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Identifying new targets for rectal cancer treatment
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Colorectal cancer remains one of the highest 
incident and top causes of cancer-related mortality in 
the United States and around the world. In addition to 
oncologic outcomes, rectal cancer in particular presents 
additional challenges as surgery for rectal cancer can 
cause significant decreases in bowel function and 
quality of life, or even result in a permanent colostomy. 
The adoption of multimodality care with radiation 
and chemotherapy before surgery has improved 
cancer outcomes. In fact, response to neoadjuvant 
chemoradiation is directly correlated with survival 
[1]. Furthermore, a subset of patients with an excellent 
clinical response to chemoradiation may avoid surgery 
and preserve function [2]. Unfortunately, there is great 
variety among patients in their response to treatment, 
and radiation resistance remains a major challenge to 
successful rectal cancer care [3]. Identifying reasons 
for this heterogeneity in response, and discovering 
novel targets to improve radiation sensitivity will lead 
to treatment advances. We have recently discovered 
Coenzyme A synthase (COASY) as a novel protein that 
serves both as a predictive marker for, and has a critical 
function in radiation resistance [4].

To evaluate patient heterogeneity, we analyzed 
COASY expression in pretreatment human rectal cancers 
and found levels varied among patients, and that increased 
levels were directly related to radiation resistance. Using 
genetic manipulation with COASY knockdown and 
overexpression lines, this observation was confirmed 
in in vitro and in vivo models. Mechanistically, we 
demonstrated a direct interaction between COASY 
protein and the PI3K regulatory subunit PI3K-P85α, 
which increased AKT and mTOR phosphorylation, 
enhancing cell survival after irradiation. Additionally, 
shRNA COASY-knockdown increased DNA double-
strand breaks after irradiation [4].

COASY was first described as the mitochondrial 
enzyme that catalyzes the two last steps of Coenzyme A 
synthesis in humans. The first reaction, mediated by the 

PPAT (4′phosphopantetheine adenylyltransferase) domain, 
is a transfer of the adenosine monophosphate moiety of 
ATP to 4′-phosphopantetheine to form dephospho-CoA in 
an Mg2+ dependent manner. The last step in CoA synthesis 
is catalyzed by the dephospho-CoA kinase (DPCK) 
domain of COASY that adds a phosphate group from 
ATP to the 3′-hydroxyl of dephospho-CoA [5]. However, 
the newly discovered non-canonical functions of COASY 
have broadened its implications in cell survival. COASY 
has been implicated in the maintenance of DNA integrity 
and mitotic fidelity in different models such as zebrafish 
and human breast cancer cells [6,7]. Recently, a hot spot 
mutation in the COASY gene was observed in a subset of 
neurodegeneration patients with brain iron accumulation 
(NBIA) and a distinct set of symptoms, accordingly 
named COASY protein-associated neurodegeneration 
(CoPAN). These non-canonical functions of COASY are 
suspected to be altered and responsible for the cell death 
observed in the CoPAN phenotype.

A proline-rich domain has been found in the 
N-terminal extension of COASY. This 29 amino-acids 
sequence is responsible for the protein-protein interaction 
with the SH3 domains of the Src family non-receptor 
tyrosine kinases, Fyn and Csk [8]. The interaction leads 
to a global phosphorylation of tyrosine residues present 
in COASY which is necessary for its interaction with 
PI3K-P85α to promote the activation of the PI3K pathway 
[9]. Moreover, other proteins are known to interact with 
PI3K-P85α and exert a cell protection to radiation by 
modulating the PI3K complex enzymatic activity, such 
as Fyn, LYN etc. [10,11]. Our identification of COASY as 
a key mediator of PI3K/Akt radiation resistance signaling 
provides additional rational for developing COASY 
protein-targeted therapeutics.

Our findings may have broader implications beyond 
rectal cancer as the level of COASY was found to be 
significantly overexpressed in tumors compared to normal 
tissues in several other cancers [4]. Furthermore, the 
ubiquitous role of PI3K/Akt signaling in cancer suggests 
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that our results may be relevant to several cancer types. 
This may play a role in other cancers that have variable 
responses to radiation. By delineating the underlying 
mechanisms and a link with PI3K pathway activation, 
our work sheds light on the potential of COASY as a new 
therapeutic target for future study as a potential radiation-
sensitizing agent.
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