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Abstract: The purpose of this study was to improve the dielectric, magnetic, and thermal properties
of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite
(Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of
high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorpo-
rated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to
fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and
the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning
electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The
thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using
a dilatometer apparatus. The complex permittivity and permeability were measured using rectangu-
lar waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz.
The CTE of PTFE matrix decreased from 65.28× 10−6/◦C to 39.84× 10−6/◦C when the filler loading
increased to 25 wt %. The real (ε′) and imaginary (ε′′) parts of permittivity increased with the rFe2O3

loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased
from 5 to 25 wt %. A maximum complex permeability of (1.1− j0.07) was also achieved by 25 wt %
nanocomposite at 10 GHz.

Keywords: PTFE; nanoparticles; microwave; recycled Fe2O3; complex permittivity; complex permeability

1. Introduction

Mill scale scrap is considered as a solid waste generated in the steel and iron industries.
In general, nearly (8–15) kg of mill scale waste is produced per 1000 kg of steel, and the
annual production of mill scale waste is over 13.5 million tons according to preliminary
statistics. Moreover, most of this waste is stockpiled in factories due to its limited uti-
lization. The iron protoxide in this waste can be dissolved in acid rain and subsequently
transferred into soil and ground waters. Mill scale waste has a dual concern with respect to
environmental pollution and land occupancy. Therefore, it is crucial to develop a cleaner
method to solve the abundant mill scale resource issue [1].

The study of synthetic techniques for ferrite nanoparticles production has recently
attracted considerable attention in view of their excellent magnetic and electrical proper-
ties [2]. Up to date, various techniques have been used for the synthesis of Fe2O3 nanopar-
ticles (Reference code: 00-024-0072) such as electrospinning technique [3], reduction-
oxidation process [4], and hydrolysis process [5]. Indeed, the latter techniques have many
disadvantages such as: friability of inorganic nanofibers after calcination [6], non-cost-
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effective for high contaminant concentrations, and slow reaction speed, respectively. How-
ever, mill scale waste materials have never been used to obtain Fe2O3 (00-024-0072) yet.

The microwave absorbing materials (MAMs) are in high demand to absorb the un-
wanted electromagnetic waves via dielectric and magnetic losses [7]. Microwave materials
are used in the frequency range (300 MHz–300 GHz) [8]. MAMs are extensively used for
many military and commercial applications such as electromagnetic shielding [9]. There-
fore, the development of polymer composites (PCs) with tunable dielectric and magnetic
properties have triggered researchers in recent years. The PCs reinforced with nanofillers
have been widely studied to provide improved radiation protection properties compared
to their metal counterparts. In addition, the electronics, packaging, household, energy,
sports, communication, and leisure industries are fully involved in the use of PCs for
various applications [10]. The advanced polymer composites can be fabricated based on
the requirement by selecting quantity, shape, size, and type, of fillers as the reinforcements
in different polymer matrix [11].

Polytetrafluoroethylene (PTFE) is a thermoplastic polymer, and PTFE is the best sol-
vent chemical with the best resistance among thermoplastics. The properties of PTFE such
as high service temperature, low moisture absorption, chemical inertness, etc., are crucial
for many microwave applications [12]. However, PTFE also has certain disadvantages
such as high coefficient of thermal expansion (CTE) [13,14], and low relative complex
permittivity (ε∗) [15]. In addition, several studies have used Fe2O3 as the filler in PTFE
matrix. Madusanka et al. synthesized thick film gas sensor using PTFE and α-Fe2O3
nanoparticles [16] while Kang et al. fabricated porous Fe2O3-PTFE nanofiber membranes
for photocatalysis applications [17]. Moreover, PTFE-Al-Fe2O3 composites were prepared
to be used as reactive materials [18]. The electro-Fenton system was synthesized by com-
bining multiwall carbon nanotubes and Fe@Fe2O3 nanowires with PTFE [19]. It is also
worth noting that Fe2O3 nanoparticles have been widely used as fillers to enhance the
dielectric and magnetic properties of various matrixes such as polycaprolactone (PCL) [2],
polyaniline (PANI) [20], silica [21], and poly(methyl methacrylate) (PMMA) [22]. How-
ever, rFe2O3 nanoparticles have never been used as fillers in PTFE matrix for microwave
absorption applications yet.

In this study, both CTE and ε∗ were improved by incorporating rFe2O3 into a PTFE
matrix. The rFe2O3 nanofiller with enhanced relative complex permittivity can be em-
bedded with a non-conducting polymer matrix such as PTFE to prepare a novel absorber
which could have promising attenuation properties for electromagnetic interference (EMI)
suppression. This absorber can be further enhanced by the magnetic nature of the Fe2O3
nanoparticles and with their high interfacial density due to their good compactness [23].

Knowledge of the complex permittivity and complex permeability of materials has
sparked a great interest in industrial and scientific applications [24]. The interaction
between a dielectric sample and high frequency electromagnetic signal can be expressed
by the relative complex permittivity equation: ε∗ = ε′ − jε′′ , where ε′ and ε′′, respectively,
represent the real and imaginary parts. The ratio of tanδ = ε′′/ε′ represents the loss tangent
of a sample and higher values indicate higher attenuation properties [25]. In Addition,
the interaction effect between a specimen and the magnetic field component of EM waves
can be characterized by the relative complex permeability (µ∗) which can be expressed
by the equation: µ∗ = µ′ − jµ′′ where µ′ and µ′′ represent the real and imaginary parts,
respectively [26]. The real part determines the amount of energy that the material has
stored from an external magnetic field, while the imaginary part measures the attenuation
of the magnetic field by the material. The magnetic loss tangent (tanδµ) is calculated using

the equation tanδµ = µ′′

µ′ [27], which represents the power lost versus power stored in a
sample [28].

In this research, a low-cost, less complicated and non-chemical synthesis of recycled
ferrite was done from mill scale waste. Then, the particle size of rFe2O3 decreased to
nano-size via high energy ball milling (HEBM) in order to enhance the dielectric properties.
The current study also involves the processes of synthesizing five nanocomposites of
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rFe2O3—PTFE by varying the rFe2O3 percentage in the nanocomposites. Afterwards, the
resultant effects of rFe2O3 loadings on the phase composition, thermal expansion tensile
strength, density, complex permittivity, and complex permeability of PTFE matrix were
investigated.

2. Materials and Methods
2.1. Materials

The materials used for the preparation of the rFe2O3 nanoparticles and rFe2O3–PTFE
nanocomposites were: Mill scale flakes (Perwaja Sdn. Bhd., Chukai, Terengganu, Malaysia)
and PTFE molding powder (Fujian Sannong New Materials Co., LTD, Sanming, China)
with average particle size 50–110 µm.

2.2. Synthesis of rFe2O3 Nanopartilces from Mill Scale

Mill scale waste was initially cleaned by removing the impurities and then crushed
manually into powder using mortar. This was followed by the application of the magnetic
separation technique (MST) and Curie temperature separation technique (CTST) to further
purify the powdered mill scale. The materials used for these processing techniques were an
electromagnet which produced 1 Tesla magnetic field intensity, a thin cylindrical glass tube
open at both ends and deionized water of density 1 g/cm3. The CTST was used to separate
the wustite (FeO) and magnetite (Fe3O4) contained in the mill scale slurry collected in the
cold water separation process [23]. In this separation step, the clamped glass tube closed at
the bottom end with a glass stopper, was filled with hot deionized water (100 ◦C) followed
by a small quantity of the slurry. The particles that remained attracted to the magnetic
field were inferred to be magnetite (Fe3O4) because of its higher Curie temperature of
585 ◦C. The rFe3O4 powder obtained was milled via the mechanical alloying technique
using the high energy ball mill (SPEX Sample Prep 8000D, Metuchen, NJ, USA) operated by
a 1425 rpm 50 Hz motor at a clamp speed of 875 cycles/minute. The powder to balls ratio
of 1:10 was used. A total of 7 gm of the Fe3O4 powder was poured into each of the two
vials containing the 70 g of steel balls and milled for 6 h to produce nanoparticles. During
the ball milling Fe3O4 was converted to Fe2O3 due to high temperature and the content of
oxygen in the vials. The preparation process of rFe2O3 nanoparticles is shown in Figure 1.
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2.3. Fabrication of rFe2O3–PTFE Nanocomposites

The rFe2O3–PTFE nanocomposites shown in Figure 2 were fabricated by mixing PTFE
powder with different mass percentages (5–25%) of the rFe2O3 nano-powder as listed in
Table 1. The composites were prepared through a hydraulic pressing and sintering method.

Polymers 2021, 13, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Preparation process of rFe2O3 nanoparticles. 

2.3. Fabrication of rFe2O3–PTFE Nanocomposites 
The rFe2O3–PTFE nanocomposites shown in Figure 2 were fabricated by mixing PTFE 

powder with different mass percentages (5–25%) of the rFe2O3 nano-powder as listed in 
Table 1. The composites were prepared through a hydraulic pressing and sintering 
method. 

 
Figure 2. rFe2O3–PTFE nanocomposites. 

  

Figure 2. rFe2O3–PTFE nanocomposites.

Table 1. Composition of rFe2O3–PTFE nanocomposites.

Composite
Code

Recycled Fe2O3
Nano-Powder PTFE

Total Mass
(g)Percentage

% Mass (g) Percentage
% Mass (g)

Control 0 0 100 60 60
A 5 3 95 57 60
B 10 6 90 54 60
C 15 9 85 51 60
D 20 12 80 48 60
E 25 15 75 45 60

Three different shapes of nanocomposites were fabricated for each mass percentage
in order to suite different characterization apparatuses. The raw materials were weighed
using analytical micro balance (A&D Company, Ltd., GR-200, Tokyo, Japan) which has an
accuracy of ±0.00007 g. The mixing was performed via Wing mixer/blender for 10 min.
Then, the mixed powders were placed into three different molds and pressed using a
hydraulic pressing machine for 5 min under 10 MPa load. Finally, the compact rFe2O3–
PTFE nanocomposites were sintered as follows: the compact nanocomposites were heated
from room temperature to 380 ◦C in a furnace at 2.97 ◦C/min and then maintained for 1 h
to allow the PTFE particles to coalesce completely. The cooling process was 1 ◦C/min from
380 ◦C to room temperature. The rFe2O3–PTFE nanocomposites preparation is shown in
Figure 3. After cooling, the rFe2O3–PTFE nanocomposites were ready for characterizations.
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2.4. Characterization

rFe2O3 nanoparticles, PTFE powder, rFe2O3–PTFE nanocomposites were character-
ized using the following techniques:

2.4.1. X-ray Diffraction (XRD)

The phase composition structure of the samples was analyzed using X-ray diffraction
(XRD). The data were collected using a fully automated Philips X’pert system (Model
PW3040/60 MPD, Amsterdam, The Netherlands) with Cu–Kα radiation operating at a
current of 40 mA, a wavelength of 1.5405 Å, and a voltage of 40 kV. The diffraction patterns
were recorded with a scanning speed of 2◦/min in the 2θ range 10 to 70◦. The collected data
were subjected to the Rietveld analysis on PANalytic X’Pert Highscore Plus v.3.0 software
(PANalytical B.V., Almelo, The Netherlands). The diffraction peaks were compared with
the Inorganic Crystal Structure Database (ICSD). The rFe2O3–PTFE samples were cut from
rFe2O3–PTFE nanocomposites prepared in advanced in a solid form, while the rFe2O3 was
in the form of a fine powder.

2.4.2. High-Resolution Transmission Electron Microscopy (HRTEM)

The size and shape of rFe2O3 nanoparticles were investigated using HRTEM (JEM-
2100F, JEOL, Tokyo, Japan). Drops of rFe2O3 nanoparticles were dispersed and placed on
TEM grids for drying. The dried specimen was then placed in a high-vacuum chamber of
the microscope for viewing and analysis of the nanoparticles.

2.4.3. Field Emission Scanning Electron Microscopy (FESEM)

The dispersion of rFe2O3 nanoparticles in PTFE matrix was evaluated using FESEM
(JEOL Ltd. JSM-7600, Tokyo, Japan). Carbon tapes were used to cover the aluminums stubs
before placing the specimens on them. Then, the samples were coated with titanium using
an auto-fine coater (JEOL Ltd. JEC-3000FC, Tokyo, Japan) to increase their conductivity and
eliminate electromagnetic charges. Finally, the stubs were placed on the FESEM chamber
for analysis.
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2.4.4. Electronic Densitometer

The effects of rFe2O3 nanoparticles on the density of PTFE matrix was determined
using electronic densitometer (Alfa Mirage Co., Ltd. Model MD-300S0, Osaka, Japan)
which employs Archimedes’ principle in order to calculate the density. Distilled water was
used as the immersion fluid. The density was determined using the following equation [29]:

ρ =
Wair × ρdis.water
Wair −Wdis.water

(1)

where Wdis.water is the composite weight in distilled water, Wair is the composite weight in
air, and ρdis.water is the density of the distilled water (1 gm/cm3).

2.4.5. Dilatometer Linseis L75 Platinum

Dilatometer is one of the main techniques used for coefficients of thermal expansion
(CTEs) measurements. In general, to determine the CTE, two physical quantities (tempera-
ture and displacement) must be measured on a specimen that is undergoing a thermal cycle.
In this study, dilatometer (Linseis L75 Platinum, Selb, Germany) was used to determine
the CTEs of composites. The sample was enclosed in the furnace and then heated up to
200 ◦C. When the sample expands, it pushes the central rod along the axis of the tube, and
the relative movement can be characterized [30]. In addition, from an atomic perspective,
the CTE represents the increment in the average distance among atoms with increasing
temperature and, generally, weaker bonds have a higher CTE value [31].

2.4.6. Extensometer (Shimadzu AGS-X 100kN)

rFe2O3–PTFE nanocomposites were fabricated as per the ASTM-D638 standard in
order to find out the ultimate tensile strength (UTS) [32]. The influence of rFe2O3 nanopar-
ticles on the UTS of PTFE matrix was examined using the Shimadzu (AGS-X 100kN, Kyoto,
Japan) with industry-leading (Shimadzu, TRAPEZIUM X, Kyoto, Japan) data processing
software. The pneumatic grips were displaced with a rate of 5 mm/min at room temper-
ature. The data were obtained from the software and data acquisition system monitor
continuously until the specimen reached its UTS and broke.

2.4.7. Rectangular Waveguide (RWG)

The measurements of relative complex permittivity and permeability were carried out
in the frequency range of 8.2–12.4 GHz using rectangular waveguide (RWG) connected to a
Keysight (E5063A) vector network analyzer (Keysight Technologies, Santa Rosa, CA, USA).
As shown in Figure 4, the sample holder containing the sample was carefully attached to
the flanges of RWG in order to totally avoid the air gap. The complex permittivity and
permeability of the nanocomposites were deduced depending on the transmission and
reflection of the waves throughout the composites. The measurement model of RWG to
measure the permeability and permittivity was the poly-reflection–transmission µ and ε
model. This model used an optimization technique which gives constant values for both
ε′ and µ′ throughout the whole frequency range. The transmission–reflection method is
widely used in the EMI characterization because of the field-focusing ability which ensures
an accurate characterization at the microwave frequency. The VNA was calibrated by
implementing a standard full two-port calibration technique for 201 frequency points in
the frequency range 8.2 GHz to 12.4 at room temperature. The characterization procedures
were also described in our previous study [33].



Polymers 2021, 13, 2332 7 of 19

Polymers 2021, 13, x FOR PEER REVIEW 7 of 20 
 

 

software. The pneumatic grips were displaced with a rate of 5 mm/min at room tempera-
ture. The data were obtained from the software and data acquisition system monitor con-
tinuously until the specimen reached its UTS and broke. 

2.4.7. Rectangular Waveguide (RWG) 
The measurements of relative complex permittivity and permeability were carried 

out in the frequency range of 8.2–12.4 GHz using rectangular waveguide (RWG) con-
nected to a Keysight (E5063A) vector network analyzer (Keysight Technologies, Santa 
Rosa, CA, USA). As shown in Figure 4, the sample holder containing the sample was care-
fully attached to the flanges of RWG in order to totally avoid the air gap. The complex 
permittivity and permeability of the nanocomposites were deduced depending on the 
transmission and reflection of the waves throughout the composites. The measurement 
model of RWG to measure the permeability and permittivity was the poly-reflection–
transmission µ and ε model. This model used an optimization technique which gives con-
stant values for both ߝ’ and µ’ throughout the whole frequency range. The transmission–
reflection method is widely used in the EMI characterization because of the field-focusing 
ability which ensures an accurate characterization at the microwave frequency. The VNA 
was calibrated by implementing a standard full two-port calibration technique for 201 
frequency points in the frequency range 8.2 GHz to 12.4 at room temperature. The char-
acterization procedures were also described in our previous study [33]. 

 
Figure 4. Measurement of complex permeability and permittivity using rectangular waveguide 
technique. 

3. Results and Discussion 
3.1. Microstructural Characterization 

The X-ray diffraction (XRD) technique was used to confirm the phase structurers of 
PTFE matrix, rFe2O3 nanopowder, and rFe2O3–PTFE nanocomposites. The XRD results are 
shown in Figure 5. By comparing the obtained diffractograms with the standard patterns 
from the Inorganic Crystal Structure Database (ICSD), the Bragg peaks of obtained recy-

Figure 4. Measurement of complex permeability and permittivity using rectangular waveguide
technique.

3. Results and Discussion
3.1. Microstructural Characterization

The X-ray diffraction (XRD) technique was used to confirm the phase structurers of
PTFE matrix, rFe2O3 nanopowder, and rFe2O3–PTFE nanocomposites. The XRD results are
shown in Figure 5. By comparing the obtained diffractograms with the standard patterns
from the Inorganic Crystal Structure Database (ICSD), the Bragg peaks of obtained recycled
powder were all identified as rhombohedral crystal structure of single phase hematite
(Fe2O3, Reference code: 00-024-0072) with R—3 space group. The diffractogram of rFe2O3
nanopowder showed the following peaks in the pattern at 2θof 24.1◦, 33.1◦, 35.6◦, 40.8◦,
43.5◦, 49.4◦, 54◦, 57.5◦, 62.4◦, and 63.9◦ corresponding to the miller indices (hkl): (012), (104),
(110), (113), (202), (024), (116), (122), (214), and (300), respectively. On the other hand, the
diffractogram of PTFE matrix showed six peaks in the pattern at 2θof 18.04◦, 31.54◦, 36.60◦,
37◦, 41.22◦, and 49.11◦, which agreed with the study carried out by Yamaguchi et al. [34].
The mentioned peaks corresponded to the miller indices (hkl): (100), (110), (200), (107),
(108), and (210), respectively. The diffractograms of rFe2O3–PTFE nanocomposites show
dominant crystalline phase characteristics of PTFE at low concentration of rFe2O3 content
in the nanocomposites. However, the peaks corresponding to the rFe2O3 nanopowder
increased in intensity as the content increased. All peaks shown in rFe2O3–PTFE profiles
belongs to the materials used for the preparation of the composites. The patterns did not
show new peaks suggesting the nanocomposites were pure and there was no conversion
of PTFE or rFe2O3 nanopowder into other materials. The absence of any new peaks of the
nanocomposites also suggests that the rFe2O3 nanoparticles did not chemically interact
with the PTFE matrix and that the mixture was physical in nature.
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The microstructure characterization of the rFe2O3 nanoparticles was performed using
high resolution transmission electron microscopy (HRTEM) to investigate the size and
shape of rFe2O3 particles. The HRTEM results confirmed that the nanoparticles were highly
crystalline as shown in Figure 6, which agreed with the study conducted by Wen et al. [35].
It can also be seen in Figure 6 that the rFe2O3 nanoparticles are aggregated and spherical,
which may be attributed to the long-range magnetic dipole–dipole interaction between the
particles. This observation may also be caused by the drying process during TEM sample
preparation [36]. The rFe2O3 nanoparticles sizes were within the range 7.4–15.24 nm after
6 h of ball milling with an average particle size of 11.3 nm.

The cross-sectional surface images of 5% rFe2O3 (A), 15% rFe2O3 (C), and 25% rFe2O3
(E) nanocomposite are shown in Figure 7. It can be seen in 5% nanocomposite (A) that
there are two main types of patterns observed in PTFE structure. The first pattern is small
outgrowths which are uniformly dispersed on the surface of PTFE and was called “warts”.
The second pattern is “ribbon” like shapes which entirely cover the PTFE surface and was
called “dendrites”. These observations are in accordance with the study conducted by
Glaris et al. [37]. The images confirmed that with an increase in rFe2O3 loadings in the
composites, the adhesion to PTFE matrix increased gradually. There were no agglomerates
observed in rFe2O3–PTFE nanocomposites. The uniform dispersal of rFe2O3 nanoparticles
in the PTFE matrix gives an indication that the nanoparticles were completely implanted
in the nanocomposites and offered interfacial bonding which can enhance the complex
permittivity and permeability.
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3.2. Coefficients of Linear Thermal Expansion (CTEs)

The variation in CTEs with temperature for rFe2O3–PTFE nanocomposites in the
temperature range 30–200 ◦C is presented in Figure 8. It was observed that the values
of CTEs were low for the nanocomposites with higher content of rFe2O3 nanofiller. The
decrease in CTEs of rFe2O3–PTFE nanocomposites is due to the difference between the
CTEs of PTFE matrix and rFe2O3 nanofiller (Fe2O3 has a lower CTE comparing to PTFE).
Figure 8 also shows that the CTEs of all nanocomposites increased as temperature increased
throughout the measurement range. This behavior can be attributed to the increase in
molecular vibrations with temperature, and a linear relationship exists between the CTE
and the thermal capacitance per unit volume. The incorporation of low-CTE rFe2O3 in the
PTFE matrix increased the thermal stability of the nanocomposites over a wide temperature
range. Composites with low CTE are highly desirable for precision structures [38] such
as microwave applications, where temperature fluctuations at the operating environment
could cause substantial change in dimensions leading to destruction in the application.
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3.3. Tensile Strength and Density of rFe2O3–PTFE Nanocomposites

The variation in tensile strength with filler content for different rFe2O3–PTFE nanocom-
posites is presented in Figure 9. The tensile strength of polymer composites depends on
the properties of nanoparticle–matrix interaction which plays an important role in the
level of dissipated energy by different damaging mechanisms which take place at the
nanoscale [39]. As shown in Figure 9, the tensile strength of nanocomposites decreased
with increasing rFe2O3 nanofiller content. This behavior was expectable for polymer com-
posites with inorganic filler and it was reported by a study conducted by Jiang et al. [40].
This decrease could be attributed to the rFe2O3 nanofiller which were not able to support
the stress transferred from PTFE matrix which weakened the nanocomposite [14].
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The variation of density values with different rFe2O3 wt % content in the PTFE
matrix is shown in Figure 10. The 5% (A), 10% (B), 15% (C), 20% (D), and 25% (E) rFe2O3
nanocomposites had the respective density values of 2.2, 2.32, 2.4, 2.49, 2.53 gm/cm3.
Therefore, increasing the rFe2O3 nanofiller corresponded to increased density values of
rFe2O3–PTFE nanocomposites. The increase in density with the increase in Fe2O3 nanofiller
is supported by a study carried out by Ghasemi-Kahrizsangi et al. [41]. This behavior
can be attributed to the higher true density of Fe2O3 (5.24 gm/cm3) [42], in comparison
to the PTFE (2.2 gm/cm3) [43]. The increase in density can cause an observed increase
in dielectric constant [44]. Moreover, Leyland and Maharaj found that the relationship
between density and dielectric constant is directly proportional for various materials [45].
The denser rFe2O3–PTFE nanocomposites results higher number of molecules per unit
volume. A larger number of molecules per unit volume means that there is more interaction
with the electric fields and therefore an increase in the complex permittivity.
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3.4. Complex Permittivity of rFe2O3–PTFE Nanocomposites

The measured complex permittivity values (real and imaginary parts) of rFe2O3–PTFE
nanocomposites in the frequency range of 8.2–12.4 GHz using rectangular waveguide are
shown in Figure 11; Figure 12 while loss tangent is shown in Figure 13. The highest ε′

value of rFe2O3–PTFE nanocomposites was 3.1 for 25% rFe2O3 nanocomposite along the
frequency range 8.2 GHz to 12.4 GHz while the lowest ε′ value was 2.01 for the PTFE
sample. By increasing the rFe2O3 nanofiller in the nanocomposites, both ε′ and ε′′ increased
throughout the measurement range. It can be noticed that ε′ and ε′′ increased from 2.29
and 0.10 for 5% rFe2O3 nanocomposite (A) to 2.39 and 0.14, respectively for 10% rFe2O3
nanocomposite (B) at 8.2 GHz. The same behavior of increasing complex permittivity by
increasing the rFe2O3 nanofiller was observed in all nanocomposites. The ε′ and ε′′ rely
on the contribution of the atomic, electronic, interface, and orientation polarization in the
sample [46]. The interface polarization increased due to the differences in polarization of
the rFe2O3 nanofiller and PTFE matrix.
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The increment in complex permittivity with increasing rFe2O3 nanofiller can be at-
tributed to the polarization process due to the enhanced conductivity and interfacial polar-
ization in the composite and hopping exchange of charges between localized states [23].
One more reason for the influence on the relative complex permittivity of the nanocompos-
ites is the particle size of rFe2O3 nanofiller since the nano size had high specific surface
area that enabled good contact between the particles and the matrix [47]. The increment in
ε′ and ε′′ at low frequency can be attributed to the dominant role of dipolar and interfacial
polarization. However, the increment at high frequencies can be attributed to the electronic
and ionic polarization of the system [48].

It can be also seen in Figure 12 that ε′′ of rFe2O3–PTFE nanocomposites decreased
by increasing the frequency from 8.2 to 12.4 GHz. This decrement can be attributed to
the interfacial dipoles having less time to align in the direction of the external field. The
molecules were able to do a complete orientation at low frequency but they were not able
to achieve the same orientation at high frequency [49]. However, the ε′′ of the PTFE sample
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did not change with frequency because PTFE is a nonpolar polymer [50], which means its
complex permittivity is not dependent on frequency.
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3.5. Complex Permeability of rFe2O3–PTFE Nanocomposites

The permeability characteristics of rFe2O3–PTFE nanocomposites can only be at-
tributed to the rFe2O3 nanoparticles because PTFE is a non-magnetic material [51]. The
variations in µ′, µ′′, and tanδµ of rFe2O3–PTFE nanocomposites are shown in Figures 14–16,
respectively. It is clear that the values of µ′, µ′′, and tanδµ were higher for rFe2O3–PTFE
nanocomposites having higher rFe2O3 content.
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As the content of rFe2O3 nanofiller increased in the rFe2O3–PTFE nanocomposites,
the spacing in the nanocomposites reduced due to the high specific surface area of the
rFe2O3 nanofiller. This made it more difficult for the magnetic field to pass through
the rFe2O3–PTFE nanocomposites, thereby increasing the values of the relative complex
permeability.

The real part (µ′) of the relative permeability values were 1.039, 1.047, 1.06, 1.8 and 1.1
for 5% (A), 10% (B), 15% (C), 20% (D) and 25% (E) rFe2O3 nanocomposites, respectively,
within the frequency range of 8.2–12.4 GHz while the corresponding values of µ′′ were
0.017, 0.023, 0.026, 0.034 and 0.038 at 8.2 GHz. A resonant peak can be clearly seen in each
µ′′ curve between 10 and 10.6 GHz. The increment in µ′ and µ′′ of the polymer composites
with increase in Fe2O3 is supported by studies conducted by Abdalhadi et al. [52] and
Ahmad et al. [53]. In addition, the magnetic loss tangent in Figure 16 followed the behavior
of µ′′ because it was calculated using the equation tanδµ = µ′′

µ′ .
It can be seen that µ′ in Figure 14 shows constant values while µ′′ in Figure 15 shows

non-steady behavior with the frequency. The µ′ is associated with the material storage
capacity of the magnetic field [54], and it did not vary with frequency because of the RWG
measurement model described in Section 2.4.7. On the other hand, the fluctuations in µ′′

with the frequency can be attributed to the magnetic loss. In general, the magnetic loss of a
sample originates because of one of these four reasons: the hysteresis loss, domain-wall
resonance, eddy current effect, and natural resonance [55]. The first reason (hysteresis
loss) which originates from the irreversible magnetization is negligible in a weak applied
magnetization field [56]. The second reason (domain-wall resonance) normally occurs in
the (1–100) MHz range, therefore, this reason can be excluded in this study [57]. The third
reason (eddy current effect) can usually be estimated using the equation of C0 = µ′(µ′′ )2 f−1.
When the magnetic loss originates for this reason, the C0 should be almost constant as the
frequency varied. However, it can be seen in Figure 17 that the C0 values for the rFe2O3–
PTFE nanocomposites varied considerably with the frequency; so, this reason can also
be excluded. Hence, these resonant peaks are associated with the natural ferromagnetic
resonance [58]. The trend of µ′′ is also supported by the study conducted by Liang [59].
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4. Conclusions

In this research, rFe2O3–PTFE nanocomposites were successfully fabricated using
rFe2O3 nanopowder as the filler and PTFE as the matrix. The effect of rFe2O3 loading on
the structural, mechanical, thermal, dielectric, and magnetic properties of PTFE matrix
was investigated. rFe2O3 nanofiller was dispersed uniformly with complete implantation
in the PTFE matrix as presented in the FESEM results. The density increased but the
tensile strength decreased with the increase of rF2O3 nanofiller in the nanocomposites. The
rFe2O3 nanoparticles improved the thermal properties of the PTFE matrix. The complex
permittivity and permeability were also enhanced by embedding rFe2O3 nanofiller in the
matrix throughout the measurement range. The important dielectric, magnetic, thermal
and mechanical properties of rFe2O3–PTFE nanocomposites linked to the content of the
rFe2O3 in the nanocomposites can be employed in possible applications requiring tunable
characteristics.
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