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Applying EFDC Explorer model 
in the Gallinas River, Mexico 
to estimate its assimilation 
capacity for water quality 
protection
Claudia Villota‑López1, Clemente Rodríguez‑Cuevas1,4, Franklin Torres‑Bejarano2,4, 
Rodolfo Cisneros‑Pérez1,4, Rodolfo Cisneros‑Almazán1,4 & Carlos Couder‑Castañeda3*

Sanitary and industrial wastewater discharged into rivers, is a general problem that occurs in most 
of the world and Mexico is not the exception, the main goal of this research is to determine based 
on simulations of pollutants concentrations, the assimilation capacity of the Gallinas River against 
discharges of agricultural and industrial wastewater from the cultivation and processing of sugar cane 
under two different hypothetical simulation scenarios, based on reproducing two well know scenarios. 
In sugarcane cultivation, large quantities of fertilizers are used whose main active components are 
based on nitrogen or phosphorus compounds, therefore, the wastewater resulting from sugarcane 
processing contains a high organic content from 20 to 40% of inorganic compounds, such as 
nitrogenous substances, organic acids, and phosphorous sulfates. For this reason, the physical–
chemical variables of interest analyzed in this work are the PO

4
 (phosphate), NO

3
 (nitrate), and DO 

(dissolved oxygen). With the simulation results according to each scenery, it can be determined, that 
despite the continuous discharge of polluting elements, the Gallinas River has a good assimilation 
capacity thanks to reaeration processes that permit efficient recovery of the dissolved oxygen 
in the water column. Gallinas River is located in the region known as the Huasteca Potosina, this 
investigation is relevant for the region due to the River is of vital importance being the main tributary 
that allows socioeconomic development activities in this zone. To carry out the simulations, was used 
the Explorer Modeling System 8.4 (EFCD) model and was performed two samplings campaign along 
15 km in the water body to calibrate the numerical model to represent the dry and wet seasons during 
May and September respectively named as calibration scenarios.

In the world around 1100 million people experience the water crisis, this means that they face problems in qual-
ity and quantity. In Mexico, the National Water Commission of Mexico, affirms that industry and agriculture 
are the main responsible that generate most of the water pollutants. At once, the Mexican Commission for the 
Knowledge and Use of Biodiversity (CONABIO) is an Inter-Ministerial Commission dedicated, among other 
activities, to the development, maintenance and update of the National Biodiversity Information System (SNIB), 
to the support of projects and studies focused on the knowledge and use of biodiversity, to advise governmental 
institutions and other sectors, has a national monitoring network to acquire systematic and permanent samples 
of the quality of national waters, however, despite the efforts, only the 5% of wastwater is treated, this is due the 
major water consumption is for agriculture sector, mainly due the lack of treatment plants, more common found 
in cities and industrial parks.
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It is clear that the quality and availability of water resources is essential for the subsistence and rising living 
standards1,2. Therefore, water resource must be subject to basic sustainability criteria, in order to avoid contami-
nation and scarcity problems, generated by the effects of anthropogenic activities, for this reason many studies 
have been carried out with different methodologies in order to measure the magnitude of pollution.

A computational tool, to understand the dynamics and transport in shallow water ecosystems are the Water 
Quality Models (WQM). WQM allow to determine the behaviour and transport of toxic substances, and of 
course, the reliability of the models results are strongly linked with the initial parameters, mesh setup, coefficients 
and parameters, also allows representing the characteristics and behavior of the relationships within the system 
from their corresponding predictive analytical capabilities, which are useful to define approaches and manage 
complex problems related to water resources, ensuring a holistic approach to understand the dynamics of pol-
lutants in shallow tropical river ecosystems.

For Water Quality Modelling we can found many and popular numerical models, as: AQUATOX, Branched 
Lagrangian Transport Model (BLTM), One-Dimensional Riverine Hydrodynamic, Water Quality Model (EPD-
RIV1), QUAL2Kw, Water Quality Analysis Simulation Program (WASP), Water Quality for River-Reservoir 
Systems (WQRRS), ROMS-ICS , MIKE Ecolab/ABM, and IberWQ. A review regarding computational models 
of water quality can be found in the review article by Wang et al.3. The literature review is pointed out that most 
common models are: MIKE, EFDC, and Delft 3D, widely used to simulate water environmental quality in most 
cases of environmental impact assessment. It is necessary to mention that some other models are developed 
specifically for research purposes as for example for the numerical modelling of heavy metal4, water flows 
through vegetation5, research about turbulence models6, thermal discharges7,8, fresh waters plumes in river-sea 
interaction9 and numerical assessment of flood risk10.

Among many applicable and economical solutions for water quality management is the assimilation capac-
ity, and is considered as the ability to introduce toxic wastes to waters without having a detrimental effect on 
public health or ecosystems, so the assimilation capacity could be used to evaluate an acceptable contamination 
concentration that the river flow can handle to maintain water quality in acceptable levels11 .

The assimilative capacity concept was first presented at the Stockholm conference in 1972, an refers to the 
natural ability of waters to dilute and disperse wastes and pollution without harm to the aquatic environment. 
Use of the assimilative capacity concept as an environmental threshold in various environmental management 
processes and techniques was generally founded on the premise of developing an essential framework for the 
subsequent design of appropriate environmental standards and land-use regulations12.

In a few words, assimilation capacity is the maximum amount of a contaminant that the system can hold, 
regardless of the contaminant source, and could be considered as an analysis-oriented tool to control the pol-
lution of different sources in the hydrographic basins. This concept as an environmental threshold in various 
processes and techniques of environmental management and it was generally based on the premise of developing 
an essential framework for subsequent design of environmental standards and regulations for appropriate use.

In the other hand, the numerical modeling has been a very useful tool in environmental science, since the 
numerical simulation is considered the third approach along with theory and experimentation to try to under-
stand the physical and biological problems. Due numerical modelling is very good analysis tool, we use it to 
determine the assimilation capacity and evaluating water quality, with the simulation we can predict pollutant 
levels, distributions and risks13. Likewise, numerical modeling can provide a basis and technical support for 
decision-making in management of pollution control, through modeled data that seek to predict with some 
certainty degree the water quality14.

Among many different models, the EFDC Explorer 8.4 was selected, and is one of the most used models for 
hydrodynamic and water quality, this model has the ability to predict hydrodynamics in a three-dimensional 
mode, solving the momentum and free surface equation, in conjunction with the continuity and mass balance 
equations, has coded coupled modules of salinity, temperature, sediment and contaminants transport that can be 
adapted to rivers, lagoons, lakes, estuaries, reservoirs and coastal water bodies15,16. Additionally, it incorporates 
dissolved oxygen, nutrients and algae module, as fundamental parameters to define the water quality.

EFDC model has been applied in various studies in different rivers in the world. The case of the Mudan River 
in North China where the EFDC Explorer was used for a two-dimensional model construction to simulate 
pollutants transport and dispersion (COD and NH3-N) in periods covered by ice and in open water to carry 
out a comparative analysis16. Another study was conducted in the Danjiangkou reservoir in China, where was 
developed a eutrophication model for local management of water resources in that region17. More applications 
of the EFDC can be reviewed in14,18–27.

With the support of the EFDC, this research focuses on the modeling of the behavior of some of the most 
distinctive pollutants produced by the sugar industry that affect the water quality on the Gallinas River, located 
in San Luis Potosí, Mexico. The simulations were performed on phosphates, nitrates, and dissolved oxygen, to 
establish the concentration of these substances along the river and therefore determine the assimilation capacity. 
Since this river has constantly received domestic and agro-industrial wastewater discharges, which gradually 
have deteriorated the river water quality affecting its aquatic life, it is necessary to study the behavior of the 
substance concentrations under certain conditions that can occur shortly, and therefore its assimilation capacity.

For the purposes of this work, were created four scenarios, the first two scenarios S1 and S2 , were conducted 
for calibration purposes, representative of the dry and the wet seasons in the study zone, this means, that they 
were created to reproduce known conditions and validated against field measurements, once, with both scenarios 
calibrated, the initial conditions of the concentrations were changed to create two hypothetical scenarios H1 
and H2 , to establish if, with these new overestimated values, the concentrations are under the criterion of water 
quality and therefore, within the assimilation capacity of the river.

The simulations results for four different scenarios allow us to estimate the assimilation capacity of the Gal-
linas River, in order to establish the optimal concentration values that accomplish the water quality standards 
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and ecological criteria to preserve aquatic life and allowing self-recover and also determine which are the most 
harmful hypothetical scenarios.

Material and methods
Description of the study area.  Gallinas River is located in an important economic area related to the 
sugar cane industry in Mexico, in fact, the cane industry displaced over the time other important crops such as 
chili and cotton, which disappeared in the late nineteenth and early twentieth centuries.

Currently, in this area, four sugar mills are located named: Plan de Ayala, San Miguel El Naranjo, Plan de 
San Luis and Alianza Popular; the latter contributes with the principal wastewater to the Tamasopo river which 
is the most important tributary of the Gallinas river28.

Río Gallinas hydrological sub-basin has a total area of 807,568 km2 and 101,127 km length, and this study 
focus on investigate 15 km of the Gallinas River main channel, bounded by positions (99◦ 15 ′  W, 21◦ 59 ′  N–99◦ 
14 ′  W, 21◦ 53 ′  N). The two main tributaries studied that connect to Gallinas river are Piedritas stream and the 
Tamasopo river (see Fig. 1).

To carry out this research is necessary to monitor flow rates and water quality in these two tributaries to 
determine how they affect the physicochemical characteristics of the Gallinas River.

Nine control points were established along 15 km for water sampling, and its subsequent analysis in the 
laboratory, for phospathes (PO4 ) and nitrate nitrogen (NO3-N), the control points are depicted in Fig. 2.

Figure 1.   Location of the study zone. The maps were designed with Inkscape 1.0.2 (http://​inksc​ape.​org), based 
on OpenMaps.

Figure 2.   Sampling points location. The maps were designed with Inkscape 1.0.2 (http://​inksc​ape.​org), based 
on OpenMaps.

http://inkscape.org
http://inkscape.org
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Hydrometeorological information.  Hydrometeorological information was acquired from the National 
Water Commission (CONAGUA) (https://​www.​gob.​mx/​conag​ua), and the CLICOM system, developed by the 
Ensenada Center for Scientific Research and Higher Education (http://​clicom-​mex.​cicese.​mx/​mapa.​html), also 
the VARICLIM system maintained by the Coordination Center for Innovation and Application of Science and 
Technology (CIACyT) was used. The selected stations were Damian Carmona, Gallinas and San Dieguito (see 
Fig. 2).

Atmospheric conditions, forcing, temperature, precipitation, evaporation, relative humidity, and solar radia-
tion were recorded daily and included in the model.

Samples collection.  The bathymetry used for the model was generated via measurements made using an 
Acoustic Doppler Current Profiler (ADCP). ADCP RiverRay (Teledyne), frequency 600 kHz, with a beam angle 
of 30 and cell size of 0.5 m was used for data measurement. In areas that are not measured, is required an inter-
polation method by taking into account various morphometric and morphologies and a wide range of scales, 
EFCD makes directly the interpolation using the nearest neighbor approach. Regarding the blanking zone, this 
is taked into account in the measurements to diminish the error29.

The measured velocities, the software used to process the ADCP data (in this case WinRiver II), automatically 
calculates by interpolation the river flow or discharge in the blanking areas. The bathymetry or measured depths 
were corrected by adding the blanking distance (0.3 m) to the ADCP recorded depths.

Water velocity was acquired with an accuracy of ± 2 mm/s, the river bed was estimated using a vertical acous-
tic beam (echo sounder) of 0.5 MHz with an embedded inclination sensor (compas/2-axis) and a temperature 
sensor and is operated by means of the software WinRiver II. This equipment allows us to measure flow velocities 
in real-time, in graphics and tabular mode. All this setup was performed for two characteristics seasons in the 
region: dry and wet.

Additionally, water quality parameters were measured in situ: dissolved oxygen (DO), temperature, electrical 
conductivity and pH, with the conductronic OX25 portable devices and the HQ40D Portable Multi Meter, both 
subjected to verification quality control before their use, to confirm they are working properly with the purpose 
to guarantee the accuracy in the parameters acquisition.

Phosphates samples were analyzed in the laboratory with the HACH 8048 method30 and nitrates with the 
HACH 8171 method.

Numerical model.  The environmental fluid dynamics code (EFDC) version 8.4 was utilized to model the 
assimilation capacity, the EFDC was originally developed by the United Sates Enviromental Protection Agency31 
and was selected due to its different numerical capabilities: supports cartesian and curviliear grids, calibration 
test, analysis and visualization.

EFDC, is based on the continuity and velocity equations, and is one of the most widely used hydrodynamic 
models for shallow waters32, it has been widely used for modelling flow and transport processes in shallow waters 
bodies, like rivers, lakes, estuaries, reservoirs, wetlands, and coastal regions.

EFDC solves the 3D equations of motion and free surface equation with the Mellor-Yamada level 2.5 turbu-
lence closure scheme. It uses stretched (or sigma) vertical coordinates and Cartesian (or curvilinear) orthogonal 
horizontal coordinates33.

For the numerical aspect, it employs a second-order accurate, three-time-level finite difference scheme with 
an internal–external mode splitting procedure to separate internal baroclinic mode from the external free-surface 
gravity wave.

The fundamental principles of the hydrodynamic model in EFDC are the conservation laws of mass, velocity, 
and transport equations for flows. With the basic assumption that ambient environmental flows are governed 
by the horizontal length scale due to its order of magnitude is greater than their vertical length scales, the for-
mulation of the governing equations begins with the vertically hydrostatic boundary layer form of the turbulent 
equations of motion for incompressible flows31.

The EFDC governing equations are:
Velocity in x:

Velocity in y:

where u and v are the velocity components (m/s) in the horizontal plane in the x and y direction respectively, 
ζ is the sigma coordinate, t is the time measured in seconds (s). mx and my are the square roots of the diagonal 
components (m), m = mxmy is the Jacobian root (m2 ). H ( H = h+ ζ ), is the total depth, expressed as the sum 
of depth and the free surface, p is the pressure (m2/s2 ). Av , is the vertical turbulence or turbulent viscosity (m2

/s). f, is the Coriolis parameter. Qu and Qy , are the affluent–effluent movement terms (kg/m3 ). w, is the vertical 
component velocity (m/s) and g the gravity acceleration.

In the left side of the Eqs. (1) and (2) the first term correspond to the temporal term (velocity change with 
respect to time), the second term refers to the advective component due to inertial forces, and the third is the 

(1)
∂t(mHu)+ ∂x(myHuu)+ ∂y(mxHvu)+ ∂z(mwu)− (mf + v∂xmy − u∂ymx)Hv

= −myH∂x(gζ + p).−my(∂xh− z∂xH)∂zp+ ∂z(mH−
1AV∂zu)+ Qu.

(2)
∂t(mHu)+ ∂x(myHuu)+ ∂y(mxHvu)+ ∂z(mwu)− (mf + v∂xmy − u∂ymx)Hv

= −myH∂x(gζ + p).−my(∂xh− z∂xH)∂zp+ ∂z(mH−
1AV∂zu)+ Qu.

https://www.gob.mx/conagua
http://clicom-mex.cicese.mx/mapa.html
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Coriolis acceleration. On the right side the first term is the pressure force and the second represents the viscous 
stresses that give rise to the turbulence in the flow.

Water quality module.  The kinetic processes included in the EFDC water quality module are derived from 
the CE-QUAL-ICM34. The governing mass balance equation to transport water quality parameters is expressed 
as:

where, C is the concentration of a water quality variable, Ax ,Ay ,Az correspond to the turbulent diffusivity terms 
in the x, y, z directions respectively. Sc represent the sources and sinks per unit volume. H is the depth of the 
water column. mxmy are the metrics of the curvilinear coordinates. In fact, the last three terms of the left side of 
the equation models the advective trasnport and the first three terms on the right side represents the diffusive 
transport. Finally, the last term in Eq. (3) represents the kinetic processes and external sources for each state 
variable. The models solves the Eq. (3) using a fractional step procedure that decouples the kinetic terms from 
the physical transport terms.

Next, the kinetic equations for each of the state variables studied in this research are formulated as follows:

where, PO4d + PO4p equals to the total phosphate (PO4t) in g/m3 ; (PO4d) is the dissolved phosphate (g/m3 ); 
PO4p corresponds to the particulate phosphate (g/m3 ); FPI, is the fraction of phosphorus metabolized by the 
algae, produced as inorganic phosphorus (dimensionless); BM, is the basal metabolic rate of the algae (day−1 ); 
FPIP is the fraction of phosphorus produced as inorganic phosphorus (dimensionless); PR, is the precipitation 
rate of the algae (day−1 ); P, is the production rate of the algae; APC, is the average phosphorus-carbon ratio for 
all algae groups (g); B, is the biomass of the algae (g/m3 ); K DOP , is the dissolved organic phosphorus minerali-
zation rate (day−1 ); DOP, is the concentration of organics phosphorus (g/m3 ); WSTSS , is the sedimentation rate 
of suspended solids (m/day), provided by the hydrodynamic model; BFPO4d is the sediment-water phosphate 
exchange flow (g/m day);WPO4t , is the external loads of total phosphate (g/day); and V is the cell volume (m3).

The kinetic equation for NO3 − N is expressed as follows:

where PNX , is the ammonium uptake by algae (dimensionless), ANCX is the nitrogen-carbon ratio constant in 
the algae (g), KNIt is the nitrification rate (day−1 ), NH4 , is the ammonia nitrogen concentration (g/m3 ), ANDC, 
is the mass of nitrate nitrogen reduced by mass oxidized dissolved organic carbon (g), Denit, is the denitrification 
rate (day−1 ), DOC, is the dissolved organic carbon concentration (g/m3 ), BFNO3 , is the sediment-water nitrate 
flow exchange (g/m2 day), applied only to the bottom layer, and WNO3 is the nitrate external charges (g/day).

The kinetic equation for OD is expressed as follows:

where, PNX is the absorption of ammonia by algae (dimensionless); PX , is the algae production rate (day−1 ); 
FCDX , is the basal metabolic fraction (dimensionless); DO, is the dissolved oxygen concentration (g/m3 ); KHR, is 
the mean saturated oxygen saturation constant of algae (g/m3 ); BMX , is the basal algae metabolism rate (day−1 ); 
AOCR, is the dissolved oxygen ratio in respiration (g); B, is the algae biomass; AONT, is the mass of dissolved 
oxygen consumed per unit mass of nitrified ammonium nitrogen (g); Nit, is the nitrification rate(day−1 ); NH4 , 
is the ammoniacal nitrogen concentration (g/m3 ); KHR , is the heterotropic respiration rate of dissolved organic 
carbon (day−1 ); DOC is the dissolved organic carbon concentration (g/m3 ); KHCOD , is the constant saturation 
of the dissolved oxygen medium required for the oxidation of COD (g/m3 ); COD, is the concentration of oxygen 
demand (g/m3 ); Kr , is the aeration coefficient (day−1 ); DOS , is the saturated dissolved oxygen concentration (g/
m3 ); SOD, is the oxygen demand of the sediment (g/m day) and WOD is the extenal oxygen charges (g/day).

(3)

∂t(mxmyHC)+ ∂x(myHuC)+ ∂y(mxHvC)+ ∂z(mxmywC) = −myH∂x(gζ + p).

−my(∂xh− z∂xH)∂zp+ ∂z(mH−
1AV∂zu)+mxmyHSc .

(4)

∂t(PO4P + PO4d) =
∑

x=c.d.g .m

(FPIx × BMx + FPIPx × PRx − Px)× APCx × Bx

+ KDOP × DOP + ∂z(WSTSS × PO4p)+
BFPO4d

�Z
+

WPO4p

V
+

WPO4d

V

(5)

∂t(NO3) =
∑

x=c.d.g .m

(PNX − 1)× PX × ANCX × BX × APCx × Bx + KNIt × NH4 − ANDC × Denit × DOC

+
BFNO3

�Z
+

WNO3

V

(6)

∂t(DO) =
∑

x=c.d.g .m

(

(1+ 0.3(1− PNX))PX − (1− FCDX)

(

DO

KHRx + DO

)

BMX

)

+ AOCR(B)− (AONT)(Nit)(NH4)− AOCR(KHR)(DOC)−
DO

KHCOD + DO

+ KCOD(COD)+ KR(DOS − DO)+
SOD

�V
+

WDO

V
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Model setup
The numerical model was configured for two periods: dry and wet seasons, the dry season is established from 
May 1 to 30, and the wet season from September 1 to 30 in 2018.

The domain area was discretized using a curvilinear grid, and the model was set up, with the bathymetry, 
free water surface, bottom roughness, all the boundary conditions necessary to approximate accurately the 
simulations.

The curvilinear numerical grid was generated with the Curvilinear Grid Generator for the EFDC (CVLGrid), 
with a �X that varies from 4.0 to 25.5 m and �Y  varies from 1.9 to 21.2 m, for a total of 8666 cells (see Fig. 3). The 
grid fits properly the river sinuosity, in fact, is recommended keep the grid as uniform as possible to minimize 
possible numerical problems35.

For the estimation of �t , Dynamic Timestep option is enabled, this means EFDC Explorer automatically cal-
culates the �t every time step, assuring stability. In general, two options, are possible, establish, �t as a constant, 
or estimate �t every step in the simulations involving the small changes in velocities. Although calculate the best 
�t every time step could be computationally costly, is better. When Dynamic Timestep option is enabled, the 
model internally is checking the numerical stability with the Courant–Friedrichs–Lewy condition every time step.

Model Setup includes the field-collected bathymetric data depicted in Fig. 4, river depths range from 0.301 
to 6.271 m).

Inflows and outflows conditions are depicted in Fig. 5, and their respective concentrations of water quality 
variables are showed in Table 1. On the upstream boundary, the river flow was imposed with a variation from 
0.8 to 1.2 m 3/s, similarly, the Piedritas stream varies from 0.1 to 0.3 m 3/s. The Tamasopo river was established 
with a variable flow from 4 to 4.62 m 3/s, downstream an open boundary was imposed. The initial temperature 
was imposed at 27 ◦C.

The most important initialization was to define six zones along the river according to the water quality results 
of the selected sampling points (see Fig. 6).

Calibration is one of the most important processes in a numerical model setup since the presence of diffuse 
sources can hardly be represented16. Commonly the model parameters are adjusted by trial and error until the 
simulation results fit with the acquired data17. The adjusted parameters during the calibration process were: 
reaeration constant rate, rearation readjustment factor, reaeration constant temperature rate, maximum nitrifica-
tion rate, reference temperature for nitrification and mininum phosphate mineralization rate. Table 2 shows the 
values used for the model calibration, the calibration period was 15 days, and the dynamic time step was selected 
to facilitate the model stability and increases computational performance. For the parametrization process, 

Figure 3.   Curvilinear numerical grid generated. This figure was generated using the post-processing 
visualization tool of the EFDC Explorer (https://​www.​eemod​eling​system.​com/).

https://www.eemodelingsystem.com/
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Figure 4.   Bottom elevation.

Figure 5.   Inflow and outflow conditions, imposed in the Gallinas River. This figure was generated using the 
post-processing visualization tool of the EFDC Explorer (https://​www.​eemod​eling​system.​com/).

https://www.eemodelingsystem.com/
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the EFDC Explorer automatically initializes the water quality parameters using reference values and they were 
adjusted in the calibration process, taking into account similar studies36 and our own expertise.

Additionally, a statistical observation was made to evaluate the precision of the simulations, regarding hydro-
dynamic calibration, the root of the mean square error (RMSE) was used to indicate the good or poor quality 
of the model. If with the RMSE is obtained a value of less than 0.3 then a good agreement is obtained, else if 
the value is near 1, the model has not a good fit. The RMSE is useful to compare the fit of the magnitudes and 
directions with respect to the measured values for both seasons, dry and wet37.

For water quality data, the Nash Sutcliffe efficiency coefficient (NSE) was used, which is commonly used 
to assess the predictive level of hydrological models, it has a threshold of 0.5 < NSE < 0.65 to be satisfactory, 
nevertheless a value near to 1 is considered a better fit38.

Parameter settings for the simulations of PO
4
‑P, NO

3
‑N, DO.  Water quality is determined through 

the physical, chemical and microbiological characterization of the water and their respective comparison with 
the normativity standards, and ecological criteria. In Mexico these criterion are established by the National 
Water Commission39.

Table 1.   Water quality concentration values established as inflow conditions.

Flows

Q m 3/s PO4 -P mg/L NO3 -N mg/L OD mg/L

Dry Rain Dry Rain Dry Rain Dry Rain

Upstream flow 0.8 1.2 0.08 0.21 1.3 0.6 6.7 7.3

Piedritas stream 0.1 0.3 0.09 0.16 1.0 0.6 6.3 7.1

Tamasopo river 4.0 4.62 0.08 0.13 1.8 0.5 7.0 7.3

Figure 6.   Initial concentration for the phosphates, established by zones according to the samples in the field. 
Similar initializations, were carried of for NO3 -N and DO. This figure was generated using the post-processing 
visualization tool of the EFDC Explorer (https://​www.​eemod​eling​system.​com/).

https://www.eemodelingsystem.com/
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In Mexico the ecological the agreement CE-CCA-00140 establishes the ecological criteria for water quality, 
and the limits necessary for drinking water and protection of aquatic life are:

•	 Phosphates, 0.1 mg/L (for drinking water)
•	 Nitrates, 5 mg/L (for drinking water)
•	 Dissolved oxygen, 4 mg/L (for drinking water)
•	 Dissolved oxygen, 5 mg/L (protection of aquatic life)

For this research, the characteristic scenarios were established as S1 and S2 , which represent dry and wet seasons 
respectively, these scenarios were developed for calibrations purposes and the goal is to reproduce the concentra-
tions behaviour measured along the river, additionally two hypothetical scenarios were established named H1 and 
H2 in order to investigate if the river can continue to have assimilative capacity. For the hypothetical scenarios, the 
PO4 -P and DO are decreased by 80% and 50% respectively, for NO3 -N concentrations are increased by 300% for 
both hypothetical scenarios (see Table 3), the percentages of increase and decrease were established considering 
the initial values of scenarios S 1 and S 2 and the values of the water quality ecological criteria (CE-CCA-001).

These hypothetical concentrations reductions of PO4 -P to 80%, for the dry and wet seasons, obey the values 
to fulfill the CE-CCA-001 (0.1 mg/L), and NO3 was increased by 300% to reach the maximum concentration 
criteria (5 mg/L). Although the DO results show good agreement with the ecological criteria, it is necessary to 
observe the river response in case the DO is reduced more than 50%.

In brief, the hypothetical scenarios were proposed in order to determine, in what percentage, the pollutants 
have to be reduced so that the river continues with the assimilation capacity or estimate the least favorable condi-
tions in the presence of these pollutants.

As mentioned earlier, 15 days were used to calibrate the water quality model, a snapshot value of concentra-
tions are shown in Fig. 7, and the corresponding Nash Sutcliffe coefficients are shown in the Table 4.

Simulation results
As previously established, the numerical simulations presented in this research were performed for two character-
istic scenarios: wet and dry seasons, to calibrate the model and reproduce the conditions as accurately as possible, 
and two hypothetical scenarios towards predict the assimilation capacity changing pollutant concentrations.

Table 2.   Coefficient and constants used for the water quality model.

Parameter Value Unit

Reaeration constant rate 5.32 –

Reaeration reset factor 1.0 –

Temperature rate of the re-airing constant 1.1 –

Maximum nitrification rate 0.07 day−1

Reference temperature for nitrification 27 C

Minimum phospate mineralization rate 0.05 day−1

Water quality module wet season – –

Reaeration constant rate 5.32 –

Reaeration reset factor 1.7 –

Temperature rate of the reaeration constan 1.0 –

Maximum nitrification rate 0.1 day−1

Reference temperature for nitrification 27 C

Minimum phospate mineralization rate 0.05 day−1

Horizontal eddy viscosity 0.1 m2/s

Horizontal diffusivity 0.05 day−1

Table 3.   Formulation of the simulation scenarios.

Stage Season Flow

Concentration variation of  Piedritras and 
Tamasopo flow

PO4-P NO3-N DO

S1 Dry Without change Not changed Not changed Not changed

S2 Wet Without change Not changed Not changed Not changed

H1 Dry Without change 80 300 50

H2 Wet Without change 80 300 50
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To achieve correctly the prediction of the pollutants transport, first, is necessary a correct hydrodynamic 
calibration, which was obtained through the execution of multiple simulations, and was selected the one, which 
best fit between observed and simulated data.

The calibrations process is to repeat several simulations with different parameters until the results are accord-
ing to the data acquired. To start this process, EFDC explorer automatically initializes the water quality param-
eters using reference values, and progressively the parameters are adjusted according similar studies36 and with 
our own expertise.

For the selected simulation, the correlation of observed and simulated hydrodynamic field (water velocity 
magnitude), indicates an RMSE of 0.007 and 0.002 for dry and wet seasons respectively, this means a very good 
fit between observed and measured data, therefore the hydrodynamic of the Gallina River were reproduced 
successfully, through simulations.

Figure 7.   Comparison between the observed and simulated concentrations along the river for the scenarios S1 
and S2 , squares represent the results of the simulations when the hydrodynamic is steady, triangles refer to the 
acquired data. The fit between observed and simulated values was used to validate the parameters used in the 
model, and to conclude that the simulations are correctly reproducing known conditions.

Table 4.   Nash Sutcliffe coefficient results for the water quality calibration.

PO4-P NO3-N DO

Dry Wet Dry Wet Dry Wet

0.99 0.89 0.73 0.94 0.65 0.80
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As an example for the fit between simulated and measured data, Fig. 8 shows the velocity calculated versus the 
measured during a small lapse of time in one control point, obtaining a good fit, of course, more data field were 
recorded and compared in all control points and for almost the 24 h of the day, nevertheless, the fit obtained is 
very similar, and it is not possible to show all the recordings.

Figure 9 shows a comparison of observed versus modeled velocity vectors. It is necessary to mention that 
Gallinas river velocities are low, around 0.0002–0.2083 m/s.

The low velocities in the Gallinas River are mainly due to its hydromorphological characteristics. Typically, 
the longitudinal profile of a river has areas of rapids and backwaters; Fig. 4 shows that the average gradient of the 
Gallinas River (in the modeled section) is quite low, with the presence of deep areas or pools that are reflected 
in river backwaters with low velocities, and it is in the high water areas where the current gains speed. In these 
backwater areas with low velocities, dispersion processes are disadvantaged causing an increase in pollutant 
reaction rates and a decrease in dissolved oxygen available for degradation. This is clearly observed between 4.5 
and 6.0 km of the modeled section, which corresponds to a deeper zone and where the decrease in oxygen occur.

For dry season, S 1 (normal conditions) we can state that the concentrations in the river section of Tamasopo 
discharge meet the ecological criteria, in the section of the confluence of Tamaposo river the model suggest con-
centrations of 0.19 mg/L, near to the maximum of the range that can cause eutrophication. The values simulated 
match with the concentrations measured in situ.

According to the obtained simulations results, the S 2 scenario (wet season) is the most unfavorable for the 
PO4 -P due exceeds the ecological criteria of 0.1 mg/L for use as drinking water supply and protection of aquatic 

Figure 8.   Velocity field, acquired data (circle) vs simulated data (dashed lines), for a small period of time. To 
calculate RMSE all the time serie was used (dry season: RMSE = 0.007; wet season: RMSE = 0.002).

Figure 9.   Velocity vectors, red (measured) vs blue (modeled), the fit is satisfactory in terms of magnitude and 
direction. This figure was generated with ArcGis 10.5 (https://​deskt​op.​arcgis.​com/​en/).

https://desktop.arcgis.com/en/
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life (CE-CCA-001/98). According with this, it can be inferred that Gallinas River has problems with the phosphate 
concentration because the normal values range from 0.005 to 0.02 mg as depicted in Fig. 10.

It is estimated that phosphate concentration elevation in the Gallinas River is mainly increased by sugar cane 
crops, due to chemical fertilizer is applied by dispersion in the zone, which makes it more feasible for the residues 
to reach the river since the crops are located on the banks of the water body, it is necessary to point out, that the 
best time to fertilize the crop is in the wet season, which explains why the concentration of phospates increase 
during the wet season. Must be considered that in addition to fertilizers there are also pesticides, which contain 
organophospate compounds that also cause harm to the environment.

Figure 10 is depicted the behavior of the phosphates concentrations for the four scenarios along the river, 
specifically for the hypothetical scenarios (H1 dry, H 2 wet) the simulations demonstrate that is possible to main-
tain the PO4 -P levels below the water quality ecological criteria.

Regarding the NO3-N, it was found that the best time for the degradation of this pollutant is in the rainy 
season. In Fig. 11 it can be seen the behavior of the NO3 -N concentration, according to the results, NO3 -N sat-
isfy the ecological criteria CE-CCA-001/89 (5 mg/L for drinking water supply), therefore, simulations indicate 
that the assimilation capacity of NO3 -N in the Gallinas River is appropriate due to concentrations are below 
the ecological criteria for drinking water supply, being one of the fundamental uses of this water body. As for 
hypothetical scenarios H 1 and H 2 , NO3 -N increased to 300% for the scenario H 1 (dry season), the results shows, 
nitrate pollution problems downstream, after the Tamasopo river contribution, therefore under this scenario the 
Gallinas River is not capable of assimilating the pollutant due to exceeds the water quality ecological criteria, 
while for H 2 (wet season) it still remains below the criteria for the use as a source of drinking water supply.

About the NO3-N, the Official Mexican Norm-127, indicates that the maximum permissible level of water 
for human consumption is equivalent to 10 mg/L, which means that all proposed scenarios remain within the 
permissible limit.

It is worthwhile to remark, that nitrates control in water is important for human consumption, especially 
for children, because they can cause serious side effects, as the blue baby syndrome (methemoglobinemia), and 
though, nitrates are not directly harmful, it is a health hazard due to its conversion to nitrite, with hemoglobin 
in the blood, generating methemoglobinemia41. Concerning the aquatic life protection in Mexico, there is not 
established ecological criteria for NO3 , nevertheless, some research suggests that nitrate is less toxic than nitrite 
and ammonia, as a result of its low branchial permeability, which makes absorption through the gills more 
limited. The toxic action of NO3 is basically due to the conversion of respiratory pigments into forms that are 

Figure 10.   Concentration of PO4 -P along the river when the hydrodynamic is steady.

Figure 11.   Concentration of NO3 -N along the river when the hydrodinamic is steady.
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incapable of transporting and releasing oxygen, which means nitrate must previously be converted to nitrite 
under the internal conditions of the animal?.

According to some studies, a water body is more susceptible to contamination by non-point sources, since 
those dominate the entry levels of phosphorous and nitrogen, causing the incidence of fish death due to the toxic 
algae blooms or by the oxygen lack caused by algae decomposition42.

For dissolved oxygen, scenarios S 1 and S 2 satisfy the ecological criteria for aquatic life and drinking water 
protection. Likewise, H 1 and H 2 scenarios showed that even when dissolved oxygen concentrations reach values 
below 4 mg/L, the river can recover oxygen levels in a relatively short distance. Dissolved oxygen, in H 1 were 
lower than concentrations obtained for H 2 , in H 1 season dissolved oxygen, ranges from 6.5 to 7.4 mg/L, mean-
while, H 2 the values range from 7.1 to 7.8 mg/L (see Fig. 12). The behavior of the dissolved oxygen is correlated 
to the temperature, increases DO concentrations, and when the latter increases dissolved oxygen decreases due to 
increased solubility and additionally biochemical processes and biological metabolisms consume more dissolved 
oxygen. Similarly, other studies state that dissolved oxygen is temperature-dependent, since warmer waters are 
capable of dissolving smaller amounts of oxygen, hence, a hot water discharge can decrease the dissolved oxygen 
to levels below the limit necessary for some types of aquatic life.

Although the Gallinas River provides adequate dissolved oxygen concentrations for the vast majority of fishes 
and other aquatic organisms, this parameter can not be evaluated in terms of assimilation capacity, because it does 
not act as a pollutant, nevertheless, is a very important water quality parameter interconnected with nitrifica-
tion and phosphorus cycle processes. When the dissolved oxygen decreases affect the phosphate concentrations 
leading to algae proliferation, in fact, 1 g of phosphate causes the growth of approximately 100 g of algae. The 
algae decomposition processes can generate oxygen consumption of around 150 g. In addition to the foregoing 
oxygen consumption is affected by nitrification processes.

According to the simulations results, a clear cause–effect correlation can be observed. This correlation is 
mainly a function of the increase or decrease of water flow in the river, the distance traveled, the type of pollut-
ant, and the surface or groundwater inputs from the surrounding sites.

Increases in flow, distance traveled and runoff from sites with high fertilization and application of agro-
chemicals with high phosphorus content, allow greater entrainment of PO4-P into surface streams. Due to the 
low solubility of PO4-P and its high presence in the sites, a higher concentration occurs as the flow increases.

In the case of NH3-N, it was observed that there is a dilution effect as flows increase, i.e., the higher the flow, 
the lower the concentration. This may be due to the high mobility and solubility of the pollutant, while ioniza-
tion, nitrification, and denitrification conditions of the compound occur.

With respect to COD, it was observed that there is a broad and inversely proportional correlation with the 
flow. As the flow increases, as long as there are no additional punctual or diffuse inputs, the concentration tends 
to decrease due to a dilution effect.

In the case of the DO, it was observed that it is highly sensitive to the natural aeration conditions resulting 
from the topographic and morphological conditions of the river, the results show that, due to the presence of 
waterfalls, the DO increases considerably.

Conclusions
Today assimilation capacity is considered one of the many benefits of ecosystem health and integrity, therefore, 
this paper determined the assimilation capacity when river pollution is controllable, under two characteristics 
scenarios and two hypothetical.

The simulation of the pollution movement in the river was based on the mathematical equations of pollution 
transport, implemented in the EFDC model. The procedure was applied to the Gallinas River in Mexico and 
all the obtained results were presented in terms of the concentration along the river of the phosphorus, nitrate, 
and dissolved oxygen.

This is one of the first studies in the area and serves as a starting point for environmental authorities and 
decision-makers to implement plans, programs, and projects aimed at reducing and controlling water pollution, 
seeking to reduce nutrient loads on the Gallinas River. It also manages to generate knowledge in the surrounding 

Figure 12.   Concentration of DO, along the river when the hydrodinamic is steady.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13023  | https://doi.org/10.1038/s41598-021-92453-z

www.nature.com/scientificreports/

communities about the care and preservation of water resources, since the river provides an important supply 
of water for the socio-economic activities of the region.

Determine numerically rivers self-purification capacity for pollution treatment can bean effective and low-cost 
method. There are numerous examples of pollutant discharges to rivers that have caused irreparable damages to 
plant and animal species, and posed risks to humans. Therefore, assessing a rivers capacity to assimilate pollut-
ants through adjustment of its flow is an important water-quality management tool.

Numerical simulations carried out with the EFDC model presented above were performed for wet and 
dry seasons, and additionally two hypothetical scenarios. According to the results, was evidenced that PO4 -P 
contamination in the Gallinas River is more important in the wet season since it presented concentrations that 
exceed the ecological criteria for the use of drinking water and protection of aquatic life (0.1 mg/L) throughout 
the section of the study. For the dry season, this pollutant becomes representative once the Tamasopo river is 
taxed, which means that the Tamasopo river is a relevant tributary in the contribution of PO4-P. To control PO4 -P 
contamination in the Gallinas river, it is necessary to reduce the concentration by up to 80% in the Piedritas 
and Tamasopo tributaries, both in the dry and wet season, thus, the PO4 -P levels would be maintained below 
the ecological criteria.

As for the NO3 -N quality determinant, the Gallinas river is capable of assimilating the pollutant both in the 
dry and wet seasons, only if the concentrations of external discharges (Piedritas stream and Tamasopo river) 
around a 300%, would exceed the allowable value in dry weather.

Dissolved oxygen presented an adequate behavior trend in the two seasons, however, it is clear that the 
concentrations were lower in summer and this is due to the direct influence that the increase in temperature 
has on said variable. Regarding the approach of scenarios H 1 and H 2 , it is inferred that the Gallinas river has an 
excellent reaeration capacity, because although the concentrations were reduced by up to 50% (3 mg DO/L), the 
results showed that the river recovers DO satisfactorily.

Also can be inferred, according to the simulations, during the rainy season for the hypothetical scenario, can 
occur an increase of the PO4 -P concentration compared to the dry season, due to the leaching of the fertilizers 
present on the sown surface.

Tamasopo river is the most influential source for the Gallinas river, both in terms of flow and pollutants, since 
it was found that once the Tamasopo river joins the Gallinas river, the concentrations of the variables analyzed 
in the study area are seen affected by said contribution, concluding that the source in question is decisive in the 
quality of the Gallinas river water.

It is important to bear in mind that there are diffuse sources that also influence the physicochemical charac-
teristics of water bodies, therefore, it is not enough to affirm that the study area can be effected only by tributaries: 
Piedritas stream and Tamasopo river, which were the ones that could be seen with the naked eye. Nevertheless, it 
can be concluded that there is a clear correlation between the punctual discharges of various chemical products 
to the Tamasopo river that converges in turn with the Gallinas river, as well as the diffuse discharges, a product 
of the leaching of soils with intensive agriculture in the area of influence of the Gallinas River.

EFDC Explorer model was efficient for the purposes of this research, it allows to generate curvilinear grids 
that adjust in detail to the conditions of the body of water, demonstrating that the model well-calibrated can 
reproduce with high accuracy the contaminants transport reality.

Finally, the results of the simulations for the hypothetical conditions, shows that the river could has a good 
assimilation capacity, despite, the increase in concentrations and additionally, the following policies and actions 
could be proposed to prevent, control, and improve conditions in the Gallinas River sub-basin.

•	 Continue with a periodic and systematic monitoring plan along the Gallinas River, with flow measurements, 
water quality parameters in situ, and taking samples for parameter analysis, in order to establish immediate 
measures when parameters outside the norm or ecological criteria are detected.

•	 Establish permanent monitoring of the effluents of the Alianza popular sugar mill, which contributes its 
wastewater to the Tamasopo River, which is, in turn, the most important tributary of the Gallinas River. It 
is suggested to carry out a general inspection, to verify the optimal wastewater treatment plant, and to carry 
out periodic inspections to determine if these effluents are adequately treated before being incorporated into 
the river Tamasopo

•	 Surrounding urban populations such that have drainage and wastewater treatment plants must be supervised 
so that such plants are in operation and their effluents comply with the respective standards.

•	 For the cases of homes that do not have piped water systems, and that obtain water for their domestic use 
from the Gallinas River through motor pumps, it is recommended to warn to the population, through the 
corresponding health authorities, on the need to make water drinkable by the different known means.

•	 In the case of diffuse contamination by runoff of agrochemicals that end up in the riverbed, it is important 
to link up with the federal and state government agencies, so that an extension program is implemented and 
the optimal doses are recommended of fertilizers for crops, as well as the most efficient irrigation systems to 
apply irrigation water and essential nutrients for the optimal development of the crop.

•	 The interaction between civil society (companies, inhabitants and producers), the federal, state and municipal 
governments, it is essential for the Gallinas river sub-basin to be a place where biotic and abiotic resources 
(water, soil, fauna and flora), as well as the people who inhabit it, they are under an environmentally sustain-
able system.

Received: 24 January 2021; Accepted: 8 June 2021
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