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Abstract

Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence

of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarc-

tion LV dilatation, or death, and represents one of the most significant public health morbidi-

ties worldwide. Interestingly however, the hearts of neonatal pigs have been shown to

regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a

recovery period which is accompanied by an increased expression of markers for cell-cycle

activity, and suggests that early postnatal myocardial regeneration may be driven in part by

the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified sig-

naling pathways known to regulate the cell cycle, and determined of these, the pathways

persistently upregulated in response to MI injury. We identified five pathways (mitogen asso-

ciated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and

activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated

in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the

initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector

molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in

these pathways were persistently upregulated at day 7 through day 28, suggesting there

exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our

observations provide a list of key regulators to be examined in future studies targeting cell-

cycle activity as an avenue for myocardial regeneration.

Introduction

We and others have reported that hearts of neonatal pigs are able to regenerate myocardial tissue

lost to an acute myocardial infarction (MI) that occurs within the first two days following birth

(postnatal day [P] 1) [1, 2]. On P28, measurements of left-ventricular (LV) anterior wall
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thickness reached 90% of measurements of those in age matched control animals and were

accompanied by an increase in the expression of markers for cell-cycle activitiy and proliferation

(Ki67, PH3, and Aurora B) compared again to age matched control animals. Furthermore, the

correlation between regenerative capacity and cell-cycle marker expression suggests that myocar-

dial regeneration in very young animals likely occurs by means of proliferation of endogenous

cardiomyocytes. Consequentlyupstream regulators of cell-cycle activity may be effective thera-

peutic targets for promoting myocardial proliferation in older mammals [3, 4]. Most experimen-

tal strategies for enhancing myocardial recovery through modulating signaling pathways have

focused on a single gene, growth factor, or other biologically active molecule [5, 6], and a number

of studies have targeted the upstream regulators of major signaling cascades such as p38/MAP

kinase [7], the Ras family of GTPases [8], or the transcription factors TBX5 [9] and GATA4/6

[10, 11] in older large animals. However, there have been few studies examining the cardiomyo-

cyte proliferative window in large young mammals that correlate gene expression to correspond-

ing protein levels and is coupled with in-vivo analysis [12].

The emerging field of bioinformatics provides new tools that can help scientists identify the

regulatory steps influencing myocardial cell cycle and other biological processes. The analysis

is performed in two steps. First, sequencing data generated from the experimental and control

groups are compared to produce a list of differentially expressed genes (DEG) [13, 14]; then,

pattern-matching algorithms [15, 16] compare the DEG list to databases of known pathways

to determine which pathways are most consistent with the observed variations in gene expres-

sion. This approach has been widely used in computer simulations of cardiac regeneration;

however, the databases typically comprise an aggregate of results from experiments performed

in different cell and tissue types. As such, the results may not be accurate for a specific tissue of

interest (e.g., myocardium). Because such analysis provides only a ranked list of pathways, it

cannot be used to identify which components within the pathways may be targeted to validate

the predicted outcome in-vivo or to produce a therapeutic effect [17].

For this report, we conducted the two steps of typical pathway analysis in reverse. First, we

queried the KEGG Pathway Database to identify signaling cascades known to regulate cell-

cycle and cell-fate determination [17]; and then used the results from our gene expression

analyses [18] of pig heart samples undergoing MI at P1 and their age-matched normal from

our previous study [19], to show that that five of the twenty putative cell-cycle/cell-fate path-

ways were up-regulated for 4 weeks in response to MI injury at P1. Collectively, our observa-

tions provide a comprehensive list of molecular targets for future in-vitro and in-vivo studies

of myocardial regeneration.

Methods

Animals

All experimental protocols were approved by the Institutional Animal Care and Use Commit-

tee of the University of Alabama Birmingham (UAB) and performed in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals (National

Institutes of Health publication No. 85–23). Pigs (Prestage Farms, Inc, West Point, MS) were

fed every 4 hours with bovine colostrum on P1-P2, with a 1:1 ratio of colostrum:sow’s milk on

P3, and with cow’s milk from P4 until sample collection. Supplemental iron was provided on

P7, and the animals were housed in an incubator at ~85˚F with room air until either P7 or P28

days of age. Surgical procedures are detailed in our previous report [19]; briefly, MI was

induced via permanent ligation of the left descending coronary artery. Seven and 28 day old

normal animals were used as controls.
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RNA sequencing

RNA sequencing was performed according to the Illumina NGS protocol [20]. RNA was iso-

lated from tissue samples (~30 mg) collected from the border zone of ischemia in the hearts of

MI animals and from the corresponding region of hearts in age-matched normal animals.

Libraries were quantified via qPCR with equal amounts of RNA for all samples, and RNA con-

centrations were diluted to 3 nM before loading equimolar amounts onto the flow cells.

Sequencing data were processed in the Cheaha computer cluster at UAB (https://docs.

uabgrid.uab.edu/wiki/cheaha). Paired-end fastq files were evaluated with the trim-galore [20]

package for quality assessments of the input sequencing files, and mapping was conducted

with the Ensembl pig genome assembly (Sscrofa11.1) [21] and STAR package v2.5.2 [22] to

produce the sorted BAM (Binary Alignment Map) file format; following this step, the sorted

BAM file was converted into the SAM (Sequence Alignment Map) format with SAMtools [23],

and mapped transcripts (raw expression) were counted with the HTSeq/0.6.1 package [24].

Expression levels were normalized and differential gene expressions (DEG) (log2 of the fold-

change and p-value) were analyzed with Deseq2 software [25]. In 3x3 comparsions, the proba-

bility of observing as extreme and more than ‘all A-samples strictly greater than (or less than)

B-samples’ would be 0.59 = 0.002. This is the p-value for the statistical result above. The p-val-

ues other cases are computed as in [23].

Pathway analysis

Focusing on cell cycle regulators, we used DEG results from MI and age-matched control

heart samples to annotate the following KEGG[26] swine pathways:

1. MAPK signaling pathway: The MAPK signaling pathway participates in many cellular func-

tions, including cell proliferation, differentiation, and migration [27]. This pathway is criti-

cal in bridging from growth factor signaling to cell cycle intiation in mammalian cells [28].

2. HIPPO signaling pathway: In this pathway, LATS1/2 phosphorylates the transcriptional

coactivators YAP and TAZ and leads to apoptosis at high cell density [29]. Previous studies

show that a deficiency of HIPPO signaling pathway is able to reverse systolic heart failure

following myocardial infarction [30].

3. RAS signaling pathway: This pathway functions as molecular switches in regulating cell

proliferation, survival, growth, migration, differentiation and cytoskeletal dynamics [31].

4. VEGF signaling pathway: VEGF activates Protein Kinase C gene expression [32]; PKC

enters the RAS signaling pathway. There has been evidence showing the correlation

between VEGF expression and reduce cardiomyocyte apoptosis [33].

5. WNT signaling pathway: Wnt genes and their receptors stabilize beta-catenin. Beta-catenin

activates cell-cycle transcription factors, such as LEF1 and MYC [34]. The HIPPO pathway

could inhibit WNT signaling pathway and restrain cardiomyocyte proliferation [35].

6. RAP1 signaling pathway: This pathway controls the cell division process [36].

7. Hedgehog signaling pathway. This pathway regulates differentiation, proliferation, tissue

polarity, stem cell population and carcinogenesis [37].

8. JAK-STAT signaling pathway: The JAK/STAT pathway is the principal signaling mecha-

nism for many cytokines and growth factors [38].
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9. cAMP signaling pathway: cAMP acts directly on protein kinase A and Epac genes [39, 40].

These genes activate the RAP1 and MAPK pathways, which regulates calcium homeostasis,

muscle contraction, cell fate, and gene transcription [41].

10. ERBB signaling pathway: ERBB genes bind extracellular growth factor ligands to the

MAPK signaling pathway [42], which regulates proliferation and differentiation.

11. cGMP-PGK signaling pathway [43, 44]: In cardiac myocyte, PKG directly phosphorylates

a member of the transient potential receptor canonical channel family, TRPC6, suppress-

ing this nonselective ion channel’s Ca2+ conductance, G-alpha-q agonist-induced NFAT

activation, and myocyte hypertrophic responses.

12. Apelin signaling pathway: This pathway regulates angiogenesis, cardiovascular functions,

cell proliferation [45, 46].

13. NF-kappa B signaling pathway: This pathway controls transcription of DNA, cytokine

production and cell survival [47]

14. TNF signaling pathway: This pathway regulates the immune cells, which are recruited as

response to injury. The pathway could induce apoptosis [48].

15. HIF-1 signaling pathway: implicated in proliferation of fetal cardiomyocytes [49].

16. FoxO signaling pathway. FoxO signaling pathway includes forkhead-box transcription

factors regulating cell-cycle control [50].

17. Sphingolipid signaling pathway: implicated in satellite muscle cell cell-cycle initiation [51].

18. Phospholipase D signaling pathway. Phospolipase D signaling pathway regulates the pro-

duction of the lipid second messenger phosphatidic acid. Posphatidic acid is involved in

many biological processes, including cell-cycle activity [52].

19. mTOR signaling pathway. mTOR signaling pathway serves as a central regulator of cell

metabolism, growth, proliferation and survival [53].

20. AMPK signaling pathway. AMPK signaling pathway regulates ATP production and con-

sumption; therefore, it has a critical role in regulating growth [54].

For each gene in the above pathways, we determined which genes met the following

criteria:

i. Pro-proliferative and cell-cycle genes expressed at a significantly higher level in MI samples

at P7 compared to controls. Average expression in MI-P7 samples are at least two-fold higher
than CTL-P7 samples. MI-P7 error bars were required to be strictly higher than CTL-P7

error bars.

ii. Of genes which met criteria in i.), also had at least two-fold differential expression when

comparing MI vs CTL at the sample collection day P28

Western blotting. Tissues were lysed in Mammalian Protein Extraction Reagent (Fisher sci-

entific, PI78501) with protease (Sigma, 04693116001) and phosphatase (Sigma, P0044) inhibitors;

then, the lysates were denatured at 100˚C for 6 min, separated in a 4–20% precast gel (Bio-rad,

4568093), and transferred onto a PVDF membrane (Bio-rad, 1704156). The membrane was incu-

bated with 5% non-fat milk (Bio-rad, 1706404) for 30 min, with primary antibodies at 4˚C over-

night, and then with horseradish-peroxidase (HRP)–conjugated secondary antibodies for 30 min.

Protein bands were detected with the chemiluminescent HRP substrate (Millipore, WBKLS0500)

in a ChemiDocTM Imaging System (Bio-rad). Phosphorylated proteins were detected first; then,
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the blots were treated with stripping buffer (Fisher scientific, PI21059) before total protein expres-

sion was evaluated.

Results

Pigs underwent induction of MI one day after birth (MI-P1), and gene-expression levels of

pathway components in border-zone infarcted heart samples were compared to corresponding

regions from hearts of age-matched controls, at P1, P7, and P28, via bulk RNA sequencing.

Early and late postnatal genes were defined as those found to be upregulated in MI-P1 animals

at P7 and P28, respectively. A minimum of 200 transcripts (raw count) was required for each

gene from all samples, and upregulation was defined as an expression level that was at least

two-fold greater in MI tissues compared to age-matched control tissues. For early-postnatal

genes, upregulation was also required to have no increase in expression from P1 to P7 in con-

trol samples, alongside no overlap between error bars in P7-MI and P-7 controls. Of the 11

general signaling pathways that were associated with the cell cycle and cell fate in the KEGG

Pathway Analysis database, five were comprehensively upregulated, from initial signaling mol-

ecule (e.g., growth factors and receptors) to final effector molecules (e.g., transcription factors

and proliferative genes) at P7 and/or P28. The results for these five fully upregulated pathways

are described in more detail below.

Mitogen-Activated Protein Kinase (MAPK)

MAPK signaling participates in many cellular functions, including proliferation, differentia-

tion, and migration [27], and serves as a crucial link between extracellular growth factors and

the regulation of cell cycle proteins in mammalian cells [28]. Three subpathways of MAPK sig-

naling (Fig 1), were comprehensively upregulated in hearts of MI-P1 pigs—1.) the canonical

MAPK pathway, shown previously to contribute to myocardial regeneration [55] and initiat-

ing through activation of the CSF1-CSF1R axis [56], GRB2, SOS1/2, Ras family members

KRAS/NRAS, ARAF/RAF1, MAP2K1/2 [57], MAPK1/3 [58], ATF4/ELK4/MYC [59], and

SRF/FOS [6]; 2) a second CSF1-intiated pathway that followed the classic MAPK pathway

through Ras-family activation before diverging to upregulate MAP3K1 [60], MAP2K4,

MAPK8/9/10, FOS, and JUND [61]; and 3) a pathway that was initiated by CD14 and proceeds

through upregulation of TAB1/2, MAP3K7 [62], IKBKG [63], NFKB1/2, and RELA/RELB

[64]. Both the initial (CSF1, CSF1R, CD14) and terminal (ATF4, FOS, JUND, NFKB1/2,

RELA/RELB) components of all three MAPK subpathways continued to be more highly

expressed in MI-P1 than in age-matched control samples at P28, suggesting that MI-induced

MAPK activation and myocardial regeneration persists for at least 4 weeks after myocardial

injury; however, most (but not all) intermediate pathway components were upregulated only

during the early-postnatal period (e.g. _________). NF1 and members of the DUSP gene fam-

ily were also identified among the upregulated early postnatal genes, and function as MAPK

inhibitors, suggesting MAPK-mediated myocardial regeneration may be promoted via NF1

and/or DUSP inhibition. Notably, the selective inhibition of DUSP genes has been shown to

promote cardiac development [65], while deletion of NF1 in neonatal mice leads to cardiac

hypertrophy and premature mortality [66].

Hippo

The Hippo signaling pathway is controlled by the upstream regulator Moesin-Ezrin-Radixin-

Like Protein (MERLIN, encoded by the NF2 gene), and proceeds through Salvador-1 (encoded

by SAV1) to activate the LATS1/2-mediated phosphorylation of two transcription factors—

YAP and WWTR1. Phosphorylated YAP/WWTR1 is sequestered in the cytoplasm where it is
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Fig 1. MAPK signaling is fully upregulated by MI injury in the hearts of 1-day-old pigs. (A) The subpathways of MAPK signaling are

displayed in a flow chart; genes that were expressed at significantly higher levels in the hearts of MI-P1 animals than in Age-matched normal

-P1 hearts at P7 (i.e., early postnatal genes) or P28 (i.e., late postnatal genes) are displayed in a red box or in red text, respectively. (B) The
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targeted for degradation, a process which has been shown to promote apoptosis in cultures of

confluent cells [29]; however, when Hippo signaling is inhibited, unphosphorylated YAP/

WWTR1 translocates into the nucleus, where it promotes the expression of genes that impede

apoptosis and promote proliferation. The Hippo pathway may also suppress cardiomyocyte

proliferation via the inhibition of Wnt signaling [35], and previous reports indicate that the

inhibition of Hippo signaling may reverse the progression of heart failure in mice [30], while

SAV1 and LATS1/2 inhibition can improve myocardial recovery [12]. Our analyses indicate

that Hippo pathway components from NF2 through LATS1/2 were upregulated in MI-P1 pigs

during the early postnatal period (Fig 2); however, the expression of YAP1/WWTR1 in MI-P1

and their age-matched controls were similar at Day 7 and Day 28, suggesting that the increase

in LATS1/2 expression did not impede Hippo signaling via YAP1/WWTR1 degradation. Fur-

thermore, the TGFB-SMAD subpathway of Hippo signaling was fully upregulated in MI-P1

pigs during the early postnatal period, culminating with increases in expression of the prolifer-

ative genes FGF1 [67] and ITGB2, and both the initial (TGFB) and terminal (ITGB2) compo-

nents of the TGFB-SMAD subpathway remained upregulated in MI-P1 pigs on Day 28. Thus,

any potential increase in LATS1/2-induced YAP1/WWTR1 phosphorylation and sequestra-

tion could have been offset by an increase in TGFB subpathway activity, particularly at later

timepoints [68, 69].

Cyclic AMP (cAMP)

cAMP levels increase in response to binding between G-protein coupled receptors (GPCRs)

and their extracellular signaling ligands, and the resulting cAMP signaling cascade activates,

notably, protein kinase A (PKA) via adenylyl cyclase, among several other kinases [39, 40], to

activate RAP1 and MAPK pathways that regulate calcium homeostasis, muscle contraction,

cell fate, and gene transcription [41]. A single initiating ligand, atrial natriuretic peptide

(encoded by NPPA) [70], and its corresponding GPCR receptor, ADYCYAPR1R1, were upre-

gulated in MI-P1 swine at Day 7, which led to upregulation of GNAS and ADYC5/6 (Fig 3).

ADYC5/6 subsequently activated the classic MAPK subpathway (MAP2K1/2, MAPK1/3, JUN,

and FOS) via both the upregulation of PRKCA/B/C and sequential upregulation of RAPGEF3/

4 and RAP1A/B. Activation of RAP1A/B (Ras protein) expression also resulted in afadin

(AFDN gene) upregulation, which promotes actin cytoskeleton rearrangement and effects

cell-cell adhesion, 2) the VAV2-RAC1-PAK1 subpathway, which also functions in cytoskeletal

remodeling, and 3) PI3K-AKT1/2/3, which stimulates proliferation. Notably, the PRKCA/B/C

subpathway also proceeds through the PPP1C family of CREB inhibitors [71] which promote

cell proliferation, and PPP1CA/B/C were all upregulated at Day 7, while CREB proteins were

downregulated on Day 28, in MI-P1 pigs.

Janus Kinase/Signal Transducers and Activators of Transcription

(JAK-STAT)

The JAK/STAT pathway is the principal signaling mechanism for many cytokines and growth

factors [38], and previous experiments have shown that early activation of JAK1/STAT3 is

required for the proliferative response to cardiac injury in zebrafish [72]. Four JAK-STAT sub-

pathways were fully upregulated in MI-P1 pigs (Fig 4), including the anti-apoptotic branch

that proceeds through PIM1 [73], the MYC–CCND1/2/3 branch, which promotes cell-cycle

expression of the initial signaling molecules (CSF1/CSF1R, CD14, TGFB) and the terminal effector molecules (JUND, ATF4, FOS, NFKB2

and RELB) of the MAPK signaling pathway was evaluated at the indicted time points in MI-P1 and Age-matched normal -P1 (CTL) hearts.

https://doi.org/10.1371/journal.pone.0232963.g001
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progression [4, 74], the branch composed of PTPN11/GRB, SOS1/2, HRAS, and RAF1, which

regulates proliferation and differentiation, and the branch that proceeds through PI3K, AKT1/

2/3 [20], and MTOR to promote the cell cycle and cell survival. The upregulation of PIM1,

MYC, and CCND1/2/3 persisted through Day 28.

RAS

RAS genes function as molecular switches during the regulation of cell proliferation, survival,

growth, migration, and differentiation, as well as cytoskeletal dynamics [31]. Our analysis

Fig 2. Hippo signaling is fully upregulated by MI injury in the hearts of 1-day-old pigs. (A) The subpathways of Hippo signaling are displayed

in a flow chart; genes that were expressed at significantly higher levels in the hearts of MI-P1 animals than in Age-matched normal -P1 hearts at P7

(i.e., early postnatal genes) or P28 (i.e., late postnatal genes) are displayed in a red box or in red text, respectively. (B) The expression of an initial

signaling molecule (TGFB1) and a terminal effector molecule (ITGB2) of the Hippo signaling pathway was evaluated at the indicted time points in

MI-P1 and Age-matched normal -P1 (CTL) hearts.

https://doi.org/10.1371/journal.pone.0232963.g002
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indicated that in addition to MAPK and JAK-STAT signaling, CSF1/CSF1R activation in

MI-P1 pigs also fully upregulated subpathways of Ras signaling that progressed through

AFDN to control the formation of intercellular junctions, and through PI3K, AKT1/2/3,

IKBKG, and NFKB1/RELA to activate cell-cycle progression and promote cellular growth,

migration, and survival (Fig 5).

In order to validate the activation of these signaling pathways at protein level, Western blot-

ting experiments were performed and the data are summarized in Fig 6. We have conducted

Fig 3. cAMP signaling is altered by MI injury in the hearts of 1-day-old pigs. Two subpathways of cAMP signaling

are displayed as flow charts. Genes that were expressed at significantly higher levels in the hearts of MI-P1 animals

than in Age-matched normal -P1 hearts at P7 (i.e., early postnatal genes) or P28 (i.e., late postnatal genes) are displayed

in a red box or in red text, respectively, and genes that were expressed at lower levels in MI-P1 than in Age-matched

normal -P1 hearts at P28 are displayed in blue text.

https://doi.org/10.1371/journal.pone.0232963.g003
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Western blot analyses of the expression of MAPK1/3, which mediates MAPK signaling; Akt,

which mediates the cell-cycle regulatory activity of the JAK/STAT, cAMP, and RAS pathways;

and the Wnt regulators GSK 3α/β and β-catenin, which act on downstream factors of the

Hippo pathway. The amount of activated (i.e., phosphorylated) 42/44-MAPK and Akt in MI

P1 LAD ligation hearts at page P7 or P28 was significantly greater in MI hearts than in age

matched normal (Fig 6); thus, MAPK, Wnt/β-catenin and Akt signaling were upregulated at

protein level for at least 28 days after LAD ligation at P1.

Discussion

Mammalian cardiomyocytes undergo cell cycle arrest in the early post-natal period; however,

we have shown that when MI occurs in the hearts of 1-day-old piglets, endogenous

Fig 4. JAK/STAT signaling is fully upregulated by MI injury in the hearts of 1-day-old pigs. (A) The subpathways of JAK/STAT

signaling are displayed in a flow chart; genes that were expressed at significantly higher levels in the hearts of MI-P1 animals than in

Age-matched normal -P1 hearts at P7 (i.e., early postnatal genes) or P28 (i.e., late postnatal genes) are displayed in a red box or in red

text, respectively. (B) The expression of three terminal effector molecules (PIM1, MYC, and CCND3) of the JAK/STAT signaling

pathway was evaluated at the indicted time points in MI-P1 and Age-matched normal -P1 (CTL) hearts.

https://doi.org/10.1371/journal.pone.0232963.g004
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cardiomyocytes proliferate to regenerate the injured myocardium[19]. Here, we present the

results that shows which signaling pathways are responsible for MI-induced cardiomyocyte

cell-cycle activation and proliferation Data from this study show that 5 of 20 possible regula-

tory pathways are upregulated in this model of early myocardial infarction in a large animal.

In conventional pathway analysis [75], differences in gene expression between control and

experimental groups are used to search a pathway database to determine which pathways may

be up- or down-regulated in response to the experimental interventions overall. In our current

investigation, the KEGG Pathway Database was queried first, to identify signaling cascades

that are known to regulate the cell cycle, cell-fate determination, and proliferation; then, the

results from differential gene expression analyses with tissues from the hearts of MI-P1 or age-

matched normal animals [19] were used to identify which of the known pathways were acti-

vated when MI was surgically induced one day after birth There are two advantages to this

strategy. First, by choosing pathways that we are interested in a priori, we can test whether or

not they are up regulated using unbiased measures. Second, we learn what pathways are likely

not involved, thus giving a fuller picture of the process we are studying.

Five pathways (MAPK, Hippo, cAMP, JAK/STAT, and Ras) were upregulated at all points

from the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) to the terminal

effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR,

NKF1B), Although several of the upregulated genes are known to contribute to myocardial

Fig 5. RAS signaling is fully upregulated by MI injury in the hearts of 1-day-old pigs. The subpathways of RAS signaling

are displayed in a flow chart; genes that were expressed at significantly higher levels in the hearts of MI-P1 animals than in

Age-matched normal -P1 hearts at P7 (i.e., early postnatal genes) or P28 (i.e., late postnatal genes) are displayed in a red

box or in red text, respectively.

https://doi.org/10.1371/journal.pone.0232963.g005
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recovery in zebrafish or mice [55, 59, 61, 64, 68–70], this study is among the first to establish

their involvement in the regenerative response to cardiac injury in neonatal large mammals.

We also classified the genes as early- or late-postnatal, depending on whether they were upre-

gulated on P7 or P28, respectively, and several of the upregulated genes appeared to link two

or more pathways. Notably, the expression of many genes that were upregulated on P7

declined to normal levels by P28, which suggests that they may be associated with early devel-

opmental processes that subside shortly after birth. Nevertheless, a number of genes (e.g.,

CSF1/CSF1R, MYC, JUN/JUND and ATF4) were upregulated at both time points, which sug-

gested that at least some regenerative activity persisted in MI-P1 animals for up to 4 weeks

after MI.

We have known that cardiac muscle regeneration can only occur in low vertebrate animals

for some time. Recently, there are significant reports indicating that in small mammal (mouse)

cardiomyocyte can regenerate [76, 77]. However, the myocyte proliferation capacity quickly

lost before postnatal-day 7 [76, 77]. The observation of LV functional recovery in newborn

humans by fixing the coronary perfusion immediately after birth [78], suggest that a significant

level of cardiomyocyte proliferation can occur in large mammal during early neonatal age. We

recently completed pilot studies examining the cardiac regenerative potential of neonatal

hearts in large mammals [1, 2], and our results demonstrate that the neonatal porcine heart is

capable of regenerating from MI for only the first 2 days of life. This regenerative capacity is

mediated by the proliferation of pre-existing cardiomyocytes [2, 76, 79], and is lost before post-

natal-day 7, when cardiomyocytes permanently exit the cell cycle. Using a pig model of MI at

P1, the present study demonstrate a few signaling pathways that are associated with the, activa-

tion of key myocyte proliferation signaling pathways. Most importantly, as we begin to better

understand the mechanisms that regulate the drastic early postnatal decline in cardiomyocyte

proliferation, we may be able to manipulate these mechanisms to promote myocardial regen-

eration in adult, as well as pediatric, patients.

Fig 6. Western blotting. LAD ligation at P1 activates key cell proliferation signaling pathways and downstream components. The expression

of β-catenin, phosphorylated (Pho-) GSK 3α/β, total GSK 3α/β, Pho-Akt, total Akt, Pho-p42/44 MAPK, and total p42/44 MAPK was evaluated via

Western blot. GAPDH levels were also evaluated to confirm equal loading. (A) Representative Western blotting of hearts from each time point/

group; (B) Compiled Wetern blotting data, n = 3 hearts each bar. T-test (2 tails) with Bonferroni correction. �, p<0.05 between P28-MI vs

P28-NL; #, p< 0.05 vs P7-MI; †, p<0.05 vs P7-NL. Total protein blots were the same original blots stripped and reprobed.

https://doi.org/10.1371/journal.pone.0232963.g006
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In conclusion, the studies presented here build upon the results from our previous report

[19] by conducting pathway analysis to determine which signaling mechansims contribute to

the regenerative capacity of newborn pig hearts. However, unlike conventional pathway analy-

sis, we queried the KEGG Pathway Database first, to identify signaling cascades that are

known to regulate the cell-cycle and proliferation, and then conducted differential gene

expression analyses to confirm whether the identified pathways were upregulated in myocar-

dial tissues from the hearts of pigs that underwent MI surgery one day after birth. Collectively,

our findings demonstrate a comprehensive list of key regulators that controls cardiomyocyte

exiting cell-cycle shortly after birth, which are significant informations for future in-vitro and

in-vivo studies of myocardial regeneration in large mammals.
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