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Abstract: This study aims to determine the changes in, and bioaccessibility of, polyphenols and
organosulfur compounds (OSCs) during the simulated gastrointestinal digestion of black onion,
a novel product derived from fresh onion by a combination of heat and humidity treatment, and to
compare it with its fresh counterpart. Fresh and black onions were subjected to in-vitro gastrointesti-
nal digestion, and their polyphenol and OSC profiles were determined by ultra-high-performance liq-
uid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Although to
a lesser extent than in the fresh onion, the phenolic compounds in the black variety remained stable
during the digestion process, presenting a higher bioaccessibility index (BI) with recovery corre-
sponding to 41.1%, compared with that of fresh onion (23.5%). As for OSCs, apart from being more
stable after the digestion process, with a BI of 83%, significantly higher quantities (21 times higher)
were found in black onion than in fresh onion, suggesting that the black onion production process
has a positive effect on the OSC content. Gallic acid, quercetin, isorhamnetin, and È-glutamyl-S-(1-
propenyl)-L-cysteine sulfoxide were the most bioaccessible compounds in fresh onion, while isorham-
netin, quercetin-diglucoside, È-glutamyl-S-methyl-L-cysteine sulfoxide and methionine sulfoxide
were found in black onion. These results indicate that OSCs and polyphenols are more bioaccessible
in black onion than in fresh onion, indicating a positive effect of the processing treatment.

Keywords: black onion; fresh onion; polyphenols; organosulfur compounds; simulated digestion;
in-vitro digestion; bioaccessibility

1. Introduction

Onion (Allium cepa L.), a member of Allium genus, is frequently used in gastronomy
around the world and is one of the main ingredients of the Mediterranean diet [1,2].
This product originated in Central Asia, from where its cultivation and consumption
spread to the rest of the world [3]. Many medicinal properties have been attributed to
members of the Allium family throughout history. These properties have made them
the focus of many research studies into the relationship between their consumption and
the prevention of diseases such as stomach, colorectal, prostate, and breast cancers [4].
Preventing and treating other chronic diseases such as diabetes, cardiovascular diseases,
obesity, and metabolic syndromes are some benefits of the regular consumption of Allium
vegetables, likely due to the presence of biofunctional compounds (polyphenols and
OSCs) [5]. Black onion is a novel product that has been developed by the food industry
by processing (aging) raw onion under temperature- and humidity-controlled conditions
using no artificial additives. The heating treatment (at 60–80 ◦C) used to produce this
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product has been shown to affect its phytochemical composition. Up to 12-fold decreases
have been found in flavonoid content, while, in contrast, the OSC content is higher [6].
Black onion shows a series of significant compositional and organoleptic modifications in
comparison to the original product, such as a sweeter taste, the lack of a spicy sensation
(pungency), and a black-brown colour. The main changes with regard to its composition
are a lower phenolic compound content and significant increases in isoalliin, fructose,
glucose, and tartaric acid [6]. The elimination of the undesirable characteristics of fresh
onion at the sensory and digestive levels enhances consumer acceptance of black onions,
increasing the probability of their consumption. To date, there have been no studies on
the potential benefits of consuming black onion. However, in-vitro studies have shown
that black shallot extract presents higher anticancer and anti-inflammatory activities than
fresh onion extract when evaluated in cell lines [7]. Indeed, quercetin, the main polyphenol
found in black onion, is related to some beneficial effects, such as an antiproliferative
effect on ovarian, breast, and colon cancer cells [8] and a protective effect against certain
pathologies related to lipid metabolism, such as atherosclerosis and diabetes [9]. Moreover,
isoalliin, the major OSC in both fresh and black onion, and other OSCs have been found
to present health-promoting benefits [10]. However, to exert beneficial effects in vivo,
polyphenols and OSCs from onion must be bioaccessible, be released from the food matrix,
and be ready for absorption [11,12] into the gastrointestinal tract. in-vitro digestion models
are a good tool for evaluating the bioaccessibility of biofunctional compounds [13,14],
including polyphenols and OSCs. For instance, the literature reports the bioaccessibility of
polyphenol compounds in different food matrices, including apples [15], blueberries [16],
oranges [17], fresh and black garlic [18], and fresh onion [19]. However, to the best of our
knowledge, the effect of in-vitro gastrointestinal digestion on the bioaccessibility of the
individual profiles of phenolic compounds and OSCs from black onion remains unknown.
Therefore, the aim of this study was to evaluate the bioaccessibility of both polyphenols
and OSCs from black and fresh onion during simulated gastrointestinal digestion by
monitoring them using ultra-high-performance liquid chromatography coupled with high
resolution mass spectrometry (UHPLC-HRMS) and to investigate the possible impact of
the transformation process during the production of black onion on bioaccessibility.

2. Materials and Methods
2.1. Chemicals

α-Amylase enzymes from human saliva (937 units/mg protein), pepsin (500 units/mg
protein), pancreatin from porcine pancreas (4 × UPS), bile salts, and calcium chloride were
purchased from Sigma-Aldrich (Madrid, Spain). HCl was obtained from Merck (Darmstadt,
Germany), and NaOH was acquired from Fisher Scientific (Madrid, Spain). Sodium bicar-
bonate and ammonium carbonate were purchased from Sigma-Aldrich (Madrid, Spain),
sodium chloride and magnesium chloride hexahydrate were purchased from Fisher Scien-
tific (Madrid, Spain), and potassium dihydrogen phosphate was obtained from VWR
International Eurolab (Barcelona, Spain). Reference flavonoid compounds including
isorhamnetin, luteolin, quercetin, quercetin-3-O-glucoside alliin and s-allyl-L-cysteine
(SAC) together with formic acid were acquired from Sigma-Aldrich (Madrid, Spain). Am-
monium formate, ammonium acetate, and ethanol were obtained from Sigma-Aldrich.
Acetonitrile (LC-MS grade) and methanol (LC-MS grade) were obtained from Panreac
(Barcelona, Spain).

2.2. Materials and Sample Preparation

Fresh and black “Shallot” onions (Allium cepa var. aggregatum) were obtained from
a local supplier (La Abuela Carmen®). One batch of fresh onion (5 kg) was divided
equally into two groups, one being used to obtain black onion. The black onion samples
were obtained by an optimized process that combines heat treatment with controlled
humidity conditions, enabling a product with different organoleptic properties to be
obtained, as previously described [6]. The fresh and black onions were peeled and ground
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using liquid nitrogen with cryogenic grinder mill equipment to obtain a final particle size
of 10 µm (Freezer Mill model 6870, Fisher Scientific, Waltham, MA, USA) and stored at
−80 ◦C until the simulated gastrointestinal digestion process.

2.3. Simulated Gastrointestinal Digestion and Evaluation of Bioaccesibility

An in-vitro oral, gastric, and intestinal digestion model, previously reported by Juániz
et al. [20], was adapted to obtain a bolus with the right consistency to perform the in-vitro
digestion experiments [21]. Briefly, 2 g of each lyophilized onion sample was weighed in
a 100 mL amber glass bottle. The whole process was performed in a stirred water bath
(Unitronic Reciprocating Shaking Bath model 6032011, J.P. Selecta, Barcelona, Spain) at
37 ◦C in triplicate. During the oral phase, simulated salivary fluids (SSFs) (Table 1) were
used. A total of 14 mL of SSF solution was added to the samples, together with 250 µL
of an α-amylase (300–1500 U/mg protein) solution (1.3 mg/mL), 0.1 mL of 0.3 M CaCl2,
and 5.65 mL of distilled water. The mixture was shaken at 37 ◦C for 30 min. For the
gastric phase, simulated gastric fluids (SGFs) (Table 1) were used. After the oral phase,
it was necessary to adjust the fluids to pH 3 with 1 M HCl solution. Then, 15 mL of
SGF solution was added to the samples, together with 1.19 mL of a pepsin (3.2–4.5 U/mg
protein) solution, 0.01 mL of 0.3 M CaCl2, and 3.8 mL of distilled water. The pepsin solution
was prepared with 1 g of pepsin in 10 mL of 0.1 M HCl. The mixture was incubated at
37 ◦C for 120 min. For the intestinal phase, simulated intestinal fluids (SIFs) (Table 1) were
used. After the gastric phase, 22 mL of SIF solution was added to the samples, together
with 10 mL of pancreatin (4 × UPS) solution (8 mg/mL), 5 mL of bile salts (25 mg/mL),
0.08 mL of 0.3 M CaCl2, and 9.92 mL distilled water. Then, 1 M NaOH solution was
used to adjust the solution to pH 7. The mixture was incubated for 120 min at 37 ◦C.
Aliquots of the digested samples were taken before oral digestion (BOD) and after every
stage of the digestion process: oral, gastric, and intestinal digestion (AOD, AGD, and AID,
respectively). These samples were lyophilized and stored at −80 ◦C until polyphenol and
OSC extraction and analysis. The bioaccessibility indices were calculated as percentages of
the initial content (before oral digestion, BOD) of the compound (polyphenol or OSC) after
simulated gastrointestinal digestion (before oral digestion, BOD) [22,23].

Table 1. Details of the fluids used in the simulated gastrointestinal digestion.

Solution
Concentration SSFs SGFs SIFs

Molarity mL mL mL

MagCl2(H2O)6 0.15 0.313 0.250 0.688
KCl 0.50 9.438 4.313 4.250

KH2PO4 0.50 2.313 0.563 0.500
(NH4)2CO3 0.50 0.038 0.313 0.688

NaHCO3 1.00 4.250 7.813 26.563
NaCl 2.00 - 7.375 6.000

Distilled Water - 233.650 229.375 211.313

Final Volume 250 250 250
SSFs: simulated salivary fluids; SGFs: simulated gastric fluids; SIFs: simulated intestinal fluids.

2.4. Polyphenol and Organosulfur Compound Extraction and Analysis

Samples from the in-vitro gastrointestinal digestion were extracted in triplicate follow-
ing the previously optimized and validated procedure reported by Moreno-Rojas et al. [24].
The polyphenols and OSCs in the fresh and black onion extracts were analysed using an
UHPLC-HRMS mass spectrometer system (Thermo Scientific, San José, CA, USA) compris-
ing a UHPLC pump, a PDA detector scanning from 200 to 600 nm, and an autosampler
operating at 4 ◦C (Dionex Ultimate 3000 RS, Thermo Corporation, San José, CA, USA).
The chromatographic characteristics of the separation of the polyphenols and OSCs, as well
as the details of their identification and quantification, were previously [18,24].
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2.5. Statistical Analysis

The results are expressed as the mean of three replicates measured for each sam-
ple. Multiple comparisons were performed using a one-way ANOVA using R statistics
software (v. 3.6.3) to identify significant differences between the phases of the simulated
gastrointestinal digestion, with significance being established at p < 0.05. Next, Fisher’s
LSD pairwise comparison was performed on the data. A principal component analysis
(PCA) was performed as an unsupervised method using SIMCA software (v.15.0.2) to
determine whether the overall changes in the profiles of polyphenols and OS compounds
were different enough to distinguish between the simulated gastrointestinal digestion
stages and product types (fresh or black onion).

3. Results and Discussion
3.1. Changes in Polyphenolic Contents of Fresh and Black Onions after Simulated Gastrointestinal
Digestion and Bioaccesibility

A total of 17 polyphenols were identified and quantified in the fresh onion sam-
ples before simulated gastrointestinal digestion was carried out. Flavonoids were the
main ones, accounting for 86.5% of the total content, while phenolic acids represented
13.5%. Overall, quercetin diglucoside (39.7%), quercetin 4-O-glucoside (23.6%), vanillic acid
(11.6%), and myricetin (9.9%) were the main phenolic compounds in the nondigested
fresh onion samples (Table 2). These results are in line with those of Böttcher et al. [25],
who reported, among others, quercetin glycosides with glucosyl moieties in 4′-O and 3-O
positions as being the main flavonoids in red and yellow onion cultivars. Regarding black
onion, a total of seven polyphenols were identified and quantified, the main type being
free quercetin, which accounted for 94% of the total content (Table 2). The remaining
polyphenols, representing between 2.6 and 0.06% of the total, were isorhamnetin fol-
lowed by luteolin, quercetin-diglucoside, quercetin-3-O-glucoside, quercetin-4-O-glucoside,
and isorhamnetin-4-O-glucoside (Table 2). This difference in phenolic composition be-
tween onion products is mainly attributed to the changes occurring during the black onion
elaboration process, as previously reported by Moreno-Ortega et al. [6]. They observed
that the heating and humidity conditions used to obtain black onion from fresh onion
have an important impact on its physicochemical composition, with free quercetin being
the main compound found in black onion from three onion varieties (94% for “Shallot”,
99% for “Chata”, and 99% for “Echalion”). These decreases in the phenolic content during
the production of black onion are arguably attributed to the oxidation of flavonoids to
semi-quinoid intermediates and the respective quinones, which normally react further
with other quinones to produce dark melanin pigments [26] or with proteins to produce
dark polymers [27].

The effect of in-vitro gastrointestinal digestion on the concentrations of individual
polyphenols in fresh and black onions is shown in (Table 2). A gradual decrease is observed
in the total concentration of polyphenols from the buccal phase (AOD) to the intestinal
phase (AID) in both onion products.
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Table 2. Concentration (nmol/g FW) of polyphenols found in fresh and black onion samples at different stages of simulated gastrointestinal digestion. Data are expressed as mean values
(n = 3).

Compounds
BOD AOD % Recovery AGD % Recovery AID % Recovery-Bioaccessibility p-Value

Fresh Onion

Phenolic Acids

p-Coumaric acid 2.48 a 0.93 b 37.5 0.36 c 14.5 0.32 c 12.9 ***

Vanillic acid 274 b 365 a 133.2 70 d 25.5 193 c 70.4 ***

Gallic acid 3.6 c 4.9 b 136.1 2.6 d 72.2 11.4 a 316.7 ***

Caffeic acid 2.05 a 1.01 b 49.3 0.43 c 21.0 0.27 d 13.2 ***

Ferulic acid 4.8 b 5.3 a 110.4 2.8 c 58.3 3.0 c 62.5 ***

Total Phenolic Acids 287 b 377 a 131.4 76 d 26.5 208 c 72.5 ***

Flavonoids

Morin 56.46 a 2.99 b 5.3 1.69 b 3.0 0.97 b 1.7 ***

Quercetin 80 c 81 c 101.3 184 a 230.0 132 b 165.0 ***

Epigallocatechin 1.56 a 0.54 c 34.6 0.71 b 45.5 0.20 d 12.8 ***

Isorhamnetin 28 c 60 b 214.3 81 a 289.3 59 b 210.7 ***

Myricetin 211.4 a 86.1 b 40.7 58.1 c 27.5 11.0 d 5.2 ***

Quercitrin 9.1 a 1.3 b 14.7 0.171 c 1.9 0.077 c 0.8 ***

Quercetin-4-O-glucoside 503 a 247 b 49.1 106 c 21.1 55 d 10.9 ***

Isorhamnetin glucoside I 4.06 a 1.81 b 44.6 0.27 c 6.7 0.13 c 3.2 ***

Isorhamnetin glucoside II nd 15.52 a - 13.09 b - 4.84 c - ***

Rutin 12.11 a 0.96 b 7.9 0.53 b 4.4 0.58 b 4.8 ***

Quercetin diglucoside 846 a 52 b 6.1 36 b 4.3 23 b 2.7 ***

Isorhamnetin diglucoside 90.6 a 16.8 b 18.5 6.5 c 7.2 4.1 c 4.5 ***

Total Flavonoids 1842 a 567 b 30.8 488 c 26.5 292 d 15.9 ***

Total 2129 a 944 b 44.3 564 c 26.5 500 d 23.5 ***
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Table 2. Cont.

Compounds
BOD AOD % Recovery AGD % Recovery AID % Recovery-Bioaccessibility p-Value

Fresh Onion

Black Onion

Quercetin 47 a 39 ab 83.3 28 bc 59.6 18c 39.3 ***

Isorhamnetin 1.32 a 0.89 b 67.9 0.85 b 64.7 1.08 ab 81.6 **

Luteolin 0.23 a 0.22 a 98.4 0.12 b 51.3 0.14 b 61.1 **

Quercetin diglucoside 0.20 ab 0.21 a 106.5 0.15 b 76.7 0.19 ab 95.4 *

Quercetin-3-O-glucoside 0.63 a 0.60 a 94.6 0.57 a 90.6 0.42 b 66.6 **

Quercetin-4-O-glucoside 0.81 a 0.57 b 70.2 0.81 a 100.5 0.35 c 43.7 ***

Isorhamnetin-4′-O-glucoside 0.031 a 0.031 a 98.8 nq - nq - ***

Total 50 a 42 b 83.0 30 c 60.7 21 d 41.1 ***

Different letters (one-way ANOVA) denote significant differences (p < 0.05) between the four stages for the same compound. Ns: non-significant; * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001. nq:
not quantified; nd: not detected. BOD: before oral digestion; AOD: after oral digestion; AGD: after gastric digestion; AID: after intestinal digestion.
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For a more in-depth exploration of the stability of polyphenols from fresh and black
onions over the different stages of simulated gastrointestinal digestion and to determine
the impact of the elaboration process of black onion on the bioaccessibility of polyphenol
compounds, a principal component analysis (PCA) was performed (Figure 1). The first PCA
(PC1) described 68% of the total variability (Figure 1A) and showed a clear discrimination
between the nondigested and digested black and fresh onion samples. This discrimination
was attributed to the presence of specific compounds, including vanillic acid, morin,
epigallocatechin, myricetin, quercitrin, rutin, and isorhamnetin diglucoside in fresh onion,
while compounds such as luteolin and quercetin-3-O-glucoside were characteristic of black
onion (Figure 1B). PC2 explained 24% of the total variability and highlighted the significant
impact of the gastrointestinal digestion process on the polyphenol profiles of both kinds
of onion (Figure 1A). Fresh onions seem to be significantly more greatly affected by the
digestive process than black ones, with their polyphenol concentration decreasing from
2129 to 500 nmol/g FW, so that 23% of the total polyphenol content remained; meanwhile
41% of the total polyphenol content in the black onion remained almost intact after the
digestion process (from 50 to 21 nmol/g FW) (Table 2). Focusing on fresh onion, the oral
phase had the greatest impact on its polyphenol content, followed by gastric digestion,
with the intestinal digestion phase being the phase with smallest impact on gastrointestinal
stability (Table 2, Figure 2). For instance, oral digestion had a very negative effect on the
concentration of flavonoids, but not phenols, the former decreasing by 69% from the initial
value. The concentrations of specific compounds, such as morin, quercetin diglucoside,
rutin, quercetin-4′-O-glucoside, quercitrin and isorhamnetin diglucoside, decreased during
the oral digestion of fresh onion, probably as a consequence of the hydrolysis of quercetin
and isorhamnetin glucosides. Consequently, there were increases in the free quercetin
(1.7-fold) and isorhamnetin (2.1-fold) contents. These results should be considered with
caution as the timing of our oral phase process (30 min) did not mimic physiological
conditions and, therefore, it is impossible to conclude that the oral phase has a great impact
on polyphenol stability. However, the results are somewhat suitable for our purpose,
which was to compare the bioaccessibility of polyphenols in two food products: fresh and
black onion.

Figure 1. Scores (A) and loadings (B) obtained in the Principal Component Analysis (PCA) comparing data from polyphenols
in fresh and black onion during simulated gastrointestinal digestion.
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Figure 2. Quantities of phenolic acids and flavonoids during in-vitro simulated gastrointestinal digestion of fresh and black
onion. Data are expressed in nmol/g FW as mean values (n = 3). Different letters (one-way ANOVA) denote statistically
significant differences between the stages of simulated gastrointestinal digestion (p-value < 0.05).

The increases in free quercetin and isorhamnetin continued during gastric diges-
tion, mainly as a result of their partial hydrolysis by the action of pepsin and the pH.
A low pH and gastric enzymes could lead to the hydrolysis of proteins and carbohydrates
bound to flavonoids, thus improving their extractability and boosting their hydrolysis,
which facilitates the release of aglycones from O-glycosides during their passage through
the stomach [28,29]. In addition, the pronounced decay in flavonoid content, more so in
fresh onion than in black onion, is arguably due to the propensity of flavonoids to interact
with other matrix components such as carbohydrates or lipids, as indicated by Gonzales
et al. [30], or to the propensity of the digestive enzymes to form complexes, as suggested
by De Santiago et al. [31] and Su et al. [32]. The phenolic acids in fresh onion were resistant
to the oral phase conditions but were greatly affected during the gastric phase, with only
26.5% remaining (Table 2). Likewise, intestinal digestion resulted in a significant increase
(almost 3-fold) in the concentration of most of the phenolic acids in fresh onion compared
with those obtained after the gastric phase. This can be explained by considering their
release from the food matrix after the activity of enzymes such as pancreatin and pH
changes in the duodenum [33].

The polyphenols in black onion were also affected by the digestion process, as Table 2
shows. As the main polyphenol in black onion is quercetin, the total polyphenol content
during gastrointestinal digestion is highly influenced by the stability of this compound.
Its concentration showed a gradually decrease during the three steps of gastrointestinal
digestion, from 47 nmol/g FW before oral digestion to 18 nmol/g FW after the intestinal
digestion phase, with 39.3% of its initial content remaining. Overall, the different effects of
in-vitro digestion on the polyphenol profiles of fresh and black onion highlight the impor-
tance of the food matrix and its interaction with other compounds, particularly in terms of
how polyphenols are released during the digestion process, as previously reported by other
authors [34–36]. The most bioaccessible compounds in fresh onion were found to be gallic
acid (316.7% bioaccessibility index (BI)), quercetin (165% BI), and isorhamnetin (210.7% BI),
while in black onion, quercetin-O-glucoside (95.4% BI) and isorhamnetin (81.6% BI) were
more bioaccessible after in-vitro gastrointestinal digestion (Table 2). These results in-
dicate that the compounds remaining after intestinal digestion—significant quantities
of vanillic acid and quercetin-4-O-glucoside in fresh onion and free quercetin in black
onion—potentially cross the small intestine and reach the colon, where they are subjected
to microbiota-mediated metabolism prior to absorption.
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3.2. Changes in Organosulfur Compound Profiles of Fresh and Black Onion after Simulated
Gastrointestinal Digestion

A total of 24 OSCs were identified and quantified in the fresh onion samples be-
fore oral digestion (Table 3), the predominant ones being γ-glutamyl-S-(2-propenyl) cys-
teine sulfoxide (G2PCS) (2615 nmol/g FW), isoalliin (1348 nmol/g FW), γ-glutamyl-S-(2-
carboxypropyl) cysteine–glycine (884 nmol/g FW), γ-glutamyl-S-allyl-L-cysteine (GSAC)
(799 nmol/g FW), and propanethial sulfoxide (596 nmol/g FW), accounting for 74.0% of
the total initial content (Table 3). The remaining OSCs are listed in Table 3. Variations were
found in the OSC profile of black onion samples compared with that of fresh onion,
the main differences being found for isoalliin (53,117 nmol/g FW), propanethial sulfoxide
(10,663 nmol/g FW), methionine sulfoxide (1073 nmol/g FW), and G2PCS (861 nmol/g
FW), representing 98.9% of the total OSC content. The remaining OSCs were γ-glutamyl-
S-methyl cysteine sulfoxide (GSMCS), γ-glutamyl-S-propyl cysteine sulfoxide (GSPC),
S-(S-propyl) cysteine, methiin, and propiin. These results are in line with those previously
reported by Moreno-Rojas et al. [24], who showed that G2PCS, isoalliin, and γ-glutamyl-S-
(2-carboxypropyl) cysteine–glycine are the main OSCs in fresh shallot, while isoalliin and
G2PCS are the main ones in black onion.
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Table 3. Concentrations (nmol/g FW) of organosulfur compounds in fresh and black onion samples at different stages of simulated gastrointestinal digestion. Data are expressed as mean
values (n = 3).

Compounds
BOD AOD % Recovery AGD % Recovery AID % Recovery-Bioaccessibility p-Value

Fresh Onion

È-Glutamyl-S-alk(en)yl-L-cysteine derivatives (GSAk)

γ–Glutamyl-S-(2-carboxypropyl) cysteine–glycine 884 a 620 b 70.2 499 c 56.4 253 d 28.6 ***

γ–Glutamyl-S-(S-1-propenyl) cysteine–glycine 3.09 a 2.07 b 67.0 1.69 c 54.7 0.94 d 30.5 ***

γ–Glutamyl-S-(S-methyl) cysteine–glycine 5.77 a 4.38 b 76.0 2.39 c 41.5 1.35 d 23.4 ***

γ–Glutamyl-S-(S-propyl) cysteine–glycine 17.7 a 12.9 b 73.0 7.8 c 43.9 2.8 d 15.9 ***

γ-Glutamyl-S-allyl-L-cysteine (GSAC) 799 a 574 b 71.9 437 c 54.7 225 d 28.1 ***

γ–Glutamyl-S-(propyl) cysteine (GSPC) 13.78 a 13.09 a 95.0 0.24 b 1.8 nd 0.0 ***

γ-Glutamyl-S-methyl cysteine sulfoxide (GSMCS) 15.0 a 9.3 b 62.2 9.1 b 60.8 7.0 c 46.4 ***

γ- Glutamyl-S-(2-propenyl) cysteine sulfoxide (G2PCS) 2615 a 1908 b 72.9 1566 c 59.9 1102 d 42.1 ***

γ–Glutamyl-S-(propyl) cysteine sulfoxide 323 a 137 b 42.5 94 c 29.1 53 d 16.5 ***

γ−Glutamyl-S-(1-propenyl)-L-cysteine sulfoxide (G1PCS) 2.1 c 4.6 a 213.7 2.9 b 136.0 4.4 a 206.3 ***

Total GSAk derivatives 4679 a 3286b 70.2 2620 c 56.0 1649 d 35.3 ***

S-Alk(en)-yl-L-cysteine derivatives (SACs)

S-(2-carboxypropyl) cysteine-glycine 333 a 242 b 72.5 198 c 59.3 97 d 29.1 ***

S-methyl-cysteine (deoxymethiin) 41.4 a 33.9 b 81.9 20.7 c 50.1 11.1 d 26.8 ***

S-Propyl-L-cysteine (deoxypropiin) 359 a 165 b 45.8 128 c 35.6 121 c 33.7 ***

S-Allyl-L-cysteine (SAC) 343 a 295 b 85.9 90 c 26.3 68 c 19.9 ***

S-allylmercaptoglutathione 0.31 a 0.19 b 60.3 0.17 b 55.6 nd 0.0 ***

S-(S-propyl) cysteine 20.9 a 14.3 b 68.3 8.0 c 38.5 13.9 b 66.7 ***

S-(2-carboxypropyl) cysteine 11.2 a 9.2 b 82.2 5.6 c 50.4 3.3 d 29.6 ***

Alliin 330.7 a nq - nq - nd 0.0 ***

Isoalliin 1348 a 943 b 70.0 661 c 49.0 379 d 28.1 ***

Propanethial sulfoxide (lacrimatory factor) 596a 418 b 70.1 296 c 49.6 175 d 29.3 ***

Methyl-L-cysteine sulfoxide (methiin) 160.2 a 14.7 b 9.2 15.8 b 9.9 6.3c 3.9 ***
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Table 3. Cont.

Compounds
BOD AOD % Recovery AGD % Recovery AID % Recovery-Bioaccessibility p-Value

Fresh Onion

S-propyl-cysteine sulfoxide (propiin) 31.5 a 1.5 b 4.6 0.6b c 1.9 nd 0.0 ***

Cycloalliin 166 a 114 b 68.7 93 c 55.8 62 d 37.6 ***

Methionine sulfoxide 12.2 a 6.7 c 54.6 6.3 c 51.2 8.0 b 65.5 ***

Total SACs derivatives 3755 a 2256 b 60.1 1523 c 40.6 945 d 25.2 ***

Total 8433 a 5543 b 65.8 4142 c 49.2 2594 d 30.8 ***

Black Onion

È-Glutamyl-S-alk(en)yl-L-cysteine derivatives (GSAk)

γ-Glutamyl-S-methyl cysteine sulfoxide (GSMCS) 115 c 104 c 90.4 138 b 119.7 185 a 160.3 ***

γ-Glutamyl-S-(2-propenyl) cysteine sulfoxide (G2PCS) 861 a 753 a 87.4 800 a 92.9 603 b 70.0 ***

γ–Glutamyl-S-propyl cysteine sulfoxide (GSPCS) 62 b 63 b 101.8 90 a 144.6 nd 0.0 ***

Total GSAk derivatives 1039 a 921 ab 88.6 1028 a 99.0 788 b 75.9 ***

S-Alk(en)-yl-L-cysteine derivatives (SACs)

S-(S-propyl) cysteine 178 a 175 a 98.5 90 b 77.9 nd 0.0 ***

Isoalliin 53,117 a 45,859 ab 86.3 47,859 ab 90.1 44,199 b 83.2 *

Propanethial sulfoxide (Lacrimatory factor) 10,663 a 9299 ab 87.2 8176 b 76.7 8356 b 78.4 **

S-methyl-cysteine sulfoxide (methiin) 181 a 179 a 99.0 208 a 114.8 nd 0.0 ***

S-propyl-cysteine sulfoxide (propiin) 83 b 77 c 92.6 151 a 181.4 nd 0.0 ***

Methionine sulfoxide 1073 b 923 b 86.0 1006 b 93.8 1809 a 168.5 ***

Total SACs derivatives 65,296 a 56,511 b 86.5 57,489 ab 88.0 54,364 b 83.3 *

Total 66,334 a 57,432 b 86.6 58,517 ab 88.1 55,153 b 83.0 *

Different letters (one-way ANOVA) denote significant differences (p < 0.05) between the four stages for the same compound. Ns: non-significant; * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001. nq:
not quantified; nd: not detected. BOD: before oral digestion; AOD: after oral digestion; AGD: after gastric digestion; AID: after intestinal digestion.
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Table 3 shows the impact of in-vitro gastrointestinal digestion on the stability of OSCs
in fresh and black onion. To better understand the impacts of the different digestive phases
on the OSC concentration of fresh and black onion, a Principal Component Analysis (PCA)
was performed (Figure 3). PC1, which explained 76.4% of the total variability, showed a
clear discrimination between fresh and black onion samples (Figure 3A). This differentiation
was ascribed principally to the presence of S-alk(en)yl-L-cysteine (SAC) derivatives, includ-
ing methiin, propiin, isoalliin, S-(S-propyl) cysteine, propanethial S-oxide, and methionine
sulfoxide, as well as γ-glutamyl-S-propyl cysteine sulfoxide (GSPC), in the black onion
samples (Table 3, Figure 4). Meanwhile fresh onion was characterized by the presence of
other specific γ-glutamyl-S-alk(en)yl-L-cysteine derivatives (GSAks) and SAC derivatives
including γ-glutamyl-S-(2-carboxypropyl) cysteine-glycine, γ-glutamyl-S-allyl-L-cysteine
(GSAC), γ-glutamyl-S-(2-propenyl) cysteine sulfoxide (G2PCS), γ-glutamyl-S-(propyl)
cysteine sulfoxide, S-(2-carboxypropyl) cysteine-glycine, S-propyl-L-cysteine, S-allyl-L-
cysteine (SAC), alliin, and isoalliin (Figure 3B). According to Moreno-Ortega et al. [6],
during the thermal processing of black onion, many GSAk derivatives are transformed
into simple and intermediate volatile compounds, thus decreasing their concentrations.
It is worth noting that the total OSC content was significantly higher in black onion
(66,452 nmol/g FW) than in fresh onion (8432 nmol/g FW) before the digestive process,
mainly due to the high concentration of isoalliin, which totalled 1348 nmol/g FW in fresh
onion and 53,117 nmol/g FW in black onion. PC2 explained 14.1% of the total variance
and provided clear discrimination between samples belonging to the different gastroin-
testinal digestion phases of both kinds of onion (Figure 3A). In particular, the OSCs in fresh
onion were more strongly affected by the oral phase, with the SAC derivatives (with 60.1%
remaining, ranging from 45.8% for S-propyl-L-cysteine (deoxypropiin) to 85.9% for S-
allyl-L-cysteine, SAC) being more greatly affected than the GSAk derivatives (with 70.2%
remaining, ranging from 42.5% for γ-glutamyl-S-(propyl) cysteine sulfoxide to 95.0% for
γ glutamyl-S-(propyl) cysteine, GSPC) (Figure 4). However, there were significant de-
creases in the recovery of compounds such as methiin (9.2%), propiin (4.6%), and alliin
(not quantified), since they are the main substrates of the alliinase enzyme, which is found
in the composition of the members of the Allium genus, as reported by Keusgen et al. [37].
The decrease in the total OSC content continued during gastric and intestinal digestion,
with mean recoveries of 49.2 and 30.8%, respectively (Table 3). Meanwhile, the intestinal
phase had the greatest impact on the OSC content in black onion. This was not due to
the decrease in the total OSC content but mainly to the significant increases in specific
OSCs such as methionine sulfoxide (168%) and GSMCS (160.3%). The decreases in methiin,
propiin, and S-(S-propyl) cysteine during this stage were mainly due to the fact that these
smaller structures are very unstable under the alkaline conditions present during intestinal
digestion [38].

The methoxidation reaction of methionine during simulated gastrointestinal digestion
could explain the significant increase in methionine sulfoxide [39], while the increase in the
GSMCS level could be due to the oxidation of its precursor, È-glutamyl-S-methyl-L-cysteine
(GSMC), during the in-vitro process, a factor that has been identified previously in black
onion [6,24].

Overall, fresh onion was significantly more greatly affected by the digestive pro-
cess than black onion (Figure 4), with its OSC content decreasing by 69%, from 8432 to
2594 nmol/g FW. In black onion, the decrease in OSCs from 66,452 to 55,153 nmol/g
represented a total loss of 17% (Table 3). The stability of the main OSCs during the stages
of digestion could be explained by the inactivation of the alliinase enzyme during the
production process of black onion, in which temperatures above 60 ◦C are reached, pre-
venting its interaction with these compounds, as reported by Méndez et al. [40]. Moreover,
the fresh onion was identified as γ-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide (G1PCS)
(206.3%), S-(S-propyl) cysteine (66.7%), and methionine sulfoxide (65.5%), with G2PCS,
γ-glutamyl-S-(2-carboxypropyl) cysteine–glycine, GSAC, isoalliin, propanethial sulfoxide,
deoxypropiin, and S (2 carboxypropyl) cysteine–glycine being the main OSCs remaining
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after in-vitro digestion. GSMCS and methionine sulfoxide were identified as the most bioac-
cessible OSCs in black onion, although isoalliin was predominant, accounting for 80.1% of
the total content. These results suggest that these OSCs, as occurs with the polyphenols,
will potentially cross the small intestine and reach the colon, where they will undergo
microbiota-mediated metabolism prior to absorption.

Figure 3. Scores (A) and loadings (B) of the PCA comparing data from organosulfur compounds of fresh and black onion
during simulated gastrointestinal digestion.

Figure 4. Quantities of organosulfur compounds during in-vitro simulated gastrointestinal digestion of fresh and black
onion. Data are expressed in nmol/g FW as mean values (n = 3). Different letters (one-way ANOVA) denote statistically
significant differences between the stages of simulated gastrointestinal digestion (p-value < 0.05).

4. Conclusions

This study evaluated the effects of simulated gastrointestinal digestion on the bioac-
cessibility of polyphenols and OSCs in black onion compared with its fresh counter-
part. During the digestive process, there was a decrease in the concentration of gly-
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cosylated flavonoids in fresh onion but a significant increase in the contents of free
quercetin and isorhamnetin, the bioavailable forms of these compounds at the colonic level.
These polyphenols showed the highest bioaccessibility indexes in fresh onion (165 and
210.7%, respectively) along with gallic acid (316.7%), vanillic acid (70.4%), and ferulic
acid (62.5%). Meanwhile in black onion, the lower initial polyphenol content compared
with that of fresh onion progressively decreased during in-vitro digestion, showing a total
bioaccessibility index of 41.1%. The OSC content of the fresh onion was affected to a greater
extent during the oral and intestinal stages than in the gastric stage, mainly because the
alliinase enzyme was more active at the neutral pH found during the oral and intestinal
stages. However, during the digestion of black onion, different behaviours were observed
among the three stages, with a more stable trend being found for the OSC concentrations
and a total bioaccessibility index of 83.3%. This greater stability could be explained by
the fact that the temperatures used to produce black onion may inactivate the alliinase
enzyme. Therefore, it seems that the black onion production process has a positive effect
on the bioaccessibility of OSCs, with propanethial sulfoxide, isoalliin, GSMCS, and methio-
nine sulfoxide being the OSCs that were most readily absorbed and transformed in the
large intestine.
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digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients
2020, 12, 1401. [CrossRef] [PubMed]

35. Mandalari, G.; Vardakou, M.; Faulks, R.; Bisignano, C.; Martorana, M.; Smeriglio, A.; Trombetta, D. Food Matrix Effects of
Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients 2016, 8, 568. [CrossRef] [PubMed]

36. Tarko, T.; Duda-Chodak, A. Influence of Food Matrix on the Bioaccessibility of Fruit Polyphenolic Compounds. J. Agric. Food
Chem. 2020, 68, 1315–1325. [CrossRef] [PubMed]

37. Keusgen, M.; Schulz, H.; Glodek, J.; Krest, I.; Krüger, H.; Herchert, N.; Keller, J. Characterization of SomeAlliumHybrids by
Aroma Precursors, Aroma Profiles, and Alliinase Activity. J. Agric. Food Chem. 2002, 50, 2884–2890. [CrossRef]

38. Shen, C.; Xiao, H.; Parkin, K.L. In Vitro Stability and Chemical Reactivity of Thiosulfinates. J. Agric. Food Chem. 2002, 50,
2644–2651. [CrossRef] [PubMed]

39. Lee, B.C.; Gladyshev, V.N. The biological significance of methionine sulfoxide stereochemistry. Free. Radic. Biol. Med. 2011, 50,
221–227. [CrossRef]

40. Lagunas, L.L.M.; Castaigne, F. Effect of temperature cycling on allinase activity in garlic. Food Chem. 2008, 111, 56–60. [CrossRef]

http://doi.org/10.1007/s11306-017-1175-1
http://doi.org/10.1021/jf950394r
http://doi.org/10.3136/fstr.9.205
http://doi.org/10.1177/1082013208339861
http://doi.org/10.1016/j.jfoodeng.2017.02.015
http://doi.org/10.3109/03602532.2014.1003649
http://doi.org/10.1021/acs.jafc.8b01167
http://www.ncbi.nlm.nih.gov/pubmed/29770691
http://doi.org/10.1111/ijfs.13746
http://doi.org/10.1021/jf0305128
http://www.ncbi.nlm.nih.gov/pubmed/14709026
http://doi.org/10.3390/nu12051401
http://www.ncbi.nlm.nih.gov/pubmed/32414132
http://doi.org/10.3390/nu8090568
http://www.ncbi.nlm.nih.gov/pubmed/27649239
http://doi.org/10.1021/acs.jafc.9b07680
http://www.ncbi.nlm.nih.gov/pubmed/31913632
http://doi.org/10.1021/jf011331d
http://doi.org/10.1021/jf011013e
http://www.ncbi.nlm.nih.gov/pubmed/11958636
http://doi.org/10.1016/j.freeradbiomed.2010.11.008
http://doi.org/10.1016/j.foodchem.2008.03.035

	Introduction 
	Materials and Methods 
	Chemicals 
	Materials and Sample Preparation 
	Simulated Gastrointestinal Digestion and Evaluation of Bioaccesibility 
	Polyphenol and Organosulfur Compound Extraction and Analysis 
	Statistical Analysis 

	Results and Discussion 
	Changes in Polyphenolic Contents of Fresh and Black Onions after Simulated Gastrointestinal Digestion and Bioaccesibility 
	Changes in Organosulfur Compound Profiles of Fresh and Black Onion after Simulated Gastrointestinal Digestion 

	Conclusions 
	References

