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Genome-wide profiling of DNA methylation
and gene expression identifies candidate
genes for human diabetic neuropathy
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Abstract

Background: Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes (T2D).
Although the cellular and molecular mechanisms of DPN are poorly understood, we and others have shown that
altered gene expression and DNA methylation are implicated in disease pathogenesis. However, how DNA
methylation might functionally impact gene expression and contribute to nerve damage remains unclear. Here, we
analyzed genome-wide transcriptomic and methylomic profiles of sural nerves from T2D patients with DPN.

Results: Unbiased clustering of transcriptomics data separated samples into groups, which correlated with HbA1c
levels. Accordingly, we found 998 differentially expressed genes (DEGs) and 929 differentially methylated genes
(DMGs) between the groups with the highest and lowest HbA1c levels. Functional enrichment analysis revealed
that DEGs and DMGs were enriched for pathways known to play a role in DPN, including those related to the
immune system, extracellular matrix (ECM), and axon guidance. To understand the interaction between the
transcriptome and methylome in DPN, we performed an integrated analysis of the overlapping genes between
DEGs and DMGs. Integrated functional and network analysis identified genes and pathways modulating functions
such as immune response, ECM regulation, and PI3K-Akt signaling.

Conclusion: These results suggest for the first time that DNA methylation is a mechanism regulating gene expression in
DPN. Overall, DPN patients with high HbA1c have distinct alterations in sural nerve DNA methylome and transcriptome,
suggesting that optimal glycemic control in DPN patients is an important factor in maintaining epigenetic homeostasis and
nerve function.
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Gene expression, HbA1c, Human
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Background
Type 2 diabetes (T2D) accounts for 90 to 95% of the 463
million people suffering from diabetes worldwide [1] and
is associated with macro- and microvascular complica-
tions. Of these, microvascular complications are more
common and affect multiple tissues including the eye, kid-
ney, and nerve [2, 3]. Diabetic neuropathy affects the
nerve and is the most prevalent microvascular complica-
tion that can present in multiple forms, the most common
being diabetic peripheral neuropathy (DPN) [4]. DPN af-
fects up to 60% of T2D patients and is characterized by
distal-to-proximal nerve damage that results in reduced
sensation, chronic pain, increased infection risk, and re-
current foot ulceration that can lead to lower limb ampu-
tations [4–6]. Despite the enormity of the problem,
current treatments often fail to slow or reverse DPN pro-
gression in T2D [7]. Therefore, understanding the patho-
genesis of DPN is critical for developing mechanism-
based therapies.
The risk of developing T2D and DPN is determined

by both genetic and lifestyle factors [3, 8]. Transcrip-
tome profiling has provided insight into disease patho-
genesis by identifying numerous genes and pathways
implicated in DPN, including inflammation [9–12], oxi-
dative stress [10, 12, 13], lipid metabolism [14, 15], and
mitochondrial dysfunction [11, 16]. However, many of
these previous analyses were either performed in animal
models or using microarrays, which have several limita-
tions, including a narrow dynamic range, low sensitivity,
and dependency on predefined transcripts [17–19].
Next-generation RNA-sequencing (RNA-seq) is consid-
ered a potential alternative to microarrays because it is
unbiased and more sensitive [18, 20]. However, RNA-
seq has not yet been used to characterize the transcrip-
tomic changes in human DPN.
In addition to genetic factors, epigenetic mechanisms,

such as DNA methylation, histone modifications, chro-
matin remodeling, and RNA editing and biogenesis have
recently emerged as a potential link between gene ex-
pression and environmental factors [21]. DNA methyla-
tion refers to the reversible attachment of a methyl
group to a cytosine within cytosine–phosphate–guanine
(CpG) dinucleotides [22]. In differentiated cells, DNA
methylation contributes to the maintenance of normal
DNA structure, chromosome stability, and gene regula-
tion [23]. DNA methylation regulates gene expression
without altering the underlying DNA sequence and is of
particular interest because of its emerging role in T2D
and its complications [24–27]. We recently showed that
aberrant DNA methylation is involved in nerve degener-
ation in T2D and DPN in a small cohort of patients [24].
Specifically, our results highlighted the role of DNA
methylation in regulating pathways previously shown to
be implicated in DPN pathogenesis, including axon

guidance, glycerophospholipid metabolism, and MAPK
signaling. However, much less is known about the im-
pact of differential DNA methylation on gene expression
in DPN and how the interaction between genetic and
epigenetic mechanisms may affect biological pathways
during DPN pathogenesis.
In this study, we expanded on our previous findings by

conducting a comprehensive systems biology analysis
that combines global DNA methylome and genome-
wide transcriptome profiling in human sural nerves of
T2D patients with DPN. By integrating epigenomic and
transcriptomic data, we found associations between
hemoglobin A1c (HbA1c), DNA methylation, and differ-
ential gene expression patterns within pathways known
to play a key role in DPN pathogenesis. These findings
support the involvement of epigenetic dysregulation in
DPN and offer candidate targets for developing thera-
peutic strategies for DPN.

Results
Study population
To identify specific mechanisms that are differentially
transcribed in T2D and DPN, we determined gene
expression profiles using RNA-seq in sural nerve biop-
sies obtained from DPN patients from a double-blind
placebo-controlled clinical trial of a candidate treatment
that proved ineffective [28, 29]. Sural nerve biopsies (n =
78) from T2D patients with DPN were initially classified
based on changes in myelinated fiber density (MFD)
over 52 weeks [30]. Genome-wide DNA methylation
profiling was also performed on the same cohort, using
reduced representation bisulfite sequencing (RRBS).
Patient clinical characteristics are available in Additional
file 2: Table S1, including HbA1c, triglyceride and chol-
esterol levels, and neuropathy phenotyping by MFD
counts and O’Brien neuropathy score.

RNA-seq and RRBS quality assessment and alignment
summary
All samples had high-quality RNA-seq reads with an
average of 96% reads per sample that survived trimming
with Trimmomatic (Additional file 2: Table S2). Ap-
proximately 77% of the total reads uniquely aligned to
the hg19 reference human genome, except one sample
(ID 63096) with a unique mapping rate of 33%, which
was excluded from subsequent analyses. In total, an
average of 90 million paired-end and single-end reads
per sample was generated by RNA-seq. To identify genes
and pathways under epigenetic control in human DPN,
we next examined genome-wide DNA methylation using
RRBS profiling. Briefly, over 98% were high-quality
reads, and approximately 52 million reads per sample
could be uniquely mapped (55%~68%) to hg19 (Add-
itional file 2: Table S2). CpG sites on X and Y
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chromosomes were excluded, resulting in a total of 1,
602,934 CpG sites identified for differential methylation
analysis. In total, an average of 45 million pairs of 50-bp
paired-end reads and 90 million 50-bp single-end reads
were generated for RNA-seq and RRBS, respectively.

Data-driven clustering analysis
We first examined the overall gene expression similarity
among the samples using hierarchical clustering analysis.
Cluster dendrogram (Additional file 1: Figure S1A) de-
fined three groups of samples, which did not correlate
with the previous classification based on changes in
MFD [30]. We then identified the clinical factors that
were significantly associated with these transcriptomics
data-driven groups by applying principal component
analysis (Additional file 1: Figure S1B) and multifactorial
logistic regression analysis. HbA1C levels were the only
clinical factor that significantly differed across these
groups (p = 0.04; Fig. 1). For downstream analyses, we
focused on clusters with the highest (group 1, n = 21)
and lowest (group 2, n = 32) HbA1c. Clinical character-
istics and neuropathy measures for groups 1 and 2 are
summarized in Table 1.

Differentially expressed genes (DEGs) analysis
A total of 998 genes were differentially expressed in
group 1 (high HbA1c) relative to group 2 (low HbA1c)
with a Benjamini-Hochberg adjusted p value < 0.01. Of
the 998 DEGs, we found that 542 genes were signifi-
cantly upregulated and 456 genes were significantly

downregulated (Additional file 2: Table S3). The top 30
most upregulated and downregulated DEGs along with
their annotation are presented in Table 2. Additionally,
the top 50 most significant DEGs are labeled in an MA
plot (Additional file 1: Figure S2) and gene expression
levels of the 100 most significant DEGs in group 1 ver-
sus group 2 are displayed in a heatmap (Additional file
1: Figure S3). Interestingly, significantly upregulated
genes in group 1 compared to group 2 included the long
noncoding RNA NEAT1, which has been recently impli-
cated in T2D and neurodegeneration [31, 32]. The im-
mune response has also been repeatedly shown to be
involved in T2D and neurodegeneration [9, 14], and
downregulated DEGs included immune response genes
CCDC80 and CD14.

Functional enrichment analyses of DEGs
To better understand biological functions and molecular
pathways associated with the DEGs, we performed func-
tional enrichment analysis using Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, Gene Ontology
(GO), Reactome, and Disease Ontology (DO) terms with
an adjusted p value < 0.05 as the significance cutoff.
Using KEGG pathway analysis, we found significant en-
richment of pathways related to phagosomes as well as
antigen processing and presentation (Fig. 2a, Additional
file 2: Table S4). “Cell adhesion molecules (CAMs),”
“Type I diabetes mellitus,” and “Neurotrophin signaling
pathway” were also significantly enriched (Fig. 2a, Add-
itional file 2: Table S4). Moreover, 688 GO terms were

Fig. 1 Violin plot of % hemoglobin A1c (HbA1c) level distribution in groups 1 and 2. Each dot corresponds to the HbA1c (%) of a patient and
color corresponds to the groups
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significantly overrepresented in group 1 relative to group
2. Further clustering based on gene content using Data-
base for Annotation, Visualization and Integrated Dis-
covery (DAVID) clustering [33] identified 24 significant
GO clusters. Those included biological processes such as
“cellular component organization,” “extracellular matrix
organization,” and “regulation of immune response” (Fig.
2b, Additional file 2: Table S5). Within these pathways,
top DEGs included members of the transforming growth
factor-beta (TGF-β) family, previously associated with
the development of DPN [34]. Additionally, pathways in-
volving calcium signaling and homeostasis were dysregu-
lated in group 1 compared to group 2, with significant
enrichment in terms like “calcium-mediated signaling”
and “calcium ion transport into cytosol” (Additional file
2: Table S5).
We also performed enrichment analysis using Reactome

and DO, and found that 58 Reactome and 39 DO path-
ways were significantly altered (adjusted p value < 0.05,
Additional file 1: Figure S4A-B, Additional file 2: Tables
S6-7). Many of these pathways were similar to those iden-
tified by KEGG and GO analysis, including “adaptive im-
mune system,” “extracellular matrix organization,” “axon
guidance,” and “demyelinating disease.” Interestingly,
DEGs were highly involved in neuronal and glial function
as well as myelination according to DO, such as insulin-
like growth factor I (IGF-I) (Additional file 2: Tables S6-7)
and the antioxidant superoxide dismutase 2 (SOD2) (Add-
itional file 2: Table S7) [35, 36].

DNA methylation changes
We found a total of 2066 differentially methylated CpG
sites (DMCs) between group 1 and group 2, of which
1169 were hypomethylated and 897 were hypermethy-
lated (Additional file 2: Table S8). The overall percent-
age of DMCs ranged between 45 and 50% (Fig. 3a), with

no significant differences in methylation patterns across
the chromosomes. We also determined the genomic dis-
tribution of altered DNA methylation and the distribu-
tion of DMCs in relation to CpG islands. Approximately
7% of DMCs were located in promoter regions, 37% in
introns, 12% in exons, and ~ 44% in intergenic regions
(Fig. 3b). Additionally, the majority of DMCs were in
“non-CpG-rich regions” (denoted as “other” in the fig-
ure), while 34% of DMCs were located in CpG islands
and shores (Fig. 3c).
To explore how DMCs induce functional changes in the

genome, we mapped them to 1519 unique NCBI Refer-
ence Sequence Database (RefSeq) IDs (Additional file 2:
Table S8). Only the genes with valid official gene symbols,
referred to as differential methylated genes (DMGs) (n =
1489), were included in downstream analyses. A total of
929 DMGs (mapped from 1167 DMCs) exhibited hypo-
methylation, while 686 DMGs (mapped from 894 DMCs)
exhibited hypermethylation in group 1 compared to group
2. Approximately 8% of DMGs (n = 126) were mapped
from both hypermethylated and hypomethylated DMCs.
With respect to the distance of DMCs from transcript
start sites (TSSs), 201 DMCs corresponding to 153 DMGs
were within a 5 kb distance upstream from their respective
TSSs. The top 20 DMCs within the promoter regions (< 5
kb distance from TSS), along with their annotated genes
(DMGs), are listed in Table 3 and include several micro-
RNAs and coding genes.

Functional enrichment analysis of DMGs
We next annotated DMGs for biological and functional
enrichment using KEGG, GO, Reactome, and DO terms
(Fig. 4, Additional file 1: Figure S5). A total of 24 KEGG
pathways were significantly enriched and included “extra-
cellular matrix (ECM)-receptor interaction,” “MAPK sig-
naling pathway,” “ErbB signaling pathway,” and “axon

Table 1 Clinical characteristics and neuropathy measures of groups 1 and 2

Group Group 1 (n = 21) Group 2 (n = 32) p value

Age 57.4 ± 9.1 55.7 ± 7.6 0.46

Sex (male/female) 13/8 20 /12 0.77

Body mass index (kg/m2) 30.1 ± 6.0 31 ± 5.6 0.55

HbA1c (%) 8.7 ± 1.6 7.8 ± 1.4 0.04*

Cholesterol (mmol/L) 5.7 ± 1.4 5.9 ± 1.1 0.56

Triglyceride (mmol/L) 2.8 ± 1.8 2.8 ± 2.5 0.96

Diabetes duration (years) 8.6 ± 6.9 9.9 ± 6.2 0.50

MFD, baseline (fibers/mm2) 3783.2 ± 1714.9 3073.7 ± 1567.3 0.14

MFD, 52 weeks (fibers/mm2) 3771.1 ± 1965.9 2942.4 ± 1750.2 0.13

MFD, change (fibers/mm2) −12.1 ± 1062.2 −131.3 ± 1082.1 0.69

ALCAR treated, n (%) 15 (71.4%) 20 (62.5%) 0.56

Values are the mean ± standard deviation (SD). p value was calculated by Student’s t test and Fisher’s exact test
ALCAR acetyl-L-carnitine, MFD myelinated fiber density
*p value < 0.05
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guidance” (Fig. 4a, Additional file 2: Table S9). Significant
DMGs within these pathways included structural genes
and genes related to nerve damage, inflammation, and dia-
betes, such as ERBB4 and IL1B. GO analysis showed that
1519 DMGs were highly enriched in 929 biological pro-
cesses, which were further clustered using DAVID cluster-
ing into 15 GO clusters with kappa > 0.5. Over-
represented clusters included processes related to ECM
remodeling such as cell adhesion as well as nervous sys-
tem development (Fig. 4b, Additional file 2: Table S10),
with significant DMGs such as SOX9 and Nr2f2 (Add-
itional file 2: Table S10).

Additionally, we performed a pathway enrichment
analysis using the Reactome database and DO ana-
lysis, and identified 117 and 55 significant pathways,
respectively (Additional file 1: Figure S5). Enriched
Reactome pathways primarily included those involved
in insulin signaling such as “PI5P, PP2A and IER3
regulate PI3K/Akt signaling,” “PI3K cascade,” “IRS-
mediated signaling,” and “IRS-related events triggered
by IGF1R” (Additional file 1: Figure S5A, Additional
file 2: Table S11). DMGs under Reactome were also
associated with “VEGFA-VEGFR2 pathway” (Add-
itional file 2: Table S11).

Table 2 The 15 most upregulated and downregulated DEGs

Gene symbol Entrez ID Annotation Log2FoldChange Adjusted p value

RPS29 6189 Ribosomal protein S3A 1.51 1.50E−06

ANKRD36B 57730 Ankyrin repeat domain 36B 1.30 1.64E−07

ANKRD36 375248 Ankyrin repeat domain 36 1.29 7.32E−11

SPTBN5 51332 Spectrin beta, non-erythrocytic 5 1.29 6.03E−06

SLC7A5P2 27173 Solute carrier family 39 member 1 1.21 1.84E−07

HERC2P2 400322 Hect domain and RLD 2 pseudogene 2 1.18 1.67E−07

MIR143HG 728264 Cardiac mesoderm enhancer-associated
noncoding RNA

1.18 2.62E−06

KAT2A 2648 Lysine acetyltransferase 2A 1.17 5.24E−08

CCNL2 81669 Cyclin L2 1.15 4.74E−13

MYO15B 55930 Myosin VC 1.14 3.50E−09

LOC440300 440300 Chondroitin sulfate proteoglycan 4 pseudogene 1.14 5.28E−08

LINC00342 378805 Long intergenic non-protein coding RNA,
p53-induced transcript

1.13 4.40E−08

LENG8 114823 Leukocyte receptor cluster member 8 1.12 1.92E−10

SMG1P3 100271836 SMG1P3, nonsense mediated mRNA decay
associated PI3K related kinase pseudogene 3

1.12 2.94E−08

NEAT1 283131 Nuclear paraspeckle assembly transcript 1
(non-protein coding)

1.11 1.52E−11

ASPN 54829 Asporin −1.11 1.68E−06

PI16 221476 Peptidase inhibitor 16 −1.12 3.13E−06

SELPLG 6404 Selectin P ligand −1.14 3.32E−04

WISP2 8839 WNT1 inducible signaling pathway protein 2 −1.16 4.30E−07

MRC1 4360 Mannose receptor C-type 1 −1.19 2.10E− 05

SELL 6402 Selectin L −1.19 3.22E−04

CYBB 1536 Cytochrome b-245 beta chain −1.22 1.74E−05

CCDC80 81576 Coiled-coil domain containing 130 −1.23 1.93E−12

C1QA 712 Complement C1q A chain −1.23 1.24E−04

LYVE1 10894 Lymphatic vessel endothelial hyaluronan
receptor 1

−1.28 2.11E−06

MPEG1 219972 Macrophage expressed 1 −1.31 2.06E−07

CD14 920 CD4 molecule −1.36 4.02E−07

F13A1 2162 Coagulation factor XIII A chain −1.40 1.00E−08

C1QC 714 Complement C1q C chain −1.45 1.45E−08

C1QB 713 Complement C1q B chain −1.50 6.92E−08
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Overlap analysis between DMGs and DEGs
To understand the relationship between epigenetic regula-
tion and transcriptomic changes in DPN and T2D, we exam-
ined the overlap between DMGs and DEGs. To that end, we
screened 998 DEGs (Additional file 2: Table S3) and 1489
DMGs (Additional file 2: Table S8) for both altered gene ex-
pression and differential methylation, along with their corre-
sponding directional changes. We found that 71 genes were
shared between the DMGs and DEGs sets (Additional file 2:
Table S13), and the majority of corresponding DMCs were
located in intronic or intergenic regions. Among these 71
shared genes, 13 genes included multiple DMCs, while 58
genes included a single DMC per gene. These shared genes
were divided into four categories based on the directional
changes in DNA methylation and gene expression: “Hypo-
Down” for the hypomethylated and downregulated genes (n
= 20), “Hypo-Up” for the hypomethylated and upregulated

genes (n = 33), “Hyper-Down” for the hypermethylated and
downregulated genes (n = 14), and “Hyper-Up” for the
hypermethylated and upregulated genes (n = 19) (Fig. 5a).
To further explore the interaction between DEGs and

DMGs, we first constructed a gene interaction network
using DEGs to identify gene sets that might highly inter-
act with each other. DEGs were queried against the
Search Tool for the Retrieval of Interacting Genes (STRI
NG) database, and we generated an interaction network
using the highest scoring confidence cutoff (score > 0.9).
DMGs were then superimposed on the gene interaction
network, and only the DEGs with a corresponding sig-
nificant change in DNA methylation were listed (Fig. 6).
This network included two large subnetworks and mul-
tiple small ones. The largest subnetwork included genes
highly related to the immune response and locomotion
and cell migration, and the second-largest subnetwork

Fig. 2 Functional enrichment analysis of DEGs by KEGG and GO. The 20 most significantly enriched biological functions using KEGG (a) and GO
(b) are illustrated in dot plots. Rich factor refers to the proportion of DEGs belonging to a specific term. Node size (gene number) refers to the
number of DEGs within each term and node color indicates the level of significance (−log10 p value)
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included genes involved in RNA binding and regulation
of gene expression. Network analysis further showed a
high degree of connectivity between phospholipase C
gamma 2 (PLCG2) and G protein-coupled receptor 17
(GPR17), suggesting a role in DPN pathogenesis. Im-
portantly, the network also highlighted highly connected
overlapping genes between the differentially expressed
and methylated gene sets, such as Thy-1 cell surface
antigen (Thy1), also known as CD90. Thy1 has been im-
plicated in nervous system development, neuronal injury,
and immune response [37], and was found to be hypo-
methylated and downregulated in group 1 relative to
group 2. Our results also show that mitogen-activated
protein kinase 8 interacting protein 3 (MAPK8IP3), re-
cently implicated in nerve degeneration and axonal
neuropathy [38], is hypomethylated and upregulated in
group 1 compared to group 2.
We lastly performed functional enrichment analysis on

the genes showing opposite direction (Fig. 5b) and same
direction (Additional file 1: Figure S6) of change in DNA
methylation and gene expression. KEGG analysis showed
that these genes are highly enriched in pathways includ-
ing “ECM-receptor interaction,” “Pathways in cancer,”
“PI3K−Akt signaling pathway,” and “calcium signaling
pathway.” These numerous epigenetically regulated

pathways are in agreement with our previous study,
which demonstrated that many of the pathways previ-
ously identified as key mechanisms in human DPN are
under epigenetic control [24].

Experimental validation using RT-qPCR
Based on biological relevance, we next selected two tar-
gets from the DMG and DEG overlap and functional en-
richment analysis to validate by real-time quantitative
PCR (RT-qPCR) (Fig. 7): Thy1 and prostaglandin-
endoperoxide synthase 1 (PTGS1), with CpG sites lo-
cated within intergenic regions. Thy1 was significantly
hypomethylated by RRBS and downregulated by RNA-
seq, and its gene expression followed a similar decreas-
ing pattern in group 1 compared to group 2 (p = 0.0163;
Fig. 7a). The directions of methylation and expression
changes for PTGS1, a gene involved in neuropathic pain
[39], were also discordant (hypomethylated/downregu-
lated), and this finding was further confirmed by RT-
qPCR, with a significant decrease in PTGS1 gene expres-
sion in group 1 versus group 2 (p = 0.0111; Fig. 7b).

Discussion
Although several genes and pathways are implicated in
the pathophysiology of DPN, the molecular mechanisms

Fig. 3 Distribution of differentially methylated CpGs (DMCs). a DMCs across chromosomes are depicted in a circular plot. Hyper- and hypomethylated
CpGs are colored in red and blue, respectively, relative to group 2. The distributions of DMCs summarized based on genomic location (b) and relative
to CpG islands (CpGi) (c)

Guo et al. Clinical Epigenetics          (2020) 12:123 Page 7 of 16



underlying disease onset and progression remain largely
unknown. DNA methylation, a major regulator of gene
expression, has recently emerged as a key player in the
development of diabetic complications, including DPN
[24–27]. The aim of the present study was therefore to
define the methylomic and transcriptomic signatures of
human DPN and to understand how DNA methylation
influences gene expression and thus contributes to nerve
fiber damage. Using RNA-seq and RRBS, we determined
differentially altered molecular pathways in both the
methylome and transcriptome of sural nerves from well-
characterized patients with T2D and DPN, and confirm
findings gathered from experimental and clinical DPN
[10, 24, 40, 41]. We also report the first integrated ana-
lysis of methylomic and transcriptomic datasets and
identified differences in the methylation of genes encod-
ing pathways involved in “immune response,” “ECM-re-
ceptor interaction,” and “PI3K−Akt signaling pathway.”
These findings not only shed light on the role of epigen-
etic mechanisms in driving the expression of well-known
regulators and novel targets of DPN but also help iden-
tify potential disease-modifying targets.
DPN is characterized by decreased nerve conduction

velocities and the loss of both unmyelinated and myelin-
ated nerve fibers [30, 40]. Accordingly, our initial ana-
lysis of the present cohort classified sural nerve biopsies
based on their MFD, to reflect disease progression [30].

In this study, unbiased clustering of RNA-seq data sepa-
rated those samples into distinctive clusters, which sig-
nificantly differed in HbA1c levels. T2D patients with
high HbA1c (8.7 ± 1.6%) showed distinct variations in
their sural nerve transcriptome relative to patients with
lower HbA1c (7.8 ± 1.4%). These findings suggest that
transcriptomic changes in this cohort are associated with
glycemic status, an established and independent risk fac-
tor for DPN development [30, 42].
When looking at transcriptomic changes, we found al-

terations in the expression of genes involved in immune
response, calcium signaling, and axon guidance, which
are highly relevant to nerve injury based on our current
understanding of DPN pathogenesis [40, 43]. Moreover,
the downregulation of the antioxidant SOD2 was of par-
ticular interest because this effect has been previously
associated with increased oxidative damage and a stron-
ger neuropathy phenotype in animal DPN models [44].
Consistent with these findings, the downregulated SOD2
suggests that antioxidant capacity is depleted in sural
nerve biopsies of T2D patients with higher HbA1c and
may participate in hyperglycemia-induced nerve injury.
HbA1c-related nerve injury was also accompanied by
changes in DNA methylation that mostly occurred
within the gene body, a common pattern of diabetic
complications [45]. DMGs were highly enriched for
functions related to MAPK signaling, axon guidance,

Table 3 Top 20 DMCs within the promoter region

Gene CpG location q value Methylation difference (%) Type Gene description

DOK7 chr4:3486002 2.17E−38 −50.10 Protein_coding Docking protein 7

MIR3648-1 chr21:9825780 1.02E−20 −30.84 MicroRNA MicroRNA 3648-1

GALNT9 chr12:132692165 2.53E−33 28.53 Protein_coding Polypeptide N-acetylgalactosaminyltransferase 9

C15orf57 chr15:40858818 5.12E−24 28.46 Protein_coding Chromosome 15 open reading frame 57

TNNT3 chr11:1939527 5.15E−08 −28.28 Protein_coding Troponin T type 3 (skeletal, fast)

P2RX1 chr17:3821014 4.19E−34 −27.10 Protein_coding Purinergic receptor P2X, ligand-gated ion channel, 1

LMF1 chr16:1022800 2.21E−11 −26.96 Protein_coding Lipase maturation factor 1

VAC14-AS1 chr16:70787597 7.18E−07 −26.42 Antisense VAC14 antisense RNA 1

HOXA-AS3 chr7:27179251 4.33E−06 −25.87 Antisense HOXA cluster antisense RNA 3

LOC100129931 chr4:7048841 1.02E−58 25.30 ncRNA Uncharacterized LOC100129931

LINC01168 chr10:134778467 1.01E−13 −25.27 LincRNA Long intergenic non-protein coding RNA 1168

SNORD59B chr12:57038157 1.58E−05 24.49 snoRNA Small nucleolar RNA, C/D box 59B

SNAI3 chr16:88753392 5.22E−06 −24.27 Protein_coding Snail homolog 3 (Drosophila)

MIR3648-1 chr21:9825613 1.59E−33 24.04 MicroRNA MicroRNA 3648-1

MIR3687-1 chr21:9826027 2.08E−17 −24.02 MicroRNA MicroRNA 3687-1

LOC100134317 chr19:36800758 5.25E−20 23.97 ncRNA Uncharacterized LOC100134317

MIR663AHG chr20:26189971 1.66E−07 23.77 MicroRNA MIR663A host gene

AEBP2 chr12:19592255 2.69E−07 23.69 Protein_coding AE binding protein 2

CABLES1 chr18:20712894 1.01E−05 23.43 Protein_coding Cdk5 and Abl enzyme substrate 1

GBP5 chr1:89739007 1.41E−35 22.80 Protein_coding Guanylate binding protein 5
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and VEGFA-VEGFR2 pathway. These observations, in
line with our previous findings in a smaller human co-
hort and animal models of DPN, suggest a direct role for
these pathways in DPN progression [10, 24].
Although RNA-seq and RRBS revealed transcriptomic

and methylomic changes in sural nerve biopsies, this ap-
proach alone did not identify specific genes whose ex-
pression levels may be influenced by epigenetic factors.
For the first time, we integrated methylation and gene
expression datasets to determine whether the interaction
between the methylome and transcriptome differed in
T2D DPN patients with high (poor glycemic control)
versus low HbA1c (good glycemic control). Specifically,
our results determined that DNA methylation within the
promoter or gene body was both concordantly and dis-
cordantly associated with gene expression. DNA methy-
lation within promoter regions is associated with gene
silencing and is generally considered a hallmark of

cancer [21]. However, results from our group and others
show that DNA methylation changes, in particular dis-
cordant changes, occur more frequently within gene
bodies in diabetic complications, including DPN [24,
45]. Here, we confirmed and expanded our previous
findings and demonstrated that the direction of change
between DNA methylation and gene expression in hu-
man nerves can be both concordant and discordant.
Network analysis of overlapping DMG and DEG genes

identified pathways involved in immune response, an
important player in DPN development [46]. However,
our results extend the literature to identify for the first
time the role of DNA methylation in regulating
immune-associated gene expression in human DPN. We
found that PLCG2 was hypomethylated and overex-
pressed in sural nerves from patients with higher
HbA1c. PLCG2 encodes a signaling protein essential for
regulating immune cells, including macrophages [47],

Fig. 4 Functional enrichment analysis of DMGs by KEGG and GO. The 20 most significantly enriched biological functions using KEGG (a) and GO
(b) are illustrated in dot plots. Rich factor refers to the proportion of DMGs belonging to a specific term. Node size (gene number) refers to the
number of DEGs within each term and node color indicates the level of significance (−log10 p value)
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and has been recently implicated in neurodegenerative
disorders [48, 49]. Peripheral nerve tissue consists of
multiple cell types, including immune system macro-
phages and supportive Schwann cells, the myelinating
cells of the peripheral nervous system, and axonal exten-
sions. The current analysis did not account for the dif-
ferential cell-type composition of sural nerve biopsies
between groups 1 and 2. Therefore, it is unclear whether
PLCG2 was expressed by the Schwann cells or infiltrat-
ing macrophages from the nerve biopsy tissue. However,
evidence suggests that these two cell types interact with
each other in the context of nerve injury and demyelin-
ation, and a similar mechanism may be occurring in hu-
man DPN in a PLCG2-associated manner [50, 51].
Future experiments addressing cell-specific changes
would provide new insights into DPN pathogenesis.
Other immune-related genes of interest were GNAS and

MAPK8IP3. GNAS, a complex imprinted locus with mul-
tiple gene products, including the G protein α-subunit
Gsα [52], was hypermethylated and downregulated. GNAS
is an interesting finding because it is critical for peripheral
nerve myelination [53] and modulates lipid and glucose
metabolism [54, 55], which are both dysregulated in ex-
perimental and clinical DPN [10, 14, 40]. We also detected
hypomethylated and upregulated MAPK8IP3, a scaffold
protein for c-Jun N-terminal kinase (JNK), in sural nerves
of patients with higher HbA1c. In addition to its emerging
role in nerve degeneration and axonal neuropathy [38],
MAPK8IP3 may be an important player in the progression
of human DPN through its close interaction with Toll-like
receptor 4 (TLR4) and JNKs [56]. We recently demon-
strated a role for TLR4 in immune-mediated

inflammation in murine DPN [57]. Additionally, JNK is a
key signaling pathway promoting inflammation and insu-
lin resistance in diabetic complications, including DPN
[40, 58]. Thus, our results support a role for epigenetic
mechanisms in regulating immune-associated genes such
as PLCG2, GNAS, and MAPK8IP3 and suggest that they
may be potential disease-modifying therapeutic targets in
human DPN.
Another mechanism thought to contribute to DPN is

ECM remodeling [59], and we have previously reported
transcriptomic changes in the composition and function
of the ECM pathways in DPN [9, 14]. In the current
study, the overlapping genes between DMGs and DEGs
were enriched with biological functions related to loco-
motion/cell migration and ECM-receptor interaction,
consistent with the previous findings [9, 14]. In particu-
lar, we showed that the hypomethylation of tissue inhibi-
tor of metalloproteinase 2 (TIMP2) was associated with
reduced gene expression. TIMP2 regulates the activity of
matrix metalloproteinase 2 (MMP2), and the MMP2/
TIMP2 ratio is essential for maintaining ECM integrity
[60]. An imbalance between MMP2 and TIMP2 contrib-
utes to ECM accumulation and fibrosis in diabetic ne-
phropathy [61], an effect that may be mediated at least
in part by TGF-β [62], which was also dysregulated in
the present study. Additionally, the MMP2/TIMP2 axis
modulates sciatic nerve ECM during nerve repair [63]
and an impaired MMP2/TIMP2 axis has been implicated
in the pathogenesis of DPN [64]. Given its prominent
role in the regulation of nerve ECM, it is not surprising
that our gene interaction network revealed that TIMP2
was highly connected to members of the collagen family,

Fig. 5 Overlap between DMGs and DEGs. a Heatmap of methylation and expression changes of the overlapping DMGs and DEGs. The first
column of each group corresponds to the methylation change (green: hypermethylated, blue: hypomethylated), while the second column
represents the gene expression change (red: upregulated, blue: downregulated). DMCs belonging to the same genes are illustrated separately. b
Dots include the significantly enriched KEGG pathways among the overlapping genes with opposite directions between DMGs and DEGs (hypo-
up and hyper-down groups)
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Fig. 6 Interaction network of DMGs and DEGs. An interaction network among the DEGs was generated using STRING, a database of known and
predicted protein-protein interactions with the highest confidence score cutoff (score > 0.9). Node corresponds to a DEG, while edge indicates an
interaction between two nodes. To visualize DMGs superimposed on the gene interaction network, only the DEGs with corresponding significant
change in DNA methylation are labeled and highlighted with the color indicating the direction of methylation change: hypermethylation (red),
hypomethylation (green), and both hyper- and hypomethylation (yellow). Major clusters were subjected to functional enrichment analysis in
terms of GO and KEGG/Reactome pathways, with the most significantly enriched biological functions annotated in the network. Singletons not
connected to another gene were excluded from this network
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such as collagen type VI, α3 (COL6A3), which has also
been associated with fibrosis and inflammation in dia-
betic nephropathy [65]. While we speculate that alter-
ation of TIMP2 and COL6A3 in human DPN results in
ECM remodeling, further investigation will determine
how these changes impact nerve function in diabetes.
Impaired insulin signaling in DPN may induce myelin-

ation deficits in Schwann cells and insulin resistance in
sensory neurons [66, 67]. Our results show that insulin
signaling pathway genes such as IRS2 are differentially
methylated and that IGF-I is downregulated, indicating
impaired insulin signaling in the sural nerves of patients
with higher HbA1c. Insulin and IGF-I both signal
through the PI3K-Akt pathway, which in turn exerts
multiple cellular actions through downstream effectors,
including the mammalian target of rapamycin complex 1
(mTORC1) [68]. PI3K-Akt-mTORC1 signaling is heavily
implicated in Schwann cell lipid synthesis, a critical
mechanism for myelination [66], whose disruption is as-
sociated with impaired nerve function [69]. Consistent
with these findings, our KEGG-based analysis revealed a
dysregulated PI3K-Akt pathway at both the DNA methy-
lation and gene expression levels, and suggests that
DNA methylation may be a new mechanism for regulat-
ing PI3K-Akt in peripheral nerves. Although the
mTORC1 pathway is not differentially expressed in this
cohort, preliminary evidence from our group supports
the involvement of mTORC1 in T2D-mediated nerve in-
jury (data not shown), and future studies will elucidate
the interaction between PI3K-Akt and mTORC1 in the
context of DPN.
Thy1 and PTGS1 were the genes selected for RTq-

PCR validation because of their relevance to known
nerve injury mechanisms in DPN [37, 39]. Thy1 and

PTGS1 were hypomethylated within the intergenic re-
gion and downregulated in gene expression, which is ex-
pected when methylation occurs outside the promoter
region [22]. Chen et al. have shown that Thy1 levels are
reduced following nerve crush and return to near con-
trol levels after nerve repair [70]. While the type of nerve
insult is different in our study (metabolic versus acute),
our results also show that Thy1 is downregulated follow-
ing injury, supporting the idea that this gene is a nega-
tive regulator of neurite outgrowth. PTGS1 encodes
cyclooxygenase 1 (COX-1), a modulator of inflamma-
tion, which influences neuropathic pain in dorsal root
ganglia and spinal neurons [39, 71]. Inhibiting COX-1 in
streptozotocin-induced diabetic rats attenuates hyper-
algesia [72]. The hypomethylation-dependent reduction
in PTGS1 gene expression in the sural nerves of patients
with higher HbA1c suggests it is involved in DPN patho-
genesis, supports our findings of a role for inflammation
in DPN, and warrants further investigation.

Conclusions
We profiled the sural nerve methylome and transcriptome
in human DPN to identify changes in molecular mecha-
nisms underlying disease pathogenesis. We show that
HbA1c levels are associated with transcriptomic changes
and pathways which modulate important molecular func-
tions, such as the immune response and axon guidance.
Our functional and network analyses of integrated epigen-
etic and transcriptomic data revealed regulation of some
of these pathways by DNA methylation, a potentially re-
versible mechanism linking genetics and lifestyle factors.
We found that immune response, ECM-receptor inter-
action, and PI3K-Akt signaling pathways are under epi-
genetic control and may play a crucial role in DPN

Fig. 7 qPCR validation of genes with a similar direction of change in DNA methylation and gene expression. RNA was extracted from human
sural nerve biopsies from group 1 (n = 9–10) and group 2 (n = 10), which was used as the relative control group (set to 100%), and quantified
by RT-qPCR. Data were normalized to tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) and expressed
as % change calculated by the 2−ΔΔCT method. *p < 0.05 relative to group 2
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development. Although the exact mechanisms are yet to
be elucidated, our results suggest that optimal glycemic
control is one of the important factors in maintaining epi-
genetic homeostasis and nerve function.

Methods
Sample collection and preparation
Human sural nerve biopsies were collected during a pre-
vious 52-week double-blind placebo-controlled clinical
trial of acetyl-L-carnitine for treating DPN [28, 29]. The
trial design and selection criteria were described previ-
ously [29]. Briefly, the trial included adult male and fe-
male subjects diagnosed with T1D or T2D for at least 1
year and with an HbA1c > 5.9%, with clinically evident
DPN, defined by at least 2 neurological findings, includ-
ing clinical symptoms or abnormal electrophysiological
tests (nerve conduction velocity or vibration perception
threshold) [73, 74]. Patients with non-diabetic causes of
neuropathy, complicating diseases (such as HIV or sig-
nificant cardiac or hepatic disorders), and alcohol or
drug abuse were excluded.
A sural nerve biopsy was collected from the distal calf

at the time patients enrolled and another biopsy was col-
lected from the opposite leg after 52 weeks of treatment.
Sural nerve myelinated fiber density (MFD) is a reliable
morphological criterion for DPN diagnosis [75]. Based
on percent myelinated fiber density change (%delta-
MFD) over 1 year, these patients were divided into three
groups (denoted as regenerator, intermediator, and
degenerator) in the previous analysis [30]. For the
current study, a total of 78 patients with T2D were se-
lected for methylome and transcriptome profiling; pa-
tient characteristics are given in Additional file 2: Table
S1. Different from previous analyse s[30], these 78 pa-
tients were segregated into groups 1 and 2 using an un-
biased clustering analysis (see below methods). The
University of Michigan Institutional Review Board for
Human Subject Research approved the use of human
sural nerve samples.

Genome-wide gene expression and methylation profiling
DNA and RNA were extracted from human sural nerves
using the Qiagen AllPrep DNA/RNA Mini Kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s
protocol. DNA and RNA quantity was assessed using a
Qubit fluorometer, and the quality was evaluated using a
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).
Samples with RNA integrity numbers ≥ 8 were prepared

for RNA-sequencing (RNA-seq) using the Illumina Tru-
Seq mRNA Sample Prep v2 kit (Illumina, San Diego, CA,
USA). Approximately 90 million 50-base pair (bp) paired-
end reads per sample were obtained on an Illumina HiSeq
2500 system (Illumina, San Diego, CA). RNA-seq was

performed by the University of Michigan DNA Sequen-
cing Core (http://seqcore.brcf.ed.umich.edu).
RRBS was performed by the University of Michigan Epige-

nomics Core as previously described [76]. Briefly, DNA was
digested with the MspI restriction enzyme and purified using
phenol:chloroform extraction and ethanol precipitation,
blunt-end digested, phosphorylated, and ligated into an
adapter duplex with methylated cytosines. The ligated frag-
ments were cleaned and size selected by an agarose gel. Bi-
sulfite conversion was performed for selected fragments
followed by PCR amplification and cleanup using AMPure
XP beads. The Qubit assay and Agilent’s High Sensitivity
D1000 assay were used to quantify the libraries, which were
then sequenced on the Illumina HiSeq 2500 platform to ob-
tain approximately 90 million 50 bp single-end reads per
sample.

Sequencing data analysis
Quality filtering and read mapping
For the RNA-seq data, low-quality (Q < 30) reads and
sequencing adapters were removed with Trimmomatic
[77] and the quality of raw reads was assessed with
FastQC (version 0.11.5, Babraham Bioinformatics, UK).
Clean reads were then mapped to the human reference
genome hg19 Refseq using Hisat2 [78]. FeatureCounts
[79] was used to count reads mapped to individual genes
and only uniquely mapped reads were used in the count-
ing step. Genes with zero expression across all samples
were omitted from the correlation and differential ex-
pression analysis. Fragments per kilobase of exon per
million mapped reads (FPKM) was calculated to repre-
sent gene expression levels.
Similarly for the RRBS data, quality control of the

RRBS data was performed using FastQC (version 0.11.5,
Babraham Bioinformatics, UK), and low-quality reads
were removed with Trim Galore (version 0.5.0, Babra-
ham Bioinformatics, UK). Then, trimmed reads were
aligned and mapped using Bismark [80] to the human
hg19 reference genome. The percentage methylation
level was calculated by #C/(#C + #T), where #C is the
number of methylated reads and #T is the unmethylated
reads. Then, only the CpG sites with a read coverage >
10, a quality score > 20, and appeared at least in 10 sam-
ples among each group, using the parameter “min.-
per.group = 10,” were kept for downstream analysis.

Unbiased sample clustering based on RNA-seq data
The RNA-seq data was normalized by DESeq2 R pack-
age using the default parameters [81]. Unsupervised
hierarchical clustering and principal component analysis
on the normalized expression values were used to exam-
ine the overall similarity among the samples, which iden-
tified three sample groups with high similarity. We also
determined whether clinical factors (Additional file 2:

Guo et al. Clinical Epigenetics          (2020) 12:123 Page 13 of 16

http://seqcore.brcf.ed.umich.edu


Table S1) were significantly associated with the three
groups using multifactorial logistic regression analyses.

Differential expression and methylation analyses
Differentially expressed genes (DEGs) were identified using
DESeq2 [81] and genes with a Benjamini-Hochberg adjusted
p value < 0.01 were deemed as DEGs. Differentially methyl-
ated CpGs (DMCs) were defined as a CpG site with a methy-
lation difference of > 15% and a false discovery rate adjusted
p value (q value) < 0.01 between group 1 and group 2. DMCs
were then annotated based on genes and CpG island (CGi)
features. Each DMC was mapped to a gene, having the short-
est distance from its transcript starting site to the DMC.
These mapped genes were defined as differentially methyl-
ated genes (DMGs).

Functional enrichment analysis
To identify and compare the overrepresented biological func-
tions, enrichment analysis was performed using a hypergeo-
metric test with our in-house R analysis package richR
(http://github.com/hurlab/richR). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, Gene Ontology
(GO) terms, Reactome pathway (https://reactome.org), and
Disease Ontology (DO: http://disease-ontology.org) terms
were used in the enrichment analysis, and the terms with
Benjamini-Hochberg corrected p values < 0.05 were deemed
as significantly overrepresented biological functions in each
DEG set. To reduce redundancy in the GO enrichment re-
sults, additional term clustering was performed using the
clustering parameter kappa > 0.5, which included GO clus-
ters with a minimum of 5 GO terms, as implemented in the
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) [33, 82]. The same functional enrichment
analysis was performed for the DMG sets with a nominal p
value < 0.05 as the cutoff value. Dot plots with the top 20
most significant terms were generated.

RT-qPCR validation
Two shared genes between DMGs and DEGs (Thy1 and
PTGS1) were selected for validation by quantitative real-time
polymerase chain reaction (RT-qPCR). RNA was isolated
from sural nerve biopsies using RNeasy fibrous tissue mini
kit (Qiagen, Valencia, CA, USA) from group 1 (n = 9–10)
and group 2 (n = 10), which was used as the relative control
group (set to 100%). Reverse transcription was performed
using iScript Supermix (Bio-Rad Laboratories, Hercules,
California). qPCR reactions were carried out using sequence-
specific TaqMan™ probes (ThermoFisher/Applied Biosys-
tems) for Thy1 (Hs06633377_s1) and PTGS1 (Hs00377726_
m1) in an Applied Biosystems StepOneTM RT-PCR system.
Using the 2−ΔΔCT method, tyrosine 3-monooxygenase/tryp-
tophan 5-monooxygenase activation protein (YWHAZ) was
used as the endogenous control and group 2 as the relative
control. Statistically significant differences were calculated

using a Student’s t test with the GraphPad Prism 7 software
(GraphPad Software Inc.).
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