such as Chinese, remains 
scarce13,16. In addition, models based on non-urine variables, such as patients’ baseline characteristics and rou-
tine blood tests, have reportedly yield sufficient performance17,18. Therefore, it may be feasible to predict ESKD 
without urine tests, leading to a simplified model with equivalent reliability.

With the advent of the big data era, new methods became available in developing a predictive model that 
used to rely on traditional statistics. Machine learning (ML) is a subset of artificial intelligence (AI) that allows 
the computer to perform a specific task without explicit instructions. When used in predictive modeling, ML 
algorithm can be trained to capture the underlying patterns of the sample data and make predictions about the 
new data based on the acquired information19. Compared to traditional statistics, ML represents more sophis-
ticated math functions and usually results in better performance in predicting an outcome that is determined 
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by a large set of variables with non-linear, complex interactions20. ML has recently been applied in numerous 
studies and demonstrated high level of performance that surpassed traditional statistics and even humans20–23.

This article presents a proof-of-concept study with the major goal to establish ML models for predicting 
the risk of ESKD on a Chinese CKD dataset. The ML models were trained and tested based on easily obtain-
able variables, including the baseline characteristics and routine blood tests. Results obtained from this study 
suggest not only the feasibility of ML models in performing this clinically critical task, but also the potential in 
facilitating personalized medicine.

Materials and methods
Study population.  The data used for this retrospective work were obtained from a longitudinal cohort 
previously enrolled in an observational study24,25. The major inclusion criteria for the cohort were adult CKD 
patients (≥ 18 years old) with stable kidney functions for at least three months prior to recruitment. Patients 
were excluded if they had one or more of the following situations: (1) history of KRT in any form, including 
hemodialysis, peritoneal dialysis or kidney transplantation; (2) any other existing condition deemed physically 
unstable, including life expectancy < 6 months, acute heart failure, and advanced liver disease; (3) any pre-exist-
ing malignancy. All patients were recruited from the CKD management clinic of Peking University Third Hos-
pital between April 2006 and March 2008. Written informed consent was obtained from all patients. They were 
treated according to routine clinical practice determined by the experienced nephrologists and observed until 
December 31st, 2015. Detailed information regarding patient recruitment and management protocol has been 
described in a previous publication24.

Data acquisition.  Patient characteristics included age, gender, education level, marriage status, and insur-
ance status. Medical history comprised history of smoking, history of alcohol consumption, presence of each 
comorbid condition—diabetes, cardiovascular disease and hypertension. Clinical parameters contained body 
mass index (BMI), systolic pressure and diastolic pressure. Blood tests consisted of serum creatinine, uric acid, 
blood urea nitrogen, white blood cell count, hemoglobin, platelets count, alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), total protein, albumin, alkaline phosphatase (ALP), high-density lipoprotein, 
low-density lipoprotein, triglycerides, total cholesterol, calcium, phosphorus, potassium, sodium, chloride, and 
bicarbonate. The estimated glomerular filtration rate and type of primary kidney disease were also used as pre-
dictors.

All baseline variables were obtained at the time of subject enrollment. The primary study end point was 
kidney failure which necessitated the use of any KRT. Subjects with the outcome of kidney failure were labeled 
as ESKD+, and the rest ESKD−. Patients who died before reaching the study end point or lost to follow up were 
discarded. Patients who developed ESKD after five years were labeled as ESKD−.

Data preprocessing.  All categorical variables, such as insurance status, education, and primary disease, 
were encoded using the one-hot approach. Any variable was removed from model development if the missing 
values were greater than 50%. Missing data were handled using multiple imputation with five times of repetition, 
leading to five slightly different imputed datasets where each of the missing values was randomly sampled from 
their predictive distribution based on the observed data. On each imputed set, all models were trained and tested 
using a fivefold cross validation method. To minimize selection bias, subject assignment to train/test folds was 
kept consistent across all imputed sets. Data were split in a stratified fashion to ensure the same distribution of 
the outcome classes (ESKD+ vs. ESKD−) in each subset as the entire set.

Model development.  The model was trained to perform a binary classification task with the goal of gen-
erating the probability of ESKD+ based on the given features. Five ML algorithms were employed in this study, 
including logistic regression, naïve Bayes, random forest, decision tree, and K-nearest neighbors. Grid search 
was performed to obtain the best hyperparameter combination for each algorithm.

Assessment of model performance.  The performance of a classifiers was measured using accuracy, pre-
cision, recall, specificity, F1 score and area under the curve (AUC), as recommended by guidelines for results 
reporting of clinical prediction models26. All classifiers developed in this study were further compared with the 
Kidney Failure Risk Equation (KFRE), which estimates the 5-year risk of ESKD based on patient’s age, gender, 
and eGFR12. The KFRE is currently the most widely used model in predicting CKD progression to ESKD. The 
reported outcome of a model represented the average performance of 5 test folds over all imputed sets.

Statistical analysis.  Basic descriptive statistics were applied as deemed appropriate. Results are expressed 
as frequencies and percentages for categorical variables; the mean ± standard deviation for continuous, normally 
distributed variables; and the median (interquartile range) for continuous variables that were not normally dis-
tributed. Patient characteristics were compared between the original dataset and the imputed sets using one-way 
analysis of variance (ANOVA). The AUC of each model was measured using the predicted probability. The opti-
mal threshold of a classifier was determined based on the receiver operating characteristic (ROC) curve at the 
point with minimal distance to the upper left corner. For each ML model, this threshold was obtained during the 
training process and applied unchangeably to the test set. For the KFRE, the threshold was set at a default value 
of 0.5. Model development, performance evaluation and data analyses were all performed using Python27. The 
alpha level was set at 0.05.
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Ethical approval.  This research was conducted ethically in accordance with the World Medical Association 
Declaration of Helsinki. The study protocol has been approved by the Peking University Third Hospital Medical 
Science Research Ethics Committee on human research (No. M2020132).

Results
Cohort characteristics.  The dataset contained a total of 748 subjects with the follow-up duration of 
6.3 ± 2.3 years. The baseline characteristics are summarized in Table 1. Most patients were in stage 2 (24.5%) or 
3 (47.1%) CKD at baseline. ESKD was observed in 70 patients (9.4%), all of whom subsequently received KRT, 
including hemodialysis in 49 patients, peritoneal dialysis in 17 and kidney transplantation in 4.

Model performance.  Details of the five imputed sets are provided in the supplemental materials. There was 
no significant difference between the imputed sets and the original dataset in each variable where missing data 
were replaced by imputed values. The hyperparameter settings for each classifier are displayed in Table 2. The 
best overall performance, as measured by the AUC score, was achieved by the random forest algorithm (0.81, see 
Table 3). Nonetheless, this score and its 95% confidence interval had overlap with those of the other three mod-
els, including the logistic regression, naïve Bayes, and the KFRE (Fig. 1). Interestingly, the KFRE model that was 
based on 3 simple variables, demonstrated not only a comparable AUC score but also the highest accuracy, speci-
ficity, and precision. At the default threshold, however, the KFRE was one of the least sensitive models (47%).

Discussion
With extensive utilization of electronic health record and recent progress in ML research, AI is expanding its 
impact on healthcare and has gradually changed the way clinicians pursue for problem-solving28. Instead of 
adopting a theory-driven strategy that requires a preformed hypothesis from prior knowledge, training an ML 
model typically follows a data-driven approach that allows the model to learn from experience alone. Specifically, 
the model improves its performance iteratively on a training set by comparing the predictions to the ground 
truths and adjusting model parameters so as to minimize the distance between the predictions and the truths. In 
nephrology, ML has demonstrated promising performances in predicting acute kidney injury or time to allograft 
loss from clinical features29,30, recognizing specific patterns in pathology slides31,32, choosing an optimal dialysis 
prescription33, or mining text in the electronic health record to find specific cases34,35. Additionally, a few recent 
studies were performed to predict the progression of CKD using ML methods. These models were developed 
to estimate the risk of short-term mortality following dialysis36, calculate the future eGFR values37, or assess 
the 24-h urinary protein levels18. To our best knowledge, there hasn’t been any attempt to apply ML methods to 
predict the occurrence of ESKD in CKD patients.

In the present study, a prediction model for ESKD in CKD patients was explored using ML techniques. Most 
classifiers demonstrated adequate performance based on easily accessible patient information that is convenient 
for clinical translation. In general, three ML models, including the logistic regression, naïve Bayes and random 
forest, showed non-inferior performance to the KFRE in this study. These findings imply ML as a feasible 
approach for predicting disease progression in CKD, which could potentially guide physicians in establishing 
personalized treatment plans for this condition at an early stage. These ML models with higher sensitivity scores 
may also be practically favored in patient screening over the KFRE.

To our best understanding, this study was also the first to validate the KFRE in CKD patients of Mainland 
China. The KFRE was initially developed and validated using North American patients with CKD stage 3–512. 
There were seven KFRE models that consisted of different combinations of predictor variables. The most com-
monly used KFRE included a 4-variable model (age, gender, eGFR and urine ACR) or an 8-variable model 
(age, gender, eGFR, urine ACR, serum calcium, phosphorous, bicarbonate, and albumin). Besides, there was a 
3-variable model (age, gender, and eGFR) that required no urine ACR and still showed comparable performance 
to the other models in the original article. Despite its favorable performance in prediction for ESKD in patients 
of Western countries14,15,38,39, the generalizability of KFRE in Asian population remained arguable following 
the suboptimal results revealed by some recent papers13,40,41. In the current study, the KFRE was validated in a 
Chinese cohort with CKD stage 1–5 and showed an AUC of 0.80. This result indicated the KFRE was adequately 
applicable to the Chinese CKD patients and even earlier disease stages. In particular, the high specificity score 
(0.95) may favor the use of this equation in ruling in patients who require close monitoring of disease progres-
sion. On the other hand, a low sensitivity (0.47) at the default threshold may suggest it may be less desirable than 
the other models for ruling out patients.

Urine test is a critical diagnostic approach for CKD. The level of albuminuria (i.e. ACR) has also been regarded 
as a major predictor for disease progression and therefore used by most prognostic models. However, quantitative 
testing for albuminuria is not always available in China especially in rural areas, which precludes clinicians from 
using most urine-based models for screening patients. In this regard, several simplified models were developed 
to predict CKD progression without the need of albuminuria. These models were based on patient characteristics 
(e.g. age, gender, BMI, comorbidity) and/or blood work (e.g. creatinine/eGFR, BUN), and still able to achieve an 
AUC of 0.87–0.8912,18 or a sensitivity of 0.8837. Such performance was largely consistent with the findings of this 
study and comparable or even superior to some models incorporating urine tests16,42. Altogether, it suggested a 
reliable prediction for CKD progression may be obtained from routine clinical variables without urine measures. 
These models are expected to provide a more convenient screening tool for CKD patients in developing regions.

Missing data are such a common problem in ML research that they can potentially lead to a biased model 
and undermine the validity of study outcomes. Traditional methods to handle missing data include complete 
case analysis, missing indicator, single value imputation, sensitivity analyses, and model-based methods (e.g. 
mixed models or generalized estimating equations)43–45. In most scenarios, complete case analysis and single 
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value imputation are favored by researchers primarily due to the ease of implementation45–47. However, these 
methods may be associated with significant drawbacks. For example, by excluding samples with missing data 

Table 1.   Baseline patient characteristics. SBP systolic blood pressure, DBP diastolic blood pressure, GN 
glomerulonephritis, CIN chronic interstitial nephritis, BMI body mass index, eGFR estimated glomerular 
filtration rate, ALT alanine aminotransferase, AST aspartate transaminase, ALP alkaline phosphatase, CKD 
chronic kidney disease, HDL-c high density lipoprotein cholesterol, LDL-c low density lipoprotein cholesterol, 
Ca × P calcium-phosphorus product.

Variables Original data

Age (years) 57.8 ± 17.6

Gender (male/female) 419/329

SBP (mmHg) 129.5 ± 17.8

DBP (mmHg) 77.7 ± 11.1

BMI (kg/m2) 24.8 ± 3.7

Primary disease

Primary GN 292 (39.0%)

Diabetes 224 (29.9%)

Hypertension 97 (13.0%)

CIN 64 (8.6%)

Others 18 (2.4%)

Unknown 53 (7.1%)

Creatinine (µmol/L) 130.0 (100.0, 163.0)

Urea (mmol/L) 7.9 (5.6, 10.4)

ALT (U/L) 17.0 (12.0, 24.0)

AST (U/L) 18.0 (15.0, 22.0)

ALP (U/L) 60.0 (50.0, 75.0)

Total protein (g/L) 71.6 ± 8.4

Albumin (g/L) 42.2 ± 5.6

Urine acid (µmol/L) 374.0 (301.0, 459.0)

Calcium (mmol/L) 2.2 ± 0.1

Phosphorous (mmol/L) 1.2 ± 0.2

Ca × P (mg2/dL2) 33.5 ± 5.6

Blood leukocyte (109/L) 7.1 ± 2.4

Hemoglobin (g/L) 131.0 ± 20.3

Platelet (109/L) 209.8 ± 57.1

eGFR (ml/min/1.73m2) 46.1 (32.6, 67.7)

CKD stage

Stage 1 58 (7.8%)

Stage 2 183 (24.5%)

Stage 3 352 (47.1%)

Stage 4 119 (15.9%)

Stage 5 36 (4.8%)

Total cholesterol 5.1 (4.3, 5.9)

Triglyceride 1.8 (1.3, 2.6)

HDL-c 1.3 (1.1, 1.6)

LDL-c 3.0 (2.4, 3.7)

Fasting glucose (mmol/L) 5.4 (4.9, 6.2)

Potassium (mmol/L) 4.3 ± 0.5

Sodium (mmol/L) 140.2 ± 2.8

Chlorine (mmol/L) 106.9 ± 3.7

Bicarbonate (mmol/L) 25.9 ± 3.6

Medical history

Hypertension 558 (74.6%)

Diabetes mellitus 415 (55.5%)

Cardiovascular or cerebrovascular disease 177 (23.7%)

Smoking 91 (12.6%)
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from analyses, complete case analysis can result in reduction of model power, overestimation of benefit and 
underestimation of harm43,46; Single value imputation replaces the missing data by a single value—typically 
the mean or mode of the complete cases, thereby increasing the homogeneity of data and overestimating the 
precision43,48. In this regard, multiple imputation solves these problems by generating several different plausible 
imputed datasets, which account for the uncertainty about the missing data and provide unbiased estimates of 
the true effect49,50. It is deemed effective regardless of the pattern of missingness43,51. Multiple imputation is now 
widely recognized as the standard method to deal with missing data in many areas of research43,45. In the current 
study, a 5-set multiple imputation method was employed to obtain reasonable variability of the imputed data. 
The performance of each model was analyzed on each imputed set and pooled for the final result. These proce-
dures ensured that the model bias resulting from missing data was minimized. In the future, multiple imputa-
tion is expected to become a routine method for missing data handling in ML research, as the extra amount of 

Table 2.   Hyperparameters of the algorithms.

Algorithms Hyperparameters

Logistic regression penalty = ’l2’, class_weight = ’balanced’, max_iter = 100000, C = 10, solver = ’liblinear’

Naive Bayes type = ’multinomial’, alpha = 150

Decision tree criterion = ’gini’, splitter = ’best’, max_depth = 16, max_features = 15, min_samples_leaf = 5, min_samples_
split = 0.0001

Random forest class_weight = ’balanced’, criterion = ’gini’, max_depth = 9, max_features = 17, min_samples_leaf = 6, min_samples_
split = 30, n_estimators = 32

K-nearest neighbors weights = ’distance’, metric = ’minkowski’, n_neighbors = 16, leaf_size = 10

Table 3.   The performance of all algorithms. All outcomes are expressed as mean and (95% confidence 
interval). KFRE kidney failure risk equation, AUC​ area under the curve.

Accuracy Sensitivity Specificity Precision F1 Score AUC​

Logistic regression 0.75 (0.72, 0.79) 0.79 (0.73, 0.85) 0.75 (0.71, 0.79) 0.26 (0.24, 0.29) 0.38 (0.36, 0.41) 0.79 (0.77, 0.82)

Naïve Bayes 0.86 (0.85, 0.87) 0.72 (0.68, 0.75) 0.87 (0.86, 0.89) 0.37 (0.35, 0.40) 0.49 (0.46, 0.51) 0.80 (0.77, 0.82)

Random forest 0.82 (0.80, 0.85) 0.76 (0.71, 0.81) 0.83 (0.80, 0.86) 0.34 (0.30, 0.39) 0.46 (0.43, 0.49) 0.81 (0.78, 0.83)

K nearest neighbor 0.84 (0.81, 0.86) 0.60 (0.57, 0.64) 0.86 (0.83, 0.89) 0.35 (0.30, 0.40) 0.43 (0.40, 0.46) 0.73 (0.71, 0.75)

Decision tree 0.84 (0.82, 0.86) 0.44 (0.39, 0.49) 0.89 (0.86, 0.91) 0.33 (0.26, 0.40) 0.35 (0.32, 0.39) 0.66 (0.63, 0.68)

KFRE 0.90 (0.90, 0.91) 0.47 (0.42, 0.52) 0.95 (0.94, 0.96) 0.50 (0.45, 0.55) 0.48 (0.43, 0.52) 0.80 (0.78, 0.83)

Figure 1.   ROC curves of the random forest algorithm and the KFRE model.
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computation associated with multiple imputation over those traditional methods can simply be fulfilled by the 
high level of computational power required by ML.

Although ML has been shown to outperform traditional statistics in a variety of tasks by virtue of the model 
complexity, some studies demonstrated no gain or even declination of performance compared to traditional 
regression methods52,53. In this study, the simple logistic regression model also yielded a comparable or even 
superior predictability for ESKD to other ML algorithms. The most likely explanation is that the current dataset 
only had a small sample size and limited numbers of predictor variables, and the ESKD+ cases were relatively 
rare. The lack of big data and imbalanced class distribution may have negative impact on the performance of 
complex ML algorithms, as they are typically data hungry54. On the other hand, this finding could imply simple 
interactions among the predictor variables. In other words, the risk of ESKD may be largely influenced by only 
a limited number of factors in an uncomplicated fashion, which is consistent with some previous findings12,18,55. 
The fact that the 3-variable KFRE, which is also a regression model, yielded equivalent outcomes to the best ML 
models in this study may further support this implication. It is therefore indicated that traditional regression 
models may continue to play a key role in disease risk prediction, especially when a small sample size, limited 
predictor variables, or an imbalanced dataset is encountered. The fact that some of the complex ML models are 
subject to the risk of overfitting and the lack of interpretability further favors the use of simple regression models, 
which can be translated to explainable equations.

Several limitations should be noted. First, this cohort consisted of less than 1000 subjects and ESKD only 
occurred in a small portion of them, both of which might have affected model performance as discussed earlier. 
Second, although this study aimed to assess the feasibility of a prediction model for ESKD without any urine 
variables, this was partially due to the lack of quantitative urine tests at our institute when this cohort was 
established. As spot urine tests become increasingly popular, urine features such as ACR will be as accessible 
and convenient as other lab tests. They are expected to play a critical role in more predictive models. Third, the 
KFRE was previously established on stages 3–5 CKD patients while the current cohort contained stages 1–5. This 
discrepancy may have affected the KFRE performance. Forth, the generalizability of this model has not been 
tested on any external data due to the lack of such resource in this early feasibility study. Therefore, additional 
efforts are required to improve and validate this model before any clinical translation. Finally, although a simple 
model without urine variables is feasible and convenient, model predictability may benefit from a greater variety 
of clinical features, such as urine tests, imaging, or biopsy. Future works should include training ML models with 
additional features using a large dataset, and validating them on external patients.

In conclusion, this study showed the feasibility of ML in evaluating the prognosis of CKD based on easily 
accessible features. Logistic regression, naïve Bayes and random forest demonstrated comparable predictability 
to the KFRE in this study. These ML models also had greater sensitivity scores that were potentially advanta-
geous for patient screenings. Future studies include performing external validation and improving the model 
with additional predictor variables.
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