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ABSTRACT Here, we report genome assemblies for three strains of Wolbachia pipi-
entis, assembled from unenriched, unfiltered long-read shotgun sequencing data of
geographically distinct strains of Drosophila melanogaster. Our simple methodology
can be applied to long-read data sets of other Wolbachia-infected species with lim-
ited Wolbachia-host lateral gene transfers to produce complete assemblies for this
important model symbiont.

Wolbachia pipientis is a widespread bacterial endosymbiont that infects 40% of
arthropod species (1) and induces a wide range of effects including cytoplasmic

incompatibility, feminization, male killing, and parthenogenesis (2). Currently, our under-
standing of the impact of Wolbachia on its hosts is limited by the lack of complete
reference genomes for different Wolbachia strains, with only 18 of 84 Wolbachia assemblies
in the NCBI assembly database as of August 2019 defined as complete.

Recently, Faddeeva-Vakhrusheva et al. (3) showed that a complete assembly of Wolba-
chia could be generated as a by-product of assembling the genome of a Wolbachia-
infected arthropod species using PacBio long-read sequences. Based on this observa-
tion, we attempted to generate complete Wolbachia assemblies using long-read shotgun
sequencing data for three geographically distinct Drosophila melanogaster lines (I23
from Ithaca, NY; N25 from the Netherlands; and ZH26 from Zimbabwe) (4) that were
previously identified by Early and Clark (5) as being infected with variants of the
Wolbachia strain wMel. These flies were reared on a diet of 10% yeast, 10% glucose, and 1%
agar at 25°C (J. Chaston, personal communication). As described by Long et al. (4), DNA
was extracted by grinding �200 adult flies in liquid nitrogen, transferring to a solution
of buffer G2 with 38 �l of RNase A (100 mg/ml) and 500 �l of proteinase K (catalog
number 158920; Qiagen), incubating the solution overnight at 50°C, and then extract-
ing DNA using the Qiagen Genomic-tip kit (catalog number 10243). DNA was then
sequenced on a PacBio Sequel instrument (Pacific Biosciences, Inc.) using 2 or 3
single-molecule real-time (SMRT) cells per sample. Additionally, public short-read Illu-
mina sequencing was used for the same D. melanogaster lines (5). As described by Early
and Clark (5), DNA for these samples was extracted from 50 adult female flies using the
Qiagen DNeasy blood and tissue kit. Sequencing was performed on an Illumina HiSeq
2000 instrument to produce 100-bp paired-end reads with a 450- to 500-bp insert size.
No quality control steps were applied to the PacBio or Illumina sequencing reads prior
to assembly and polishing.

All reads from PacBio whole-genome shotgun sequences of each strain were
assembled using CANU v1.8 (genomeSize�137.7m, useGrid�False) (6). Assemblies for
each strain generated only one contig matching the wMel reference genome (GenBank
accession number NC_002978) by BLASTN v2.9.0 search with default parameters (7),
which in each case corresponded to the entire Wolbachia genome. Repetitive regions
from the ends of uncircularized Wolbachia contigs were trimmed using minimus2 from
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AMOS v3.1.0 with default parameters (8). The trimmed Wolbachia contigs were then
adjusted using BLASTN v2.9.0 (7) and faFrag (9) with default parameters so that the start
of each contig matched the wMel reference start. The contigs were then polished using
Arrow (SMRTlink v6.0.0.47841; Pacific Biosciences) and Pilon v1.23 (10) using Illumina
reads from Early and Clark (5) (Table 1) mapped to the contigs using BWA-MEM v0.7.17
with default parameters (11).

After polishing, we identified 54, 13, and 18 single-nucleotide polymorphism (SNP)/
indel variants for the I23, N25, and ZH26 Wolbachia strains, respectively, relative to the
wMel reference genome. The higher similarity of the N25 and ZH26 Wolbachia strains
and increased divergence of the I23 Wolbachia strain relative to the wMel reference
genome are consistent with previous work showing that Wolbachia genomes from lines
N25 and ZH26 are both in clade III of the wMel phylogeny (which also contains the
wMel reference genome), while the Wolbachia genome from line I23 is in clade I of the
wMel phylogeny (which is more divergent from the wMel reference genome) (5, 12).

Our work extends that of Faddeeva-Vakhrusheva et al. (3) by showing that high-
quality, complete genome assemblies of Wolbachia strains can be generated without
experimental enrichment of symbiont DNA (e.g., references 13 and 14). Successful de
novo assembly of complete Wolbachia genomes directly from unenriched long-read
sequences also demonstrates that it is unnecessary to computationally filter symbiont
reads from host reads based on similarity to Wolbachia reference genomes prior to
assembly (15, 16). We expect this process to be particularly useful for Wolbachia-
infected hosts with few host-symbiont lateral gene transfer events, such as D. melano-
gaster (17), in which there will be few hybrid reads between host and symbiont to
confound the assembly process. As the cost of long-read sequencing decreases, we
argue that direct sequencing and assembly of unenriched, unfiltered long-read data
sets could be applied easily to other Wolbachia-infected arthropod and nematode
species to expand the number of complete Wolbachia reference genomes.

Data availability. The assemblies produced in this study were deposited at NCBI
under accession number PRJNA557362. PacBio data used to generate these assemblies
were published by Long et al. (4) and are available under SRA accession number
SRP142531. Illumina data used to polish the assemblies were published by Early and
Clark (5) and are available under SRA accession SRP050151. Accession numbers for
assemblies produced and raw read data used in this study are given in Table 1.
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Assembly
Assembly
accession no.

Genome
size (bp)

GC
content (%)

PacBio read
accession no.

No. of PacBio
readsa

Avg PacBio read
length (bp)a

Illumina read
accession no.

No. of
Illumina readsa

Avg Illumina read
length (bp)a
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