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Abstract: The photoreduction of carbon dioxide (CO2) to valuable fuels is a promising strategy for
the prevention of rising atmospheric levels of CO2 and the depletion of fossil fuel reserves. However,
most reported photocatalysts are only active in the ultraviolet region, which necessitates co-catalysts
and sacrificial agents in the reaction systems, leading to an unsatisfied economy of the process in
energy and atoms. In this research, a CuMoxW(1-x)O4 solid solution was synthesized, characterized,
and tested for the photocatalytic reduction of CO2 in the presence of amines. The results revealed
that the yield of CH3OH from CO2 was 1017.7 µmol/g under 24 h visible light irradiation using
CuW0.7Mo0.3O4 (x = 0.7) as the catalyst. This was associated with the maximum conversion (82.1%)
of benzylamine to N-benzylidene benzylamine with high selectivity (>99%). These results give new
insight into the photocatalytic reduction of CO2 for valuable chemical products in an economic way.
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1. Introduction

For energy conservation and environmental protection, direct conversion of CO2 into a source
of carbon fuels is an ideal solution [1–7]. Among the different technologies, solar photocatalytic
conversion of CO2 is the most promising because it only needs sunlight at room temperature and
ambient pressure, which is clean, safe, and abundant [8–14]. As such, the development of an efficient
photocatalyst under sunlight irradiation is attractive and has become a research hotspot. Over past
decades, various photocatalytic materials have been analyzed: TiO2 [15–17], CdS [18,19], Bi2O3 [20,21],
CeO2 [22,23], and Bi2WO6 [24–26]. Their well-designed heterostructures have been examined for
reduction of CO2 to fuels, such as CO [27–29], CH4 [30–32], CH3OH [33,34], and C2H6 [35,36], but the
overall photoconversion efficiency and product selectivity is still unsatisfactory and requires further
promotion for practical applications.

It has been confirmed that forming a solid solution between semiconductors is an excellent method
in the development of visible light-driven photocatalysts for sensitive photoreduction of CO2 [37–40]
and is widely applied in photocatalytic water splitting and pollutant degradation, while exhibiting better
performance than single components comprising the solid solution [41–46]. Taking this into account,
a series of solid solution photocatalysts, such as BiOBrxCl1-x [47], ZnxCd1-xS [48], GaN:ZnO [49], and
zinc gallogermanate [39], have been synthesized and examined for CO2 reduction under visible light
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irradiations. Very recently, Ling and colleagues [50] demonstrated that CuxAgyInzZnkS solid solutions
customized with RuO2 or a Rh1.32Cr0.66O3 co-catalyst showed high photocatalytic activity for the
reduction of CO2 into CH3OH with a yield up to 118.5 µmol g–1 h–1 under visible light irradiation.
Liang’s group [51] reported that a N-doped, graphene-functionalized Zn1.231Ge0.689N1.218O0.782 solid
solution exhibited high photocatalytic activity for the evolution of CH4 from the photocatalytic reaction
of CO2 and H2O, coupled with oxidation of benzyl alcohol under visible light irradiation.

Since the pioneering work of Benko, CuWO4 has been confirmed as a promising photoanode
material for photoelectrochemical (PEC) splitting water, with a narrower band gap of 2.3 eV that
allows for the use of visible light and enhanced stability in neutral and moderate to basic pH [52,53].
In this work, a CuMoxW(1-x)O4 solid solution was synthesized by a facile hydrothermal method and
then examined for the photocatalytic reduction of CO2 under visible light irradiation without the
addition of any co-catalysts and sacrificed reagents in the system. In this process, CO2 was reduced to
CH3OH by photo-induced electrons, while amine was selected as the “hydrogen-donor” to capture
the photogenerated holes. Then, the amine was converted into imine, resulting in good energy and
atomic economies.

2. Experimental

2.1. General

All chemicals and solvents were purchased from commercial suppliers and used as received
unless explicitly stated. Using tetramethylsilane (TMS) as an internal standard, 1H nuclear magnetic
resonance (NMR) and 13C NMR spectra were measured on a Bruker AVANCE 400 spectrometer
(Basel, Switzerland) in CDCl3. X-ray diffraction (XRD) data were collected on a D8 diffractometer
from Bruker Instruments (Basel, Switzerland), utilizing Cu Kα radiation at a scan rate of 0.05 s–1.
The scanning electron microscopy (SEM) images were obtained by a Quanta 200F FEI (Los Angeles,
USA). Transmission electron microscopy (TEM) analysis was carried out on a JEM-2100 (TEM) (Okinawa,
Japan), and energy dispersive X-ray spectra (EDX) were obtained at an accelerating voltage of 200 kV.
X-ray photoelectron spectroscopy (XPS) data were performed with a Thermo Scientific (New York, USA)
ESCALAB250Xi XPS spectrometer with Al Kα at 500 eV. The ultraviolet-visible (UV-Vis) DRS spectra
of photocatalysts were conducted using a Cary 60 UV-vis spectrophotometer (London, Europe) with
BaSO4 as a reference. Photoluminescence (PL) characterizations were carried out on a FluoroMax-4
spectrometer (London, Europe), using a λex = 320 nm light source. Gas chromatography (GC) product
analysis was performed on a flame ionization detector. The composition of liquid products was
analyzed by GC-MS (Beijing, China) with a HP-5 capillary column (30 m × 0.25 mm × 0.25 mm).

2.2. The Preparation of Solid Solution Photocatalysts

A series of CuMoxW(1-x)O4 solid solution photocatalysts was prepared by a typical hydrothermal
synthesis method, in which X is defined as the molar ratio of Mo/(Mo + W). Setting the preparation of
CuMo0.1W0.9O4 (X = 0.1) as an example: 10 mmol Cu(NO3)2·3H2O was dissolved in 250 mL distilled
water as precursor solution A. Onethousandth of a mol of NaMoO4·2H2O and 9.0 mmol NaWO4·2H2O
were dissolved in 250 mL distilled water as precursor solution B. Precursor solution A was added
dropwise to precursor solution B under a strong stirring condition in 30 min, during which the mixtures
turned blue-green and more suspended substance appeared. After the addition, the suspended
substance (about 80 mL) was then transferred into a 100 mL autoclave and heated at 180 ◦C for 24 h.
After cooling to room temperature, the obtained product was then filtered and washed with distilled
water and anhydrous alcohol several times and then dried in a vacuum at 80 ◦C for 10 h. The other
photocatalysts could be easily prepared in the same way by adjusting the molar ratio: Mo/(Mo + W).
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2.3. Photocatalytic Reduction of CO2

Photocatalytic reactions were carried out in 40 mL anhydrous acetonitrile with 0.06 g corresponding
to the photocatalyst and 1 mmol benzylamine (purified by distilled before using) in an 80 mL self-made
quartz reactor at 0.5 MPa CO2 partial pressure. Before the reaction, the reactor was evacuated with
high-purity dry CO2 gas and blown through several times to remove lesser quantities of oxygen,
and then it was tightly closed. Before illumination, the reaction system was stirred under darkness
to prompt CO2 adsorption and desorption equilibrium after blowing CO2 for 30 min. Then, a Xe
lamp (300 W) with a 420 nm cut-off filter was turned on as the light source for the photocatalytic
reactions. During the processes, the reaction temperature was maintained at room temperature with
a circulating cool water bath. After the reactions were complete, the products were immediately
analyzed by GC (Figure S1), 1H NMR (Figure S2), and MS (Figure S3). Detailed calculations of methanol
yield, conversion rate of benzylamine, and selectivity of N-benzylidenebenzylamine are shown in the
Supporting Information.

3. Results and Discussion

3.1. Catalyst Characterization

3.1.1. XRD and EDX Analysis

To reveal the phase structure of various photocatalysts prepared by the hydrothermal method,
XRD patterns were recorded and shown in Figure 1. The CuMoxW(1-x)O4 photocatalysts were formed
in two different crystalline structures, depending on their chemical composition. For x ≤ 0.7, the XRD
patterns exhibit several broad diffraction peaks with low intensity, suggesting that these photocatalysts
were in a poor crystalline state. Moreover, the patterns of these materials are in good agreement
with the standard spectrum of CuWO4·H2O [54,55] (JCPDS no.: 33-0503). For x ≥ 0.8, several sharp
diffraction peaks appeared and intensified, indicating that these photocatalysts are in a good crystalline
state. 2θ values of 20.4, 21.4, 24.9, 25.3, 25.4, and 25.9 correspond to the Cu3(MoO4)2(OH)2 of the
(021) (101), (121), (130), (040), and (111) faces, respectively, which is in agreement with the reported
values [56]. It can be interpreted that the increased Mo content had some effects on the crystal structure
of these photocatalysts in the system [56]. Furthermore, the EDX analysis results of the sample are
shown in Figure 2 and Table 1. The Mo content in the reaction system gradually increased with
increasing x values, and the sample changed from CuWO4·H2O to Cu3(MoO4)2(OH)2. In addition,
the XPS spectra of the samples were obtained (Figure S5), which clearly indicate that the Cu and W
atoms exist in the form of Cu2+ and W6+, respectively.
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Table 1. Molar ratio of Cu:Mo:W.

Entry The Value of x The Ratio of Cu:Mo:W

1 0.5 1:0.12:0.97
2 0.7 1:0.23:1.05
3 0.8 1:0.76:0.13

3.1.2. SEM and TEM Analysis

Figure 3 shows the SEM and TEM micromorphology of the prepared samples. As seen in Figure 3a,
the surface of the selected material prepared by the hydrothermal method was smooth and existed
in globular particles. To observe the microstructure of the photocatalyst, the characterization of the
photocatalyst (x = 0.7) was carried out using TEM, and the average particle size was shown to be about
30 nm (Figure 3b). The high resolution transmission electron microscopy (HR-TEM) images of the
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interfacial structure of the photocatalyst in different regions is shown in Figure 3c,d, indicating that the
photocatalyst CuMo0.7W0.3O4 (x = 0.7) prepared via hydrothermal method was amorphous because
no obvious lattice stripes were observed in the photocatalyst.
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3.1.3. UV-Vis Absorption and PL Spectroscopy Analysis

UV-vis DRS spectra of the solid solutions were obtained, and the results are shown in Figure 4.
The samples had a wide absorption with a wavelength range from 350 nm to 750 nm. A bathochromic
shift absorption band (from 570 to 610 nm) was observed with increasing x values from 0 to 0.7. With a
further increasing x value (from 0.8 to 1.0), a blue-shifted absorption band was observed from 620 nm
to 580 nm. The different trends of the absorption bands can be verified via XRD spectra. When x
≤ 0.7, these samples were in the form of CuWO4 ·H2O, but, when x > 0.7, they were in the form of
Cu3(MoO 4)2(OH)2. Generally speaking, the absorption of the lower band is more easily disturbed by
the introduction of Mo and W than the higher bands, which indicates that a charge transfer from O2−

to Mo6+ or W6+ contributes to the formation of the absorption band. This is consistent with a paper by
Gaudon et al. [57,58].

As is well known, photoluminescence (PL) emission can be used to discover carrier transfer and
recombination efficiency because it is caused by the recombination of photogenic carriers. Lower PL
emission intensity suggests a lower recombination rate and exhibits higher photocatalytic activity for a
photocatalyst [59,60], as shown in Figure 5, as the value of x increases from 0 to 0.7, the fluorescence
intensity of the samples gradually weaken. This is mainly because the Mo content is gradually increasing,
which inhibits the recombination of photogenerated charges and carriers, thereby improving the
photocatalytic activity. The fluorescence intensity of the samples was gradually strengthened with
further increases in x value (from 0.8 to 1.0). It is obvious that the PL emission spectra of samples can
be divided into two categories (Figure 5). One type of spectrum was obtained for x values in the range
of 0.8 to 1.0, showing strong PL emission with emission intensity increasing with increasing x value.
Another emission intensity, lower than the former, was found when the x values were between 0 to 0.7.
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All optical results revealed that the photocatalytic activity of CuMo0.7W0.3O4 (x = 0.7) is optimal for
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3.2. Photocatalytic Reduction of Carbon Dioxide Activity Measurement

To investigate the performance of various photocatalysts prepared hydrothermally,
the photocatalytic oxidation of amine to imine coupling with the reduction of CO2 to CH3OH
was carried out under visible light (λ > 420 nm) irradiation and a 0.5 MPa CO2 pressure environment.
The detailed results are shown in Table 2. These results prove that CH3OH was selectively obtained
from CO2, and imine was produced from the oxidation of amine, which were further confirmed
with GC, NMR, and MS analysis (Figures S1–S3). We found that benzylamine can be converted to
N-benzylidene benzylamine with high selectivity (>99%) and CO2 can be converted to CH3OH with
good productivity after 12 h irradiation with photocatalysts. Moreover, the results suggested that
CuW0.7Mo0.3O4 (x = 0.7) was the optimum photocatalyst among the examined samples, which showed
the highest conversion of benzylamine (57.2%) and high selectivity towards N-benzylidenebenzylamine
(>99%) within 14 h irradiations (Table 2, entry 4), and received the highest productivity of CH3OH
up to 671.8 µmol/g. These results are almost consistent with optical observations. Therefore, the
CuW0.7Mo0.3O4 (x = 0.7) was selected as the photocatalyst in the following experiments. In addition,
the results of two blank reactions showed that the conversion of benzylamine was 7.1 and 91.3% in the
absence of catalyst and in the presence of catalyst, respectively.
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Table 2. Photocatalytic activity of different nanoparticles.

Entry Catalyst Gas CH3OH Amine Imine

the Value of x (µmol/g) Conv. (%) Sel. (%)

1 0 CO2 296.9 29.5 >99
2 0.3 CO2 375.4 35.9 >99
3 0.5 CO2 571.2 48.3 >99
4 0.7 CO2 671.8 54.2 >99
5 0.8 CO2 509.9 45.7 >97
6 0.9 CO2 394.6 34.4 >99
7 1.0 CO2 249.3 23.1 >99

8 a 0.7 N2 – 2.1 –
9 b – CO2 – 1.7 –
10 c 0.7 CO2 51.7 9.5 >99
11 d 0.7 CO2 – – –
12 e 0.7 CO2 – 91.3 –
13 f – CO2 – 7.1 –

a 1 mmol benzylamine; 40 mL CH3CN, 60 mg photocatalyst; b without photocatalyst; c 40 mL benzylamine, without
CH3CN; d 40 mL CH3CN, without benzylamine; e O2, f O2, without photocatalyst.

The time plot for the oxidation of benzylamine to the corresponding imine under 0.5 MPa of CO2

on CuW0.7Mo0.3O4 (x = 0.7) is shown in Figure 6a,b. With prolonged irradiation time, the conversion
of benzylamine was significantly enhanced, accompanied by an increased yield in CH3OH. As shown,
the yield of CH3OH increased slightly within 10 h, and then obviously increased as time continued.
With visible irradiation for 24 h, 82.1% of benzylamine was converted and >99% of them were selectively
transformed to the corresponding imine, and the CO2 was converted to CH3OH with high productivity
up to 1017.7 µmol/g, suggesting a satisfactory photocatalytic efficiency and selectivity under visible
light conditions.
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Figure 6. (a) Influence of irradiation time on conversion of benzylamine and selectivity of corresponding
imine with CuW0.7Mo0.3O4 (x = 0.7); (b) yields of CH3OH production as a function of irradiation time.

Motivated by preceding results, the substrate scope of the oxidation of other amines
to corresponding imines coupling with the reduction of CO2 to CH3OH with photocatalytic
CuW0.7Mo0.3O4 (x = 0.7) was also carried out. Detailed results, shown in Table 3, show that
the oxidative coupling reactions of the amine derivatives to their corresponding imines coupling
with the formation of CH3OH from CO2 could proceed well under the same conditions. However,
different substrates can present great differences in the conversion of amines and the yield of CH3OH.
Methyl-substituted benzylamines at the o-, m-, and p- positions of the benzene ring (Table 3, entries 2–4)
can also be converted, but there are slight differences in the conversion process, and it can been seen
from the Table 3 that their conversion rates differ vary greatly, which might to be relative to the effect
of the steric hindrance. It can be ascribed to the electronic effects associated with electron withdrawing
substituents (entry 5–6) and electron donating substituents (entry 4,7) on the benzene ring have an
obvious effect on the conversion rate of amines, as well as the yield of formation of CH3OH. Two
halo-substituted benzylamines could be oxidized to corresponding imines with a conversion of 30%
and yield of 221.4 µmol/g of CH3OH. Moreover, heterocyclic amines were also transformed into the
corresponding imines (entries 9–10). However, when aliphatic amines were selected as the substrates
(Table 3, entry 11,12), no imines were obtained.

To measure the reusability of the photocatalyst, the CuW0.7Mo0.3O4 (x = 0.7) was selected and
re-used with the same reaction conditions three times. Before the proceeding reaction, the used
photocatalysts were purified by thorough washing with CH3CN. Figure 7 illustrates cycling runs
of CuW0.7Mo0.3O4 (x = 0.7) in the photocatalytic reduction of CO2 coupling with amine selective
oxidation to imine under visible light irradiation. It is clear that the high photocatalytic activity of the
as-prepared sample minimally decreased after three recycles, indicating good photocatalytic stability of
the photocatalyst under visible light irradiation. The decrease in photocatalytic efficiency was mainly
due to the loss of crystal water in the photocatalyst after use.
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Table 3. a Effect of different amines on photocatalytic activity.

Entry Reactant Product Yield b Conv. (%) c Sel. (%) d

1
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The mechanism for photocatalytic reduction of CO2 to CH3OH coupling with the conversion of
amine to corresponding imine is similar to our previous report [61] as shown in Figure 4. Details are as
follows:

Catalyst + hv→ catalyst∗ + e-
cond + p+

val, (1)

PhCH2NH2 + 2p+
val→ PhCH=NH + 2H+

cond, (2)

CO2 + 2H+
cond + 2e-

cond→ HCOOH, (3)

HCOOH + 2H+
cond + 2e-

cond→ HCHO + H2O, (4)

HCHO + 2H+
cond + 2e-

cond→ CH3OH, (5)

PhCH=NH + H2O→ PhCHO + NH3(S), (6)

PhCHO + PhCH2NH2→ PhCH=NCH2Ph + H2O, (7)

With absorption of visible light (Equations (1) and (2)), the photogenerated holes in the valence
band (VB) of the photocatalyst oxidized benzylamine to the corresponding imine and generated H+

(Equation (2)), which shows that CO2 can be reduced by photoelectrons in conduction band (CB) to
generate HCOOH, HCHO, and CH3OH (Equations (3)–(5)). The formed imine in Equation (2) was
easily decomposed into benzaldehyde and NH3(S) (Equation (6)), and then the obtained benzaldehyde
directly reacted with the benzylamine to form the corresponding imine and H2O (Equation (7)).

4. Conclusions

In summary, a series of CuWxMo(1-x)O4 solid solutions were prepared and applied to the reduction
of CO2 into CH3OH coupling with the conversion of aromatic amine into its corresponding imine.
The results revealed that the yield of CH3OH from CO2 was 1017.7 µmol/g under 24 h visible light
irradiations using an optimized photocatalyst, CuW0.7Mo0.3O4 (x = 0.7). The catalyst chosen was
associated with the maximum conversion (82.1%) of benzylamine to N-benzylidene benzylamine with
high selectivity (>99%). Further experiments revealed that CuW0.7Mo0.3O4 (x = 0.7) exhibited good
substrate suitability, photocatalytic activity, and photocatalytic stability. All results should be helpful
for the design and application of economical photocatalysts for the reduction of CO2 to CH3OH under
visible light.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1303/s1,
Figure S1. GC chromatograms of (a) before irradiation and (b) the stand CH3OH and benzylamine in CH3CN
and (c) product (CH3OH) after irradiation for 10 h with the partial enlarged drawing. Figure S2. The 1H NMR
spectrums of (a) the product (CH3OH) photocatalyzed by CuW0.7Mo0.3O4 (x = 0.7) after reaction for 10 h and (b)
the stand CH3OH. Figure S3. the MS of Products photocatalyzed by CuW0.7Mo0.3O4 (x = 0.7) after irradiation for
10 h. Figure S4. GC chromatograms of gas phase products after irradiation for 10 h. Figure S5. XPS spectra of (a)
Cu2p and (b) W4f of photocatalysts.
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