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1   |   INTRODUCTION

MRI relies on highly accurate gradient fields for sig-
nal preparation and spatial encoding. Deviation from 
prescribed gradient waveforms causes image artifacts 
and error in quantitative readouts. Much effort is thus 

dedicated to perfecting gradient hardware and correcting 
remaining error at the levels of input waveforms, image 
reconstruction, and image processing.

One chief cause of perturbation is eddy current driven 
by gradient switching. Eddy currents outside the gradient 
tube, especially in the magnet and cryostat, can be largely 
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suppressed by active shielding.1–3 In contrast, eddy cur-
rents in the gradient coils themselves generally remain 
and are a key consideration in design optimization.3 
Relevant eddy currents can also occur in RF equipment, 
particularly in RF screens.4–6 Remaining eddy currents 
are commonly addressed by pre-compensation filters 
(also termed pre-emphasis) applied to input waveforms, 
exploiting the linear dependence of eddy currents on the 
underlying field dynamics.7–13

Besides eddy currents, gradient switching also drives 
mechanical oscillations, or vibrations, of gradient 
tubes,14–18 which are particularly strong at mechanical 
resonance frequencies 19–22. The mechanical behavior of 
gradient coils has been extensively analyzed, modeled, 
and accounted for in gradient design.15,23,24 As part of 
these efforts, the acoustic response of gradient systems to 
input waveforms has been described by linear models, ex-
ploiting approximate linearity of electromechanical cou-
pling.15,21,25 Naturally, besides acoustics, the mechanical 
behavior of gradient systems is equally central to consid-
erations of structural integrity. However, it can also con-
tribute to field perturbation via reverse coupling from 
mechanics to electromagnetics. One prominent effect of 
this kind is magnetic field oscillation along with mechani-
cal resonance,19 which also alters of coil impedance.26

To capture direct electromagnetic as well as mechan-
ical pathways of field perturbation, gradients have been 
modeled as general linear time-invariant (LTI) sys-
tems.27–30 Such models have proven useful as a basis of 
pre-emphasis,31 for image reconstruction,28,32 and for 
studying field perturbation by devices placed within the 
gradient range.30

LTI modeling covers diverse gradient behavior and 
achieves high degrees of accuracy. But the underlying as-
sumption of time invariance cannot be expected to hold 
strictly. It has been reported that LTI models can retain 
their utility over long periods of time up to three years.32 
However, gradient coils do undergo physical changes in 
the short term as they heat up during operation. Gradient 
heating is predominantly due to ohmic losses in the coils, 
from both bulk and eddy currents, and forms another key 
consideration in gradient system design.33–36

Regarding electromagnetic behavior, the chief effect of 
gradient heating is increase in resistivity. Change in over-
all resistance hardly alters the net current flowing through 
the coil terminals when using gradient amplifiers with 
high output impedance17 or feedback control based on 
sensing of output current.37 However, change in resistiv-
ity due to change in temperature does alter eddy currents 
within coil conductors and in other system parts subject 
to heating. The mechanical properties of gradient tubes 
also change with temperature, forming another poten-
tial cause of LTI violation.29 A mechanism of particular 

interest is thermal shift of mechanical resonances, which 
has been suggested as a cause of time-dependent artifact 
in EPI time series.38

Against this background, the goal of the present work 
is to study the effects of gradient heating at the level of 
system response and to expand the LTI model to include 
thermal variation. To capture changes in response, mea-
surement of gradient transfer functions is performed 
rapidly, in 1 s per frame, and at high spectral resolution. 
Thermal modeling is performed by linear expansion of 
transfer functions in terms of temperature observables. 
It is found that this approach permits prediction of ther-
mal response changes due to both change in the lifetime 
of eddy currents and shifts of mechanical resonances. A 
global linear model is found to perform virtually as well as 
tiling the temperature domain with local models. Parts of 
this work have previously been presented at ISMRM con-
ferences39–41 as referenced in the following.

2   |   METHODS

2.1  |  Hardware

All experiments were carried out on a 3T whole-body 
MRI system (Achieva, Philips Healthcare, Best, The 
Netherlands), equipped with actively shielded gradients of 
maximum strength of 40 mT/m and slew rate of 200 mT/
(m⋅ms). In the gradient tube, the radial order of coils is x, 
y, and z from inside to outside and the z coil and shield are 
water cooled. Throughout this study, the system’s built-in 
eddy current compensation was enabled.

Magnetic field responses were recorded with a 16-probe 
field camera (Skope Magnetic Resonance Technologies, 
Zurich, Switzerland) that yields magnetic field evolution 
in terms of spherical harmonics up to third order.42

Thermal imaging of the gradients in operation was per-
formed with an infrared camera (Compact, Seek Thermal, 
California, USA) mounted on a mobile phone. The camera 
was placed 2.5 m from the patient end of the MRI system 
at an angle of 40◦ to capture at least a quarter of the bore 
wall. For direct view of the gradient tube, the bore liner 
and the RF body coil were removed. Temperature measure-
ments were performed with a total of 19 fiber-optic sensors 
(Neoptix, Quebec City, Quebec, Canada) with temporal res-
olution of 1 Hz and relative accuracy specified as ±0. 2◦C.

2.2  |  Heating and temperature 
measurement

The spatial patterns of gradient heating are frequency 
dependent. To capture frequency differences, gradient 
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heating was induced separately by DC and AC operation 
of one gradient channel at a time, separated by at least 
15 min for approximate cool-down. DC heating was per-
formed over 5 min, using 1.5 s intervals of constant ampli-
tude at 25 mT/m separated by short breaks due to software 
limitations. AC heating was achieved with 4-minute EPI 
sequences of 31 mT/m peak gradient strength and variable 
fundamental frequency of the readout gradient. Low, me-
dium, and high frequencies were targeted by variation of 
scan parameters at the limit of the gradient specifications, 
avoiding mechanical resonance frequencies. The result-
ing frequencies were 355 Hz, 383 Hz, and 390 Hz for the 
x, y, and z gradient, respectively (low range), 761, 880, and 
751 Hz (medium range), and 1029, 1143, and 999 Hz (high 
range). The DC and medium-frequency protocols were 
used for training response models and will be referred to as 
“training sequences.” The low- and high-frequency proto-
cols were used only for validation across frequency bands 
and are referred to as “cross-validation sequences.”

Placement of the temperature sensors was based 
on initial infrared imaging during the 12 heating sce-
narios,41 each followed by subsequent cooling down. 
Heating via the z gradient led to only minor temperature 
change due to the active cooling of this coil. To cover a 
somewhat greater temperature range, the z heating se-
quences were therefore performed twice in immediate 
succession.

The resulting infrared image series, taken at 20 s in-
tervals, were analyzed to determine sensor positions that 
capture the chief temperature dynamics. In a first step, 
candidate sets of 13 positions were chosen randomly and 
the covariance matrix of the 13 temperature time courses 
was calculated for each set. As a metric of temperature 
variation captured, the determinant of the covariance ma-
trix was computed. From 100,000 random sets of positions, 
that with the largest determinant was selected. In a second 
step, this set was refined by maximizing the determinant 
by local gradient ascent. At the resulting positions on the 
inner surface of the gradient tube, 13 temperature sensors 
were mounted. Another five sensors were mounted on the 
water cooling circuits (one on the inflow and four on dif-
ferent outflow channels) and one was used to record room 
temperature.

2.3  |  Measurement of transfer functions

An LTI system is fully determined by its impulse response 
h(t), which relates the system input, i(t), to its output, o(t), 
by a convolution:

In the frequency domain, convolution simplifies to multipli-
cation and deconvolution to division:

where � denotes the angular frequency, I(�) and O(�) the 
Fourier transforms of the input and output, and H(�) the 
system’s transfer function. Viewing a gradient chain in these 
terms, its output is the amplitude of the gradient field that it 
generates while its input may be considered at different lev-
els such as the coil terminals, the analog input to the power 
amplifier, or the preceding digital waveform definition. The 
latter perspective is chosen in the present work and inputs 
are defined via the system console.

Gradient transfer functions were measured as de-
scribed in Ref. [29] using a frequency-swept pulse.43 The 
sweep pulse c(t) was of the form

with the linearly increasing frequency

with bandwidth BW = 30 kHz, pulse length Tp = 40 ms, and 
amplitude A(t) starting at 31 mT/m and gradually decreas-
ing with increasing frequency to stay within slew rate con-
straints. The pulses were played out via the MR system 
console, which was also programmed to trigger acquisition 
with the field camera.

The duration of the field readout determines the fre-
quency resolution of resulting transfer functions. To ex-
tend the effective readout duration beyond the lifetime of 
the field probes, data from multiple successive acquisi-
tions were concatenated. The sweep pulse was played out 
four times in a row with a TR of 250 ms, triggering field 
acquisition at different times as shown in Figure 1. After 
each excitation, the field probe signals decay due to T2 re-
laxation, causing corresponding decline in SNR and noise 
increase in field estimates (Figure 1, right). For smooth 
concatenation, adjacent measurements were taken with 
10 ms of overlap. With this procedure, an effective acquisi-
tion duration of 200 ms was achieved, yielding frequency 
resolution of 5 Hz based on data collected in just under 1 s. 
The gradient transfer function was obtained by frequency-
domain division of the gradient field output and sweep 
input (Equation 2).

Time series of transfer functions were collected after 
each of the aforementioned heating protocols, for 8 min 
and once every 10 s, which was found to suffice based 
on the dynamics observed. Temperature was monitored 
throughout. Temperature and transfer function recordings 

(1)o(t)=∫
∞

−∞

i(�) ⋅h(t−�)d�
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were synchronized based on the console trigger, using lin-
ear interpolation to align the temperature data.

2.4  |  Thermal model

To incorporate thermal behavior, the LTI system model 
is expanded by temperature dependence of the impulse 
response and, equivalently, of the transfer function. In 
doing so, it is assumed that the system is time invariant in 
the short term, at the scale of the duration of its impulse 
response, but changes its characteristics at the scale of 
seconds and beyond. Temperature change is assumed to 
amount to a small perturbation, permitting linear expan-
sion of the temperature-dependent transfer function:

where the index i counts the temperature sensors, T (i) de-
notes the output of the i-th sensor, T (i)

0
 its output in the cold 

state, and H0(�) the transfer function in the cold state.

For the discrete experimental data, Equation (5) as-
sumes the matrix-vector form:

in which the transfer functions H and H0 are vectors with 
rows corresponding to discretized frequency and the tem-
perature dependence is described by the n� × ns matrix Â, 
with ns the number of sensors. ΔT is the vector of the tem-
perature excursions:

Given H0 and Â, this model permits calculation of the 
temperature-dependent transfer function by Equation (6). 
Calibration of this model amounts to determining H0 and Â . 
This was done by fitting to the data obtained with the train-
ing sequences described above. To this end, Equation (6) is 
extended by horizontal stacking of the transfer function and 
temperature vectors and least-squares solving for H0 and Â:

where the subscripts 1⋯nt of H and ΔT count the tempera-
ture states probed for training. Such modeling is performed 
globally as well as locally in the temperature domain. Each 
local linear model is centered about a given T0, for which a 
prediction is desired, and its training is restricted to tempera-
ture states within a sphere of radius R, which will be referred 
to as the temperature radius. More precisely, a local model of 
radius R relies on data taken in temperature states Ti that fulfill

A global model uses all training data and establishes a glob-
ally linear temperature-to-transfer-function relationship 
equivalent for all T0.

(5)H(�,T)≈H0(�)+
∑
i

A(i)(�) ⋅ (T (i)−T (i)
0
)
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0
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0
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]
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+
,

(8)
��ΔTi��2√
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≤R.

F I G U R E  1   Input and field measurement during and after a 40-ms long sweep pulse. The SNR of the field probe readouts drops due to 
T2 decay of the probe signal, causing increase in field noise (right). Therefore, four measurements are concatenated at t = 20, 70, and 130 ms, 
yielding the transfer function at a frequency resolution of 5 Hz in less than 1 s
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2.5  |  Model performance

Model performance was assessed in terms of five metrics. 
First, self-consistency was characterized by the model’s 
root-mean-square error (RMSE) of reproducing the train-
ing data, which is given by the normalized Frobenius 
norm of the residual:

With insufficient diversity of training data, Equation (7) re-
sults in overfitting. In this case, the model will exhibit a high 
degree of self-consistency but perform badly at predicting 
scenarios not included in the training. As an indicator of this 
regime, the condition number of the temperature training 
matrix ΔT̂ was calculated, which is large in the case of overfit-
ting and settles upon robust over-determination of the model.

Model prediction performance was assessed in terms 
of the RMSE of predicted transfer functions, calculated in 
three ways. First, the frequency-resolved RMSE was de-
termined by taking the mean only over time, that is, over 
temperature states:

Second, the error at each time (i.e., in each temperature 
state) was determined as the RMSE taken over frequency 
from 0 to 2 kHz:

Third, the total RMSE over time and frequency (0–2 kHz) 
was calculated, resulting in a single number for each set of 
predictions:

2.6  |  Model validation

The model was trained by repeated heating of the system 
with the training sequences: on three different days within 
1 week for the y and z gradients and, for a more extensive 
study, on seven different days within 3 weeks for the x gra-
dient. Self-consistency and conditioning of local models 
were determined as functions of the temperature radius.

After training, on an additional day, transfer functions 
measured after heating with the same sequences were 
predicted based on the temperatures recorded at the same 
time. Global modeling and local modeling with variable 
temperature radius were compared in terms of RMSE�.

To study the relative importance of the different tem-
perature sensor positions, predictions based on single sen-
sors, subsets of sensors, and all sensors were compared.

The sufficiency of the training sequences was assessed 
in two ways. First, one training sequence at a time was ex-
cluded from training and used to test predictions instead. 
Second, the model was determined using all training se-
quences and tested by predicting transfer functions ob-
tained after heating with the cross-validation sequences.

2.7  |  Simulated imaging

To illustrate heating effects and their correction at the 
image level, EPI and spiral imaging were simulated based 
on measured and modeled transfer functions. Assuming 
a FOV of 23 cm, single-shot EPI was simulated with read-
outs in the x direction and two readout frequencies, one 
matching a mechanical resonance just below 1 kHz (EPI 
on-res, resolution = 2.1 mm) and one off any mechanical 
resonance (EPI off-res, resolution = 1.5 mm). Single-shot 
center-out spiral imaging was simulated with resolution 
= 1.5 mm.

Based on the nominal k-space trajectories of these 
readouts, actual trajectories were obtained by distortion 
according to Equations (1) and (2), using three kinds of 
transfer functions: (i) those measured in a warm state 
(with temperature readings up to 32◦C) and a hot state (up 
to 65◦C), (ii) model estimates for these states, and (iii) the 
transfer functions measured in the cold state. Raw image 
data from a digital 2D brain phantom were generated by 
sampling its Fourier transform along the trajectories mea-
sured in the heated system (i). Image reconstruction was 
then performed with the model-based (ii) and cold-state 
trajectories (iii).

3   |   RESULTS

3.1  |  Temperature patterns and sensor 
positions

The temperature patterns obtained by infrared imaging 
are displayed in Figure 2, showing the respective hot coil 
at a moment when a clear pattern is seen. As is to be ex-
pected, the thermal pattern depends on the gradient di-
rection as well as the frequency of the heating sequence. 
The heating patterns of the x and y gradients are similar 
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up to 90◦ rotation. The temperature pattern of the x coil 
is most pronounced because it is the innermost coil. The 
weak heating pattern of the z gradient reflects active cool-
ing and the largest distance from the surface.

Based on the infrared recordings, 13 sensor posi-
tions (green circles in Figure 2) were found by the op-
timization procedure described in the Methods section. 
Temperature monitoring with these sensors (1 to 13) and 
the six remaining sensors recording cooling-system (14–
18) and room temperature (19) is shown at the bottom of 
Figure 6.

3.2  |  Effects of heating on 
transfer functions

Figure 3 shows an example of thermal change in the trans-
fer functions of the x, y, and z gradients, caused by heating 
with medium-frequency EPI sequences with correspond-
ing readout direction. Two chief effects are observed. First, 
as the gradients heat up, the magnitudes of the trans-
fer functions shift upwards, along with shifts in phase. 
Second, the frequencies of mechanical resonances shift 
down by amounts in the same range as the linewidths.

F I G U R E  2   Infrared images of the inner surface of the gradient tube, showing temperature patterns generated by DC and EPI heating. 
Based on time series of such images, the positions of 13 temperature sensors were optimized for capturing temperature dynamics (green 
circles)
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3.3  |  Model self-consistency and 
conditioning

Figure 4 shows the conditioning, self-consistency, and 
prediction error of the thermal model as a function of 
temperature radius. With training as used in this study, 
the model is seen to be ill-conditioned for radii smaller 
than 6◦C. In this case, few of the temperature states vis-
ited during training lie within the temperature radius so 
that the matrix ΔT̂ contains critically few columns, under-
determining the model. The conditioning settles beyond 
10◦C, indicating robust over-determination. Even in the 
over-determined regime, the condition number per se is 
still large. This is to be expected because temperature is 
naturally correlated between sensor positions, resulting in 
large first singular values of the training matrix. Under-
determination at low temperature radii is also reflected 
by exceeding self-consistency (low RMSESC) and large 
prediction error. RMSESC settles at 1.5–2.0 per mil for all 
gradient axes and the prediction errors settle at only some-
what larger values. Stable self-consistency and prediction 
even at the largest radii indicate validity of the global lin-
ear model.

3.4  |  Global model

Figure 5 shows the performance of the global model 
in terms of prediction error as a function of frequency 
(RMSE�), compared with the deviation from the transfer 
function in the cold state. The model accuracy reaches 

almost the noise level with only small residual error pre-
dicting the behavior of mechanical resonances.

The prediction performance of the global model is vir-
tually independent of temperature as shown by the same 
criteria as functions of time in Figure 6. Error incurred 
by a reference taken in the cold state closely relates to the 
underlying temperature dynamics shown at the bottom 
of the figure. It converges back toward zero as the system 
returns to the cold state. The cool-down and thus the con-
vergence are slow, however, with multiple time constants 
up to the order of 10 min.

The figure also illustrates that heating changes the be-
havior not only of the gradient coil used for heating but of 
all coils, as may be expected due to thermal and mechan-
ical coupling in the same structure. Nonetheless, heating 
by AC operation with the EPI sequences does affect the 
actually driven coil the most, unlike with DC heating. 
Notably, both DC and EPI heating via the actively cooled z 
coil alter the transfer functions substantially although the 
observed temperature changes remain moderate.

3.5  |  Local models

Figure 7 illustrates the transition from the globally lin-
ear model to locally linear models with temperature radii 
ranging from 16◦C down to 5◦C. As the plots show, the 
prediction performances of global and local modeling 
are broadly comparable. The local approach is somewhat 
superior at modeling thermal change of the mechanical 
resonances, suggesting that their largest shifts may breach 

F I G U R E  3   Examples of transfer functions observed in a hot state and the cold state. The chief effects of heating are a general increase 
and phase shift of the field response and downshift of mechanical resonances
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the limits of global linear expansion. At 5◦C radius, the 
local model starts to fail due to underdetermination as ob-
served in Figure 4. In this data, the best radius is at about 
7◦C. However, in view of the moderate benefits of local 

modeling, only global modeling was used in the remain-
der of this study.

3.6  |  Choice of temperature sensors

Figure 8 reports the dependence of model performance on 
the underlying choice of temperature sensors. Use of all 
19 sensors deployed in this study achieves the best predic-
tions. However, notably, even a single well-placed sensor 
such as the most predictive in-bore sensor (#7) or one of 
the outflow sensors on the cooling circuit yield useful pre-
dictions, reducing error to the range of 20%–30% relative 
to the cold reference. Use of more sensors brings down 
the error significantly further and is helpful particularly 
for modeling mechanical resonances. Room temperature 
monitoring (not shown separately) added only negligible 
predictive value.

3.7  |  Prediction of untrained scenarios

Figure 9 illustrates the necessity of training with different 
heating scenarios. The model performance deteriorates 
when training the model with only five of the six train-
ing sequences and using it to predict transfer functions 
observed after heating with the skipped sequence (Figure 
9, top). However, upon use of all training sequences, that 
is, with both AC and DC heating via each of the gradient 
chains, thermal change was predicted rather well for the 
validation sequences with AC heating at lower or higher 
frequency than during training (Figure 9, bottom).

3.8  |  Simulated imaging

Figure 10 shows the results of the imaging simulations 
along with the underlying trajectories. In the EPI trajec-
tories, the strongest heating effect is oscillatory deviation 
in the readout direction, which is caused by change in 
both the transfer amplitude and the delay at the readout 
frequency. On-resonance, large change in delay due to 
shifting of the resonance caused greater net trajectory dif-
ferences, up to 0.2 times the sampling interval, although 
the maximum excursion of the trajectory deviates less 
from nominal than off-resonance. Reconstructions based 
on cold-state trajectories exhibit blurring and ghosting. 
The ghosting is stronger in the on-resonance case, es-
pecially in the hot state, matching the change in delay. 
These artifacts are largely removed by reconstruction with 
model-based trajectories, consistent with greatly reduced 
trajectory error (plotted in red). In the spiral case, the 
trajectory deviations are in the same order of magnitude 

F I G U R E  4   Model conditioning, self-consistency (RMSESC) and 
RMSEtotal of prediction as functions of the temperature radius of the 
model. At small radius, ill-conditioning and high self-consistency 
indicate over-fitting. Stable criteria beyond temperature radius of 
10◦C reflect robust modeling at prediction errors of 0.2–0.3 per mil. 
Stable criteria also at the largest temperature radii indicate validity 
of the global linear model
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while their effects at the image level are smaller. Artifacts 
are visible nonetheless, most clearly in the center of the 
brain, and again largely removed by reconstruction based 
on the thermal model.

4   |   DISCUSSION

According to the results of this study, performed with a 
typical clinical MRI system, gradient response undergoes 
relevant changes upon heating, which can well be esti-
mated by thermal extension of the LTI model, treating 
heating as a linear perturbation.

Of the two main heating effects, the broadband in-
crease of the transfer functions is approximately propor-
tional to frequency in the low kHz range and goes along 
with an equally broadband phase shift. These characteris-
tics suggest that the effect relates to eddy currents in the 
gradient coil conductors. Flowing in small local loops in 
copper at room temperature, such eddy currents are short-
lived,44 matching the broadband nature of the effect. With 
increasing resistivity as the copper heats up, the lifetimes 
of these eddy currents decrease further, reducing their 
shielding effect as seen in the data.

The other prominent heating effect observed here is a 
distinct downshift of mechanical resonances. The frequen-
cies of the vibrational modes of the gradient tube depend, 
among others, on material properties. According to Refs. 
[45, 46], the eigenmode frequencies of hollow cylinders 
are proportional to the square root of Young’s modulus, 
which decreases with increasing temperature.47,48 On this 
basis, the observed downshift likely reflects thermal soft-
ening of the gradient tube. Similarly, thermal increase in 
the loss module may cause stronger damping of vibration 
and thus broadening of the resonance peaks. However, 
this potential effect, if present, was too subtle to be ob-
served in the present data.

It has been found that thermal change in transfer 
functions lends itself to linear expansion in terms of 

temperature, provided suitable temperature observables 
and adequate coverage of the temperature space by train-
ing scenarios. Notably, good prediction performance was 
achieved with global linear modeling, which is particu-
larly convenient due to its simplicity and small demands 
in terms of training, storage, and computation. Good suc-
cess of linear modeling indicates that thermal change is 
suitably small in the scale of the physics that relate tem-
perature and field response. In general, these physics are 
not linear. For instance, the field effects of thermal shifts 
of mechanical resonances are linearizable only across a 
fraction of the peak width. This limit appears to have been 
nearly reached in this work, achieving somewhat better 
prediction of resonance shifts with local models. Local 
modeling is a viable option that overcomes the limits of 
global linearization. In turn, however, it requires more 
training data for suitable overdetermination within each 
local model range. Beyond linear models, one attractive 
future option is non-linear parameterization of trans-
fer functions incorporating knowledge of the physics 
involved.49

Irrespective of the chosen thermal model, sensing and 
training should target all temperature degrees of free-
dom that relate to changes in gradient response. In this 
work, infrared recordings were used to optimize tempera-
ture coverage by a large number of sensors. The implied 
coverage of field response variation was then assessed by 
predictions based on subsets of sensors. Notably, rather 
good modeling was achieved with few well-placed sensors 
already. Nonetheless, the best results were obtained with 
the full set and model errors still remained, indicating that 
relevant thermal degrees of freedom were missed by the 
two-step selection. To directly relate sets of sensor posi-
tions to their ability to encode change in field response, 
infrared imaging and measurement of transfer functions 
could be performed simultaneously. Temperature sensing 
on the cooling circuit has been found to be insufficient by 
itself but to improve results as a complement to sensing 
along the gradient tube.

F I G U R E  5   Performance of the globally linear model in terms of prediction RMSE�. Prediction accuracy reaches almost noise level. 
Subtle residual error remains only at the sites of mechanical resonances
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Regarding training, it has been found to be critical to 
include both DC and AC heating, which generate different 
heating patterns due to different eddy current behavior. 
AC training at an intermediate frequency achieved rather 
good modeling of gradient response after heating with 
other frequencies, albeit not quite at the level observed 
with the same frequency. Similarly, good models resulted 
with few temperature sensors already, with diminishing 
returns of using the full set. Together, these findings indi-
cate that much of the relevant thermal variation is limited 

to few degrees of freedom that can be probed and sampled 
with relatively few training scenarios and sensors.

Nonetheless, the training strategy calls for expansion 
and optimization beyond the initial set of training se-
quences used in this work. More extensive training will be 
time-consuming but benefits greatly from real-time record-
ing of transfer functions as described in this work so that 
every heating scenario needs to be performed only once.

One immediate option for expansion is to probe more 
input frequencies, which will increase the spatial diversity 

F I G U R E  6   Prediction error as a function of time during temperature change. Top: Prediction RMSEt of the global model and the cold 
reference. Bottom: corresponding sensor temperatures
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of temperature patterns by varying the eddy current contri-
bution to heating. Another scenario that will likely involve 
additional degrees of freedom is simultaneous heating by 
multiple gradient coils. With DC inputs, the generation 
of heat by each coil will still be independent of the oth-
ers because each causes dissipation only within its own 
conductor. For linear heat transport, the resulting tem-
perature patterns should then be linear superpositions of 
those obtained with one coil at a time and thus covered 
by per-coil training. The situation is different, however, 
with AC inputs. For bulk current flowing along the coils, 
from terminal to terminal, the argument above still holds 
because the related dissipation is still limited to within 
each conductor. This is not true, however, of local eddy 
currents, which the switching of bulk current in any one of 
the coils induces not only in that same coil but also in the 
others. Upon simultaneous switching of multiple gradient 
coils, these eddy currents superimpose linearly. However, 
heat produced is proportional to the square of their sum 
and thus different from the sum of the heat each gradient 
chain alone would have generated. The number of relevant 

spatial degrees of freedom thus added remains to be inves-
tigated and considered in more advanced training strate-
gies. Simultaneous intense AC operation is a scenario of 
practical importance because it occurs, for example, upon 
angulation of EPI readouts and with spiral scanning.

Training and use of models in this study have been 
limited to temperature distributions that occur during 
gradient cool-down. However, the strategy explored here 
will equally apply with complementary training during 
heat-up. The latter will entail interleaving of heating and 
response measurement intervals or, potentially, gradient 
waveforms that cover both functionalities.

In the present work, gradient characterization was 
performed with a field camera, permitting rapid mea-
surement of transfer functions in under one second and 
at high frequency resolution of 5 Hz. Temporally resolved 
measurement is instrumental in capturing thermal sys-
tem states, which are intrinsically transient. High fre-
quency resolution has been found to be necessary to detect 
subtle changes in mechanical resonances. Alternatively, 
transfer functions can be measured with phantom-based 

F I G U R E  7   Comparison of global and local modeling in terms of prediction RMSE�. The two approaches perform broadly similarly. 
However, local modeling at the best temperature radius of 7◦C is somewhat better at capturing changes in mechanical resonance effects

F I G U R E  8   Dependence of prediction error (RMSE�) on the placement and selection of temperature sensors, using the global model. 
The best results are achieved with all 19 sensors. However, even single-sensor monitoring in-bore or of outflowing cooling water reduces 
prediction error significantly relative to the cold reference (Figure 5)
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methods,28,30 which should equally lend themselves to 
thermal modeling as described in Ref. [39] and in the pres-
ent work, albeit at lower temporal resolution and ability to 
capture transient thermal states. Response measurement 
with a phantom has recently been deployed for study-
ing temperature dependence.50,51 In this contribution, 

response data were averaged over 8 min at a time in ap-
proximate steady states, yielding transfer functions with 
frequency resolution of 100 Hz. Based on temperature 
readings from the MRI system used, transfer functions 
were shown to exhibit approximately linear temperature 
dependency at selected frequencies.

F I G U R E  9   Top: Prediction error (RMSE�) of x gradient transfer functions with incomplete training: One of the training sequences was 
excluded from model fitting and transfer functions after heating with the excluded sequence were predicted. For z gradient heating, the 
prediction still worked relatively well, but it failed for the others. Bottom: When relying on all training sequences, the heating effects of the 
validation sequences with untrained EPI readout frequencies were well predicted
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Thermal modeling of gradient response yields actual 
gradient dynamics during MR scans with greater accuracy 
than is available from calibration measurements in the 
cold state. It thus holds promise to improve image quality, 
particularly for long, gradient-intensive scans with long 
2D or even 3D readouts. A prominent example is BOLD 
fMRI with EPI readouts, which has been reported to suf-
fer from thermal gradient drift,52,53 an observation sup-
ported by the imaging simulations reported here. Given 
temperature-corrected transfer functions throughout an 
exam, actual k-space trajectories can be computed from 
the nominal inputs and used for image reconstruction. 
On the same basis, pre-emphasis could be temperature-
adjusted while scans are running. This approach should 

apply equally to the thermal characterization and pre-
emphasis of high-order shim sets31,43,54 as well as matrix- 
and other multiple-coil arrangements.55–57 Unshielded or 
coupled setups may require the inclusion of cross-term 
characterization43,56 and modeling.

The actual field evolution during any MRI procedure 
can also be obtained by concurrent recording with NMR 
probes.58 Relative to this option, the thermal model exhib-
its somewhat lower accuracy, observed here as residual 
error in predicted transfer functions and slight artifact in 
reconstructed images. Unlike direct field measurement, it 
also requires reproducible system behavior and re-training 
upon changes in hardware configuration. On the upside, 
once trained, the thermal model relies on just temperature 

F I G U R E  1 0   Simulated imaging in a warm state (32◦C, left) and a hot state (65◦C, middle), with three single-shot readouts (from 
the top): EPI off any mechanical resonance, EPI on a resonance just below 1 kHz, and spiral. The shown images were obtained by 
reconstruction based on cold-state transfer functions (“cold H”) and based on the thermal model (“model H”). Right: Effective trajectories 
in the cold state (blue), in the hot state (black), and according to the model (red), and their differences hot-cold (“error cold,” blue) and 
hot-model (“error model,” red). Bottom: spectra of the readout waveforms (x gradient), superimposed with error in the transfer function 
obtained with the model (black) vs the cold reference (grey)
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measurement, which is comparatively simple and inex-
pensive, and fully independent of MR procedures.
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